• Intro banner1.jpg
  • Intro banner2.jpg
  • Intro banner3.jpg
  • Intro banner1a.jpg
  • Intro banner2a.jpg
  • Intro banner3a.jpg
  • Intro banner4.jpg
  • Intro banner5.jpg
  • Intro banner6.jpg
  • Intro banner2b.jpg
  • Intro banner3b.jpg
  • Intro banner7.jpg
  • Intro banner8.jpg
  • Intro banner9.jpg
  • Intro banner10.jpg
  • Intro banner11.jpg

Journal/NDM59 2025 eng

New Data on Minerals, Volume 59, 2025

DEADLINES FOR ARTICLES

Issue 1 - March 31, 2025
Issue 2 - May 31, 2025
Issue 3 - August 31, 2025
Issue 4 - November 30, 2025

Editorial Board

Editor in Chief:
Plechov P.Yu. -D.Sc. in Geology and Mineralogy, Professor
Members of Editorial Board:
Pekov I.V. - Corresponding Member of the Russian Academy of Sciences
Garanin V.K. - D.Sc. in Geology and Mineralogy, Professor
Borutsky B.E. - D.Sc. in Geology and Mineralogy
Spiridonov B.E. - D.Sc. in Geology and Mineralogy
Chukanov N.V. - D.Sc. in Physical and Mathematical Sciences
Kamenetsky V.S. - Professor (University of Tasmania)
Nenasheva S.N. - PhD in Geology and Mineralogy
Matvienko E.N. - PhD in Geology and Mineralogy
Generalov M.E. - PhD in Geology and Mineralogy
Pautov L.A. - Senior Researcher
Layout Designer
Kronrod E.V. - PhD in Chemistry

Content

Issue 1

Pdf icon.pngPautov L.A., Shodibekov M.A., Makhmadsharif S. Discovery of tainiolite in the carbonatites of the Dunkeldyk massif, Eastern Pamirs, p. 5-12

Taeniolite, KLiMg2Si4O10F2, was discovered in a strontium-rich carbonatites of the Cenozoic subvolcanic potassium alkaline complex of Dunkeldyk (37о46'50N, 74o59'37E), Eastern Pamir, Gorno-Badakhshan Autonomous Oblast, Tajikistan. Taeniolite occurs as light-brown lamellar grains up to 3 mm in diameter and up to 0.4 mm in thick in a rock, which consists of calcium strontianite (Sr0.54Ca0.46)CO3, fluorite, Sr-bearing calcite, strontianite, Sr-bearing fluorapatite, barite, amphibole group member, which close to magnesio-fluoro-arfvedsonite, aegirine, cancrinite group mineral, ankylite-(Ce) and pyrite. Taeniolite is optically biaxial (–), 2V = 5–10(2)o. Refractive indices of the mineral are: ng = nm = 1.547(2), np= 1.524(2). Taeniolite from the Dunkeldyk massif is characterized with lithium content close to theoretical and extreme fluorine amount. Chemical analysis by electron microprobe (7 points) and LA-ICP-MS for Li gave SiO2 58.98, TiO2 0.09, Al2O3 0.23, FeO 0.51, MnO 0.12, MgO 19.89, K2O 11.28, Na2O 0.38, Li2O 3.65, F 9.24, H2O 0.07, total 104.44; –O=F2 –3.88; total 100.57 wt%. The empirical formula, based on 10 O apfu is: (K0.97Na0.05)1.02(Li0.97Mg0.03)1.00(Mg1.97Fe0.03Mn0.01)2.01(Si3.97Al0.02Ti0.01)4.00O10[F1.97(OH)0.03]2. The main absorption bands in the IR spectrum of taeniolite (cm–1): 1129, 967, 721, 497, 383. In the Raman spectrum, strong lines (cm–1): 184, 258, 295, 307, 334, 701, 956, 1146. X-ray powder pattern of taeniolite is given. Apparently, this is the first discovery of a lithium mineral in the Dunkeldyk carbonatites.
Keywords: minnesotaite, ferrohortonolite-fayalite plagiogranites, Castel Mountain, Mountain Crimean mesozoids. читать далее...



Pdf icon.pngGritsenko Yu.D., Ogorodova L.P., Vigasina M.F., Dedushenko S.K., Ksenofontov D.A., Melchakova L.V. Staurolite from staurolite-almandine-muscovite schists of the Patom Highland (Mamsko-Chuisky District, Irkutsk Region): a comprehensive physicochemical study, p. 13-24

The article presents the results of a comprehensive physicochemical study of staurolite from staurolite-almandine-muscovite schists of the Patom Highland of the Mama-Chuisky District (Irkutsk Region) using powder X-ray diffraction, electron probe microanalysis, IR, Raman and Mössbauer spectroscopy. The chemical formula of the mineral is (Fe2+1.7Mg0.3)(Al8.9Mg0.1)(Si3.9Al0.1)O22.8(OH)1.2. The enthalpy of formation of the studied staurolite from the elements was determined for the first time using high-temperature melt solution calorimetry on a Calvet microcalorimeter (– 11998 ± 11 kJ/mol). The value of its standard entropy was estimated and the value of the Gibbs energy of formation was calculated: 489.8 ± 2.1 J/(mol K) and −11271 ± 11 kJ/mol, respectively. The thermodynamic constants for staurolite of the idealized composition Fe2+2Al9Si4O23(OH) were calculated: ΔfH0(298.15 K) = − 11943 ± 12 kJ/mol, ΔfG0(298.15 K) = − 11222 ± 12 kJ/mol .
Keywords: staurolite, Mamsko-Chuisky district, Patom Highland, Calvet microcalorimetry, enthalpy of formation, entropy, Gibbs energy, IR spectroscopy, Raman spectroscopy, Mössbauer spectroscopy. читать далее...





Russian page (V. 59)