Москва, Ленинский проспект 18 корпус 2,
тел. (495) 954-39-00
Journal/NDM52 2018 eng — различия между версиями
Antsifer (обсуждение | вклад) (→Issue 1) |
Antsifer (обсуждение | вклад) |
||
Строка 14: | Строка 14: | ||
| Аннотация = Natalia Nikolaevna Smolyaninova (1919–2013) - mineralogist, daughter of the famous mineralogist Nikolai Alekseevich Smolyaninov. She worked at IGEM USSR Academy of Sciences, studied the mineralogy of the radium-uranium-vanadium deposits of Tyuya-Muyun (Kyrgyzstan) and the tungsten-molybdenum deposits of Akchatau and Batystau (Kazakhstan). She was main-editor of five of the 12 issues of the encyclopedic guide "Minerals". | | Аннотация = Natalia Nikolaevna Smolyaninova (1919–2013) - mineralogist, daughter of the famous mineralogist Nikolai Alekseevich Smolyaninov. She worked at IGEM USSR Academy of Sciences, studied the mineralogy of the radium-uranium-vanadium deposits of Tyuya-Muyun (Kyrgyzstan) and the tungsten-molybdenum deposits of Akchatau and Batystau (Kazakhstan). She was main-editor of five of the 12 issues of the encyclopedic guide "Minerals". | ||
| Файл = Smolianinova_1_2020-1_rus.pdf | | Файл = Smolianinova_1_2020-1_rus.pdf | ||
− | | Приложения = | + | | Приложения = |
}}{{NDM_article | }}{{NDM_article | ||
− | | Авторы = | + | | Авторы = Karpenko V.Yu., Pautov L.A., Shodibekov M., Makhmadsharif S., Mirakov M.A. |
− | | Название = | + | | Название = Coconinoite: find at the Zor-Yarchi-Chak ore occurrence, Eastern Pamir, pp. 19-25 |
− | | Аннотация = | + | | Аннотация = The find of the coconinoite Fe2Al2 (UO2) 2 (PO4) 4 (SO4) (OH) 2 ∙ 20H2O in the oxidation zone at the uranium occurrence Zor-Yarchi-Chak (right bank of the South Ak-Baital River, Eastern Pamir, Tajikistan) is described. The mineral was found in fissures of substantially quartz rock in the form of dense clay-like masses of yellowish color (up to 2 cm2 in area), consisting of lamellar individuals 5–10 microns in diameter across. The refractive index nm = 1.589 (3) at 589 nm. The IR spectrum of the mineral is given. Composition (molecular weight, wt.%, Average for 24 analyzes; range for Al and Fe; H2O - CNH analysis, average for 2 analyzes, wt.%): Al2O3 6.95 (5.44–7.70), Fe2O3 11.13 (9.77–12.91), UO3 39.09, P2O5 18.35, SO3 4.64, H2O 22.7, total 102.86. The overestimation of the amount may be associated with partial dehydration of the mineral during microprobe analysis. The empirical formula is Fe2.07Al2.12U + 62.08P3.93S0.88О24 (OH) 2 · 18.16H2O (calculated on 24O + 2OH). Unit cell parameters: a = 12.45 (1), b = 12.87 (1), c = 22.75 (1), β = 105.66 (4). An analysis of the variations of Al and Fe in coconinoite from different locations (up to the high-aluminum non-iron analogue, Koscheka, Uzbekistan) confirms the existence of a natural series with extreme Al and Fe dominant members. |
| Файл = Karpenko_2_2020-1_rus.pdf | | Файл = Karpenko_2_2020-1_rus.pdf | ||
− | | Приложения = | + | | Приложения = |
}}{{NDM_article | }}{{NDM_article | ||
− | | Авторы = | + | | Авторы = Pautov L.A., Karpenko V.Yu., Mirakov M.A., Alinazarov U.S., Shodibekov M.A., Iskandarov F.Sh. |
− | | Название = | + | | Название = About bismuthocolumbite from myarolite granite pegmatites in the Eastern Pamirs, pp. 26-37 |
− | | Аннотация = | + | | Аннотация = Findings of bismuthocolumbumite in myarolite granite pegmatites of the Rangkul pegmatite field in the Eastern Pamirs, Gorno-Badakhshan Autonomous Area, Tajikistan are described. The mineral was found in the form of crystals up to 2 cm in the myarol cavities of the pegmatite veins Mika, Malysh and in the form of sprouts of 20–30 μm in Sc-containing columbite-Mn in intergrowth with eschinitis- (Y) in the near-myarol complex of pegmatite Dorozhny. The crystals were measured on a goniometer; the calculated and measured coordinates of the faces are given (in the setup a <c <b). The habitus of the crystals is prismatic, determined by the faces of the rhombic prism m {110}; minor and weakly expressed faces of the prismatic belt: pinacoid {010}, prisms {130}, {150}, {160}, {170}; the usual faces of the head are the rhombic prism i {101} and the dipyramid u {111}, the more rare prism f {032}. The color of bismuthocolumbite in crystals is dark brown, almost black, shines reddish-brown, in small fragments reddish-brown to light brown. The trait is light brown. Cleavage perfect according to (010). The measured density, g / cm3, 7.36 (1) (Kid), 7.61 (1) (Mika). Optically biaxial (+), 2V = 70 (10) °, the dispersion is strong, r> v. The plane of the optical axes is perpendicular to the (010) plane. The refractive indices of bismuthocolumbite from Mick's pegmatite: np = 2.42 (1), nm = 2.45 (1), ng = 2.50 (2). In reflected light, gray with a faint bluish tint, medium reflectivity, strong anisotropy, strong reflections from yellow to reddish-brown. Reflection spectra are given. Microhardness VHN100 = 360 (Kid), 353 (Mika). 6 m. analyzes. Chem. composition (wt.%, selective an., Kid, Mika, Dorozhniy): Ta2O5 2.11, 11.66, 8.61; Nb2O5 35.54, 28.11, 8.61; WO3 0.08, 0.11, 3.60; TiO2 0.02, 0.00, 0.58; PbO 0.10, 0.10, 0.00; SnO2 0.03, 0.12, 0.00; MnO 0.00, 0.01, 0.26; FeO 0.03, 0.00, 0.11; Sb2O3 0.78, 1.77, 8.55; Bi2O3 62.50, 57.59, 49.75; amount 101.19, 99.47, 100.10. X-ray powder diffraction patterns are shown. Parameters of the rhombic unit cell (Å): a = 4.982 (2), b = 11.719 (4); c = 5.677 (2) (Kid); a = 4.981 (2), b = 11.746 (4); c = 5.670 (2) (Mika). Possible reasons for the rarity of bismuthocolocolumbite as compared to stibiocolumbite and their Ta analogues are discussed. |
| Файл = Pautov_3_2020-1_rus.pdf | | Файл = Pautov_3_2020-1_rus.pdf | ||
− | | Приложения = | + | | Приложения = |
}}{{NDM_article | }}{{NDM_article | ||
− | | Авторы = | + | | Авторы = Kasatkin A.V. |
− | | Название = | + | | Название = To the question of re-studying mineralogical samples from museum collections. I. General Aspects, pp. 38-51 |
− | | Аннотация = | + | | Аннотация = The article is devoted to the problem of re-studying the samples of minerals stored in museum collections. Two main areas of revision of museum material are examined in detail. One of them is the re-study of the originals of the first study of minerals (type specimens), specifically aimed at clarifying the essential characteristics of insufficiently studied mineral species. The second direction covers all other samples stored in museum collections. The results of their re-study can be the discovery of new mineral species or clarification of the characteristics of already known minerals, finds, including the first, of rare minerals in a certain region and, in any case, an increase in the degree of knowledge or reliability of the diagnosis of a particular mineral. The significance of the results of such studies determines the relevance of the re-study of museum material and increases the value of museum collections. |
| Файл = Kasatkin_4_2020-1_rus.pdf | | Файл = Kasatkin_4_2020-1_rus.pdf | ||
− | | Приложения = | + | | Приложения = |
}} | }} | ||
==== '''''Issue 2''''' ==== | ==== '''''Issue 2''''' ==== | ||
{{NDM_article | {{NDM_article | ||
− | | Авторы = | + | | Авторы = Kasatkin A.V., Skoda R., Chukanov N.V. |
− | | Название = | + | | Название = To the question of re-studying mineralogical samples from museum collections. II. Cannonite and legernite from the Bukuk deposit (Transbaikalia), pp. 53-60 |
− | | Аннотация = | + | | Аннотация = Rare bismuth sulfates cannonite Bi <sub> 2 </sub> O (SO <sub> 4 </sub>) (OH) <sub> 2 </sub> and legernite Bi <sub> 12.67 </sub> O <sub > 14 </sub> (SO <sub> 4 </sub>) <sub> 5 </sub> as a result of our re-study of bismuth samples from the tungsten deposit Bukuk (V. Transbaikalia) stored in the systematic collection of the Mineralogical Museum named after A.E. Fersman Institute of RAS, number 56077. Both minerals are closely fused together in the composition of polymineral pseudomorphs according to roughly formed bismuthine crystals, forming veins up to 4 cm long and up to 0.5 cm thick. Empirical formulas: Cannonite Bi <sub> 2.06 </sub> S <sub> 0.97 </sub> O <sub> 5 </sub> (OH) <sub> 2 </sub>, legnite Bi <sub> 12.67 </sub> S <sub> 5.00 </sub> O <sub> 34 </sub>. Parameters of monoclinic unit cells: cannonite <i> a </i> = 7.691 (1), <i> b </i> = 13.874 (2), <i> c </i> = 5.6569 (8) Å, β = 109.23 (1) °, <i> V </i> = 569.90 (9) ų and <i> Z </i> = 4; in legernite: <i> a </i> = 11.197 (2), <i> b </i> = 5.714 (1), <i> c </i> = 11.879 (2) Å, β = 99.37 ( 2) °, <i> V </i> = 749.9 (2) ų and <i> Z </i> = 1. Strong bands in the Raman spectra: for cannonite 111, 121, 144, 184, 221, 318 , 437, 450, 560, 619, 983, 1059, 3439 cm <sup> –1 </sup>, for legernite 150, 183, 216, 313, 474, 969 cm <sup> –1 </sup>. Both minerals were found for the first time in the Russian Federation. |
| Файл = Kasatkin_1_2020-2_rus.pdf | | Файл = Kasatkin_1_2020-2_rus.pdf | ||
| Приложения = | | Приложения = | ||
}} | }} |
Версия 13:24, 16 мая 2020
Содержание
New Data on Minerals 2020 (Volume 54).
DEADLINE FOR ARTICLES
- Issue 1 - March 31, 2020
- Issue 2 - May 31, 2020
- Issue 3 - August 31, 2020
- Issue 4 - November 30, 2020
CONTENTS Vol.54
Issue 1
Smolyaninova V.N. Devoted to the 110th anniversary of the birth of Natalia Nikolaevna Smolyaninova, pp. 1-18
Natalia Nikolaevna Smolyaninova (1919–2013) - mineralogist, daughter of the famous mineralogist Nikolai Alekseevich Smolyaninov. She worked at IGEM USSR Academy of Sciences, studied the mineralogy of the radium-uranium-vanadium deposits of Tyuya-Muyun (Kyrgyzstan) and the tungsten-molybdenum deposits of Akchatau and Batystau (Kazakhstan). She was main-editor of five of the 12 issues of the encyclopedic guide "Minerals". читать далее...
Karpenko V.Yu., Pautov L.A., Shodibekov M., Makhmadsharif S., Mirakov M.A. Coconinoite: find at the Zor-Yarchi-Chak ore occurrence, Eastern Pamir, pp. 19-25
The find of the coconinoite Fe2Al2 (UO2) 2 (PO4) 4 (SO4) (OH) 2 ∙ 20H2O in the oxidation zone at the uranium occurrence Zor-Yarchi-Chak (right bank of the South Ak-Baital River, Eastern Pamir, Tajikistan) is described. The mineral was found in fissures of substantially quartz rock in the form of dense clay-like masses of yellowish color (up to 2 cm2 in area), consisting of lamellar individuals 5–10 microns in diameter across. The refractive index nm = 1.589 (3) at 589 nm. The IR spectrum of the mineral is given. Composition (molecular weight, wt.%, Average for 24 analyzes; range for Al and Fe; H2O - CNH analysis, average for 2 analyzes, wt.%): Al2O3 6.95 (5.44–7.70), Fe2O3 11.13 (9.77–12.91), UO3 39.09, P2O5 18.35, SO3 4.64, H2O 22.7, total 102.86. The overestimation of the amount may be associated with partial dehydration of the mineral during microprobe analysis. The empirical formula is Fe2.07Al2.12U + 62.08P3.93S0.88О24 (OH) 2 · 18.16H2O (calculated on 24O + 2OH). Unit cell parameters: a = 12.45 (1), b = 12.87 (1), c = 22.75 (1), β = 105.66 (4). An analysis of the variations of Al and Fe in coconinoite from different locations (up to the high-aluminum non-iron analogue, Koscheka, Uzbekistan) confirms the existence of a natural series with extreme Al and Fe dominant members. читать далее...
Pautov L.A., Karpenko V.Yu., Mirakov M.A., Alinazarov U.S., Shodibekov M.A., Iskandarov F.Sh. About bismuthocolumbite from myarolite granite pegmatites in the Eastern Pamirs, pp. 26-37
Findings of bismuthocolumbumite in myarolite granite pegmatites of the Rangkul pegmatite field in the Eastern Pamirs, Gorno-Badakhshan Autonomous Area, Tajikistan are described. The mineral was found in the form of crystals up to 2 cm in the myarol cavities of the pegmatite veins Mika, Malysh and in the form of sprouts of 20–30 μm in Sc-containing columbite-Mn in intergrowth with eschinitis- (Y) in the near-myarol complex of pegmatite Dorozhny. The crystals were measured on a goniometer; the calculated and measured coordinates of the faces are given (in the setup a <c <b). The habitus of the crystals is prismatic, determined by the faces of the rhombic prism m {110}; minor and weakly expressed faces of the prismatic belt: pinacoid {010}, prisms {130}, {150}, {160}, {170}; the usual faces of the head are the rhombic prism i {101} and the dipyramid u {111}, the more rare prism f {032}. The color of bismuthocolumbite in crystals is dark brown, almost black, shines reddish-brown, in small fragments reddish-brown to light brown. The trait is light brown. Cleavage perfect according to (010). The measured density, g / cm3, 7.36 (1) (Kid), 7.61 (1) (Mika). Optically biaxial (+), 2V = 70 (10) °, the dispersion is strong, r> v. The plane of the optical axes is perpendicular to the (010) plane. The refractive indices of bismuthocolumbite from Mick's pegmatite: np = 2.42 (1), nm = 2.45 (1), ng = 2.50 (2). In reflected light, gray with a faint bluish tint, medium reflectivity, strong anisotropy, strong reflections from yellow to reddish-brown. Reflection spectra are given. Microhardness VHN100 = 360 (Kid), 353 (Mika). 6 m. analyzes. Chem. composition (wt.%, selective an., Kid, Mika, Dorozhniy): Ta2O5 2.11, 11.66, 8.61; Nb2O5 35.54, 28.11, 8.61; WO3 0.08, 0.11, 3.60; TiO2 0.02, 0.00, 0.58; PbO 0.10, 0.10, 0.00; SnO2 0.03, 0.12, 0.00; MnO 0.00, 0.01, 0.26; FeO 0.03, 0.00, 0.11; Sb2O3 0.78, 1.77, 8.55; Bi2O3 62.50, 57.59, 49.75; amount 101.19, 99.47, 100.10. X-ray powder diffraction patterns are shown. Parameters of the rhombic unit cell (Å): a = 4.982 (2), b = 11.719 (4); c = 5.677 (2) (Kid); a = 4.981 (2), b = 11.746 (4); c = 5.670 (2) (Mika). Possible reasons for the rarity of bismuthocolocolumbite as compared to stibiocolumbite and their Ta analogues are discussed. читать далее...
Kasatkin A.V. To the question of re-studying mineralogical samples from museum collections. I. General Aspects, pp. 38-51
The article is devoted to the problem of re-studying the samples of minerals stored in museum collections. Two main areas of revision of museum material are examined in detail. One of them is the re-study of the originals of the first study of minerals (type specimens), specifically aimed at clarifying the essential characteristics of insufficiently studied mineral species. The second direction covers all other samples stored in museum collections. The results of their re-study can be the discovery of new mineral species or clarification of the characteristics of already known minerals, finds, including the first, of rare minerals in a certain region and, in any case, an increase in the degree of knowledge or reliability of the diagnosis of a particular mineral. The significance of the results of such studies determines the relevance of the re-study of museum material and increases the value of museum collections. читать далее...
Issue 2
Kasatkin A.V., Skoda R., Chukanov N.V. To the question of re-studying mineralogical samples from museum collections. II. Cannonite and legernite from the Bukuk deposit (Transbaikalia), pp. 53-60
Rare bismuth sulfates cannonite Bi 2 O (SO 4 ) (OH) 2 and legernite Bi 12.67 O 14 (SO 4 ) 5 as a result of our re-study of bismuth samples from the tungsten deposit Bukuk (V. Transbaikalia) stored in the systematic collection of the Mineralogical Museum named after A.E. Fersman Institute of RAS, number 56077. Both minerals are closely fused together in the composition of polymineral pseudomorphs according to roughly formed bismuthine crystals, forming veins up to 4 cm long and up to 0.5 cm thick. Empirical formulas: Cannonite Bi 2.06 S 0.97 O 5 (OH) 2 , legnite Bi 12.67 S 5.00 O 34 . Parameters of monoclinic unit cells: cannonite a = 7.691 (1), b = 13.874 (2), c = 5.6569 (8) Å, β = 109.23 (1) °, V = 569.90 (9) ų and Z = 4; in legernite: a = 11.197 (2), b = 5.714 (1), c = 11.879 (2) Å, β = 99.37 ( 2) °, V = 749.9 (2) ų and Z = 1. Strong bands in the Raman spectra: for cannonite 111, 121, 144, 184, 221, 318 , 437, 450, 560, 619, 983, 1059, 3439 cm –1 , for legernite 150, 183, 216, 313, 474, 969 cm –1 . Both minerals were found for the first time in the Russian Federation. читать далее...