Москва, Ленинский проспект 18 корпус 2,
тел. (495) 954-39-00
Journal/NDM51 2016
Новые данные о минералах. 2016. Выпуск 51. 164 стр., 123 фото, схемы и рисунка.
Под редакцией доктора геол.-мин. наук П.Ю. Плечова.
Содержание
Аннотация номера
Выпуск посвящен 300-летию Минералогического музея им. А.Е.Ферсмана РАН, и научные разделы предваряют приветствие музею и его сотрудникам от Отделения наук о Земле Российской академии наук и вступительная статья директора музея и главного редактора журнала, д.г.-м.н. П.Ю. Плечова.
Первый раздел содержит описание нового сульфида железа и элементов платиновой группы – феродсита, обнаруженного в Нижнетагильском ультраосновном массиве (Урал) и в россыпи Кондёр (Хабаровский край), а также предположительно новой урановой фазы – кальциевого титаносиликата, найденного в образцах из месторождений Алдана и месторождения Новоконстантиновское (Украина). Описана необычная эндогенная ассоциация несульфидных минералов халькофильных элементов из Пелагонийского массива (Македония), Ni-Zn-содержащий фольбортит («узбекит») из ванадиеносных сланцев Южной Киргизии, редкие силициды (нагчуит, линьчжиит, лобусаит и цангпоит) из сарматских известняков Крыма. Приведены новые данные о минералах Шишимской копи на Ю. Урале, биоминералах латеритных бокситов, алмазоносных кимберлитах и метакимберлитах Кимозера, Карелия.
В раздел «Минералогические музеи и коллекции» помещены статьи по истории поступления коллекций в собраниеМинералогического музея им. А.Е.Ферсмана и об одной из таких коллекций, собранной И. Вагнером, а также о новой музейной выставке «Минералы хрусталеносных кварцевых жил».
«Минералогические заметки» рассказывают об одном из исторических музейных экспонатов из коллекции Вагнера – кварце с выгравированным на нем рисунком.
«Персоналии» включают статью, посвященную ученому хранителю Минералогического музея Императорской Академии наук (1887–1896 гг.) Э.В. Толлю, руководившему Русской полярной экспедицией 1900–1902 гг. Завершает выпуск заметка о проходившей в Минералогическом музее научной конференции, приуроченной к его 300-летнему юбилею (ноябрь 2016 г.,Москва).
Издание Федерального государственного бюджетного учреждения науки Минералогический музей им. А.Е. Ферсмана Российской академии наук (Минмузей РАН).
Журнал представляет интерес для минералогов, геохимиков, геологов, а также работников естественно-научных музеев, историков науки, коллекционеров и любителей камня.
Редакционная коллегия
- Главный редактор: доктор геолого-минералогических наук, П.Ю. Плечов
- Ответственный редактор выпуска: кандидат геологоiминералогических наук Е.А. Борисова
- доктор геол.-минерал. наук, профессор В.К. Гаранин,
- доктор геол.-минерал. наук, профессорМ.И. Новгородова,
- доктор геол.-минерал. наук Б.Е. Боруцкий,
- доктор геол.iминерал. наук Е.И. Семёнов,
- канд. геол.iминерал. наук С.Н. Ненашева,
- канд. геол.iминерал. наук Е.Н.Матвиенко,
- канд. геол.-минерал. наук М.Е. Генералов,
- Л.А. Паутов
Издательская группа
- Фото М.Б. Лейбов
- Руководитель издательской группы М.Б. Лейбов
- Выпускающий редактор Л.А. Чешко
- Дизайн Д. Ершов
- Верстка И.А. Глазов
Утверждено к печати Минмузеем РАН Copyright: текст, фото, иллюстрации - Минмузей РАН, 2016
Подготовлен к печати Минмузей РАН ООО «БРИТАН» 119071,Москва, Ленинский пр., д. 18, корпус 2 117556,Москва, а/я 71 Тел.: 8 (495) 952-00-67, факс: 8 (495) 952-48-50 Тел./факс: 8 (495) 629i48i12 Eimail: mineral@fmm.ru Eimail: minbooks@inbox.ru www.fmm.ru www.minbook.com Заказать текущий выпуск или подписаться на журнал можно на сайте www.minbook.com или по электронной почте minbooks@inbox.ru Цена подписки: 300 руб. Тираж 100 экз. (печатная версия) и 100 экз. (CD).
Содержание
Вниманию читателей предлагается 51-й выпуск журнала «Новые данные о минералах». Этот выпуск особенный, так как приурочен к 300-летию Минералогического музея им. А.Е.Ферсмана РАН. Поэтому мы расширили раздел, посвященный коллекциям и истории Музея, и поместили краткий отчет о научной конференции, проходившей в Президиуме РАН и в Минмузее в ноябре 2016 года и посвященной 300-летнему юбилею Минералогического музея им. А.Е. Ферсмана РАН читать далее...
Глико А.О. инералогическому музею им. А.Е. Ферсмана Российской академии наук 300 лет. Приветствие к 300-летию музея от академика-секретаря ОНЗ РАН
Дорогие сотрудники Музея, Отделение наук о Земле РАН от души поздравляет Вас с ТРЕХСОТЛЕТИЕМ!! Нельзя не вспомнить основные этапы истории Музея. В далеком 1716 году в основанной императором Петром I Кунсткамере был создан Минеральный кабинет, который при создании Российской академии наук стал ее неотъемлемой частью. В составе Геологического музея читать далее...
Новые минералы и их разновидности, новые находки редких минералов, минеральные парагенезисы
Бегизов В.Д., Завьялов Е.Н. Феродсит (Fe,Rh,Ir,Ni,Cu,Pt,Co)9-xS8–новый минерал из Нижнетагильского ультраосновного массива
Феродсит обнаружен в коренных породах Нижнетагильского ультраосновного массива (Урал) и в россыпи Кондёр (Хабаровский край). Новый минерал находится в срастании и ассоциации с минералами группы Pt-Fe, чендеитом и сульфидами платиновых металлов.Минерал черный с бронзовым оттенком, металлическим блеском, совершенной спайностью по (111). Размеры зерен в основном 10–50 мкм, сростки до 100 мкм. В отраженном свете светлый, коричневато-серый, слабое двуотражение. Химический состав отвечает формуле (Fe,Rh,Ni,Ir,Cu,Pt)9xS8, где х колеблется от 0 до 1. Сингония тетрагональная, а=10.009(5)Å, с = 9.840(8)Å, V = 985.78(9)Å3, Z = 4. Образец с феродситом хранится в Минералогическом музее им. А.Е. Ферсмана РАН. В статье 3 таблицы, 1 рисунок, список литературы из одного названия. Ключевые слова: феродсит, платиновые минералы, Нижнетагильский ультраосновной массив, Кондёр. читать далее...
Ермолаева В.Н., Чуканов Н.В., Янчев С., Ван К.В. Эндогенный парагенезис несульфидных минералов халькофильных элементов в орогенной зоне «Смешанной серии» Пелагонийского массива,Македония
Получены новые данные о специфической метасоматической ассоциации оксидных минералов, содержащих халькофильные элементы, из метасоматических пород орогенной зоны «Смешанной серии» метаморфического комплекса, расположенного в Пелагонийском массиве, Македония. Основываясь на соотношениях минеральных фаз, выявлен следующий порядок последовательности образования минералов: цинкохромит+циркон+Zn-содержащий тальк+барит-> франклинит+гетеролит-> ганит -> ромеит + альмейдаит -> Fe3+-аналог цинкохёгбомита -> феррикоронадит + Mn-аналог плюмбоферрита. В процессе метасоматического преобразования в высокоокислительных условиях последовательный привнос Zn, Al, Sb и Pb привел к формированию цинковых шпинелидов (в том числе ганита, замещающего франклинит и гетеролит), Sb-содержащего железного аналога цинкохёгбомита (эпитаксия на цинковых шпинелидах) и феррикоронадита (поздние гидротермальные прожилки). Привнос As происходил в 2 этапа. читать далее...
Карпенко В.Ю., Паутов Л.А., Агаханов А.А. О Ni-Zn-содержащем фольбортите («узбеките») из ванадиеносных сланцевЮжной Киргизии
Приведены результаты переизучения «узбекита» – водного ванадата меди, описанного впервые на Кара-Чагыре,Киргизия, на материале из фондов Минералогического музея им. А.Е.Ферсмана РАН(Москва) и сборов авторов. «Узбекит» с Кара-Чагыра идентифицирован как фольбортит с повышенными содержаниями цинка и никеля (мас.%): ZnO до 5.2 (среднее ~ 1.0–2.5); NiO до 2.4 (среднее ~ 0.5–2.0).Повышенные содержания Zn и Ni встречены также в фольбортите на U-месторождении Кара-Танги, Киргизия. Приведены микрозондовые анализы фольбортита из Киргизии и с хребта Каратау, Казахстан, и содержание воды для некоторых образцов. Описаны кристаллы различной морфологии: пластинчатые, скелетные, образующие решетки сагенитового типа, и необычные игольчатые. Приведены порошкограммы для пластинчатых и игольчатых кристаллов; параметры ячейки их соответственно: a = 10.620(2), b = 5.893(2), c = 7.213(2)Å; b = 94.96(2)°; V = 449.7(4)Å3, Z = 2 и a = 10.616(2), b = 5.899(2), c=7.212(2) Å; b=94.96(2)°; V=450.0(4)Å^3, Z=2. Показано, что «узбекит» из других местонахождений является либофольбортитом (Потехино, Хакасия, Россия), либо таковым в смеси с другими минералами (футляровидные кристаллы тангеита, заполненные смесью везиньеита и фольбортита из Агалыка, Узбекистан). Высказано предположение о существовании близких к фольбортиту, но отличных от него по структуре фаз. читать далее...
Тищенко А.И., Касаткин А.В.,Шкода Р. Силициды (нагчуит, линьчжиит, лобусаит и цангпоит) в сарматских известняках Крыма
Нагчуит, линьчжиит, лобусаит и цангпоит были найдены в порошковатом, нерастворимом в разбавленной HCl остатке темно-серого цвета из органогенно-обломочного известняка Евпаторийского месторождения (Крым). Среди зерен силицидов преобладают нагчуит и линьчжиит, в подчиненном количестве встречается лобусаит. Нагчуит и линьчжиит часто срастаются, образуя зерна размером до 120 мкм. Лобусаит наблюдается в виде отдельных редких зерен размером до 100 мкм. Цангпоит обнаружен в трех зернах размером до 15 мкм в тесном срастании с линьчжиитом. Tакже отмечены единичные зерна самородного кремния, предположительно паньгуита и неназванного силицида Ti иW.Химический состав (мас.%,микрозонд) нагчуита (среднее по 9 ан.): Al 0.11, Ti 0.01, V 0.09, Cr 0.15,Mn 0.54, Fe 63.25, Co 0.35, Ni 0.61, Cu 0.10, Zn 0.17, Zr 0.26, Si 33.63, сумма 99.27, соответствует эмпирической формуле (расчет на 2 атома) Fe0.96Mn0.01Co0.01Ni0.01Si1.01; линьчжиита (среднее по 8 ан.): Al 1.83, V 0.03, Cr 0.09,Mn 0.23, Fe 46.54, Co 0.23, Ni 0.04, Zr 0.18, Si 49.94, сумма 99.11, отвечает эмпирической формуле (расчет на 3 атома) Fe0.93Al0.08Si1.99; лобусаита (среднее по 4 ан.): Al 1.20, V 0.06, Cr 0.15,Mn 0.11, Fe 42.60, Ni 0.10, Zr 0.73, Si 54.71, сумма 99.66, соответствует эмпирической формуле (расчет на 2 атома Si) Fe0.78Al0.05Zr0.01Si2.00; цангпоита (среднее по 3 ан.):Mg 0.06, Al 1.05,Ca 0.12, Sc 0.05, Ti 24.58, V 0.36, Cr 0.43, Mn 0.36, Fe 31.49, Co 0.18, Ni 0.44, Cu 0.22, Zn 0.03, Zr 3.50, Nb 0.58, Mo 0.55, Cd 0.12, In 0.11, Sn 0.09, Cs 0.21,W1.97, Si 32.70, сумма 99.20, отвечает эмпирической формуле (расчет на 4 атома) Ti0.86Zr0.07W0.02V0.01Nb0.01Mo0.01Fe0.94Ca0.01Cr0.01Mn0.01Co0.01Ni0.01Cu0.01Si1.95Al0.07. Диагностика нагчуита, линьчжиита и лобусаита подтверждена рентгенометрически; для других минералов в силу их редкости и малого размера рентгеновские характеристики получены не были.Находка лобусаита и цангпоита является первой в России, нагчуит и линьчжиит впервые найдены в Крыму. читать далее...
Кринов Д.И., Салтыков А.С., Дымков Ю.М., Азарова Ю.В., Кольцов В.Ю. О кальциевом титаносиликате урана и его значении для технологической переработки урановых руд
При изучении образцов из различных урановых месторождений Алдана (Эльконский золото-урановый рудный узел) и месторождения Новоконстантиновское (Украина) был обнаружен минерал с составом: UO2 » 58–62%; CaO » 5–7%; TiO2 » 18–22%; SiO2 » 10–11%, который может быть описан идеализированной формулой Ca(U,Ca)3Ti3[SiO4]2(O,OH)8 (рассчитана на 16 атомов кислорода). Он установлен в брекчиях с карбонатным цементом различного состава, развитых по кварц-полевошпатовым метасоматитам в виде микрозернистых скоплений и скоплений призматических кристаллов (10–50 мкм) в цементе брекчий. Иногда выполняет трещины в прожилках железистого доломита в полифазных брекчиях. Энергодисперсионные спектры показали отсутствие наложения линий изучаемой фазы и сопутствующих минералов. Химический состав был определен с помощью электронного сканирующего микроскопа CamScan со спектрометром Link и анализатором AN10000.Полученные результаты позволяют рассматривать данный минерал как потенциально новый минеральный вид, условно названный «кальциевым титаносиликатом урана». Минерал формировался в ассоциации с железистым доломитом, сидеритом и/или анкеритом. Вероятно, его образование предшествовало браннериту. Доля минерала в урановой составляющей руд – 20–80%, то есть «кальциевый титаносиликат урана» является одним из основных рудных минералов в рассмотренных объектах. Распространенность его и других кальцийсодержащих рудных минералов в изученных рудах, как и наличие карбонатной составляющей в них, делает необходимой модернизацию методов извлечения из них полезных компонентов. Применение оборотных объемов растворов, отсутствие необходимости дополнительного обогащения и другие меры положительно скажутся на экономических и экологических показателях производства. читать далее...
Ненашева С.Н., Агаханов А.А. Новые данные о минералах Шишимской копи,Шишимские горы,Южный Урал, Россия
образцах скарна из Шишимской копи (Ю. Урал) установлены новые для нее минералы: таумасит Ca3(SO4)[Si(OH)6](CO3)·12H2O, описанный на Урале только в Николае-Максимилиановской копи; известь CaO, известную на Гумешевском месторождении и в горелых отвалах Челябинского угольного бассейна; ферроакерманит Ca2Fe[Si2O7], ранее не встречавшийся в природе, но известный как синтетический продукт. Кроме того, обнаружены новые минеральные фазы: фаза АMg10[(Si6.6Al3.4)10O28]·8.6H2O и фаза Х с эмпирической формулой (Ca1.98V0.02)2.00(OH)0.86(PO4)0.86(Si2O7)0.07(SO4)0.14Cl0.03. Ферроакерманит – железистый аналог акерманита Ca2Mg[Si2O7]–минерала группы мелилита. Ранее минералы этой группы не встречались на Урале. Перечисленные новые для Шишимской копи минералы и минеральные фазы находятся в тесных срастаниях друг с другом и с уже известными на этой копи кальцитом, монтичеллитом, форстеритом, диопсидом, хондродитом, перовскитом, кордиеритом, магнезиоферритом и другими минералами. читать далее...
Слукин А.Д., Боева Н.М.,Жегалло Е.А., Зайцева Л.В. Биоминералы латеритных бокситов – новые данные по результатам электронно-микроскопического изучения
Систематическое исследование латеритных бокситов с помощью электронных микроскопов обнаружило обильные продукты взаимодействия органического вещества (биоты) и минералов. Получены новые данные о минерализации в тропических условиях водорослевых отложений, древесины, корневой системы растительности, биопленок и бактерий и последовательном их превращении в биоморфозы, совершенные кристаллыгётита, гематита, гиббсита, кальцита и причудливые формы псиломелана. Уникальные фотографии демонстрируют перемолотые продукты пищеварительного тракта роющих и ползающих организмов и образовавшиеся из них одиночные призматические кристаллы гиббсита, а затем их массовое развитие. Установлено, что в ходах и норах червей в бокситах кристаллизуется мономинеральный гиббсит. В свободных пространствах крупных пор и каверн на поверхности биопленок подобные продукты превращаются в смесь гиббсита, гематита, кальцита, местами, галлуазита и псиломелана. Несомненно, на состав минеральных ассоциаций влияют микролокальные обстановки и поступление кальция, кремния и других химических элементов с капиллярными водами во время сухих сезонов. Продукты биоминерализации имеют микроскопические размеры, но они имеют универсальное и глобальное значение для всех кор выветривания (особенно тропических) и ассоциирующих с ними осадочных месторождений бокситов, железных и марганцевых руд, каолинов и бентонитов. читать далее...
Путинцева Е.В., Спиридонов Э.М. Древнейшие в России алмазоносные кимберлиты и метакимберлиты Кимозера, Карелия
Рассмотрена историяформирования минерального состава древнейших в России кимберлитов Кимозера, Карелия. Кимберлиты прорвали габбро-долериты и шунгитоносные осадочные породы людиковия (палеопротерозоя) и содержат их ксенолиты. Все эти породытектонизированыи однотипно метаморфизованы. Описаны минералы кимберлитов – флогопит, хромшпинелиды, группа ильменита (гейкилит, пикроильменит, Mn ильменит, пирофанит), титаномагнетит, апатит, циркон, бадделеит. Рассмотрена эволюция состава хромшпинелидов и минералов группы ильменита, их общая особенность – обогащенность Mn. Можно предположить, что кимберлитыКимозера возникли при участии карбонатитовых расплавов повышенной щелочности. Метагаббро-долериты ксенолитов в кимберлитах слагают альбит, клиноцоизит, эпидот, хлориты, актинолит, пренит, пумпеллиит�(Fe), титанит, кварц, Al кронштедтит, гематит, Mn-Mg ферроаксинит, ленниленапеит; это образования пренит-пумпеллиитовой фации. Метаморфизованные кимберлиты Кимозера–петротип метакимберлитов пренит-пумпеллиитовой фации (ППФ). Описаны слагающие их серпентины (антигорит, реликтовый лизардит), тремолит, актинолит, кальцит, доломит, клинохлор, магнетит, титанит, корренсит, тальк, апатит, рутил, гематит, ферропсевдобрукит, алланит-(Се), гидроксилбастнезит-(Се), гидроксилбастнезит-(La), гидроксилпаризит-(Се), гидроксилпаризит-(La), бастнезит-(Се), паризит-(Се), монацит-(Се), ниобоэшинит-(Ce), апатит, циркон, бадделеит, пентландит, пирротин, полидимит, зигенит, торит, биксбиит, реликтовый и поздний миллерит.Минералы стронция отсутствуют. Минералы REE метакимберлитов – алланит, бастнезит, паризит, монацит, ниобоэшинит наследовали Ce, Ce-La и Ce-La-Nd специфику магматических кальцита, перовскита и апатита. Границы кристаллов минералов REE и титанита, антигорита, тремолита–индукционные поверхности совместного роста. Наиболее распространен алланит-(Се). Специфика метаморфогенного алланита: его кристаллы незональны, значительная изменчивость содержаний REE и соотношения Fe3+/Fe2+ в кристаллах, удаленных друг от друга на первые десятки мкм, разнообразие состава: одни кристаллы селективно Ce, в составе других обилен La, в третьих Nd > La. Алланит в агрегатах клинохлора беден Ti, Cr и V; в срастаниях с титанитом содержит 1–2 мас.% TiО2, на контакте с феррихромитом – до 9 мас.% Cr2О3. Большая часть алланита Кимозера принадлежит ряду алланит–ферриалланит (до 30% минала ферриалланита), меньшая – ряду алланит–хромалланит. При последующих процессах метаморфизма алланит замещали гидроксилбастнезит и гидроксилпаризит или монацит. Распространены прорастания бастнезита и паризита. Монацит-(Се) крайне беден Y, P и Th, беден Nd и обогащен La, обычно развит в метакимберлитах антигоритового состава. Метакимберлиты Кимозера содержат выделения незональных циркона и бадделеита неправильной формы до «диффузных». Эти минералы лишены Nb, Th, Y, Ti. Метаморфогенный циркон беден гафнием, содержит 0.5–0.7 мас.% HfO2. Выделяется новый генетический тип - метаморфогенно-гидротермальная REE и Zr минерализация в метакимберлитах ППФ. Sm-Nd датировка метакимберлитов пренит-пумпеллиитовой фации отражает время их метаморфизма, а не время внедрения кимберлитов. читать далее...
Минералогические музеи и коллекции
Гаранин В.К., Борисова Е.А., Мохова Н.А. К 300-летию Минералогического музея им. А.Е. Ферсмана Российской академии наук: история поступления коллекций
История минералогического собрания музея, носящего сейчас имя выдающегося минералога и геохимика академика А.Е. Ферсмана, восходит к началу XVIII столетия, когда в 1716 г. при Кунсткамере Петра I был создан Минеральный кабинет. Сейчас это одно из крупнейших собраний минералов в мире, насчитывающее в основном фонде свыше 140 000 образцов. На музейных выставках демонстрируются около 15 000 экспонатов. Среди них более 3700 минеральных видов, образцы из частных коллекций, поступавших в музей на протяжении его 300-летней истории, уникальные камнерезные изделия императорских гранильных фабрик и знаменитой фирмы Карла Фаберже. В работе кратко изложена история поступления коллекций и приведены некоторые сведения об их авторах. читать далее...
Свешникова О.Л., Гриценко Ю.Д., Паутов Л.А., Спиридонов Э.М. Минералогический музей имени Александра Евгеньевича Ферсмана: 300 лет исканий и достижений
ИсторияМинералогического музея Российской академии наук–это история становления и развития минералогии в России. С первых лет существования важнейшей задачей Музея наряду с пополнением коллекций было их научное изучение. Трехсотлетняя история Музея тесно связана с именами многих выдающихся ученых своего времени. В статье рассматривается вклад большинства из них в развитие Музея и минералогии. Особенно велика роль академиков В.И. Вернадского и А.Е. Ферсмана, деятельность которых способствовала превращению Музея в центр минералогических исследований высокого научного уровня. В современных условиях Музей имеет статус научно-исследовательского института Российской академии наук, оставаясь при этом одним из крупнейших в мире хранилищ минералов (более 150 000 экспонатов). читать далее...
Генералов М.Е. Вагнер и его мотивы
Поиск данных о Вагнере, авторе коллекции, приобретенной Кунсткамерой в 1806 г., позволил отождествить его с аптекарем Иоганном (Яном) Вагнером, выходцем из саксонской семьи, перешедшим в 1811 г. в российское подданство, родоначальником династии, давшей России ряд известных людей. Анализ коллекции Вагнера показывает, что его основным интересом были рудные месторождения, находившиеся на территориях, принадлежавших монархии Габсбургов. читать далее...
Свешникова О.Л. Выставка «Минералы хрусталеносных кварцевых жил» в Минералогическом музее им. А.Е. Ферсмана Российской академии наук
Выставка, созданная в музее в 2016 г. и получившая название «Минералы хрусталеносных кварцевых жил», построена в основном на материале из хрусталеносных месторождений Приполярного Урала. В этом регионе в настоящее время выделяют 2 типа хрусталеносных жил. Один, известный под названием альпийских жил, относится к латераль-секреционным образованиям, другой имеет гидротермально-метаморфогенную природу.Полости в обоих типах жил выполнены практически одинаковым комплексом минералов, состоящих почти исключительно из литофильных элементов. Главный минерал полостей – кварц, среди ассоциирующих с ним минералов наиболее часты адуляр, альбит, карбонаты, титансодержащие минералы: рутил, брукит, анатаз, ильменит, титанит; минералы бора: турмалин и аксинит; эпидот, хлорит и др. Все эти минералы, представленные, как правило, прекрасно образованными кристаллами, демонстрируются на выставке. Особое внимание уделено онтогении кристаллов кварца. На выставке показаны кристаллы различного габитуса, разной степени искажения формы, обладающие теми или иными особенностями макростроения (или анатомии). Приводятся примеры важности изучения онтогении минералов для решения генетических вопросов. читать далее...
Минералогические заметки
Генералов М.Е. Святой из коллекции кристаллов
Персоналии
Докучаев А.Я., Крехан Г.-Р., Каргин А.В., Курдюков Е.Б., Лексин А.Б., Лобанов К.В., Смольянинова В.Н., Суханов М.К., Юткина Е.В. Выдающийся исследователь Арктики Э.В. Толль в документах и материалах Рудно-петрографического музея (ИГЕМ РАН,Москва)
Криулина Г.Ю., Гаранин В.К., Борисова Е.А. Международная научная конференция, посвященная 300-летию Минералогического музея им. А.Е. Ферсмана Российской академии наук, 21–24 ноября 2016 года, Москва