В.А. КОВАЛЕНКЕР, Н.В. ТРУБКИН, В.С. МАЛОВ

ХОДРУШИТ Си₈ Bi₁₂ S₂₂ – ПЕРВАЯ НАХОДКА В СССР

Очень редкий сульфовисмутит меди ходрушит Cu₈Bi₁₂S₂₂ (A2/m; a = 27,21, b = 3,93, c = 17,58 Å; $\beta = 92^{\circ}9'$), впервые описанный в жиле "Розалия" месторождения Банска Годруша (ЧССР) более 15 лет назад [5], до настоящего времени в других месторождениях мира не встречался.

Минерал, по составу и структурным особенностям отвечающий ходрушиту, установлен нами в составе ассоциаций висмутовых минералов, приуроченных к кварц-баритполисульфидной минерализации рудопроявления Кайрагач (Средняя Азия), приуроченного к верхнепалеозойским вулканитам андезито-дацитового состава. Среди рудных минералов основное место занимают пирит, халькопирит, галенит, а также промежуточные члены теннантит-тетраэдрит-анивит-голдфилдитовой серии, содержащие до 10-15 мас.% теллура и 8-10 мас.% висмута. Заметным распространением пользуются висмутовые сульфосоли - эмплектит, висмутин, линдстремит, айкинит, а также минералы люцонит-фаматинитового ряда и разнообразные сульфостаннаты меди и железа, в том числе моусонит и оловянный аналог колусита некрасовит [2]. Постоянно, но в очень небольших количествах встречаются самородные висмут и селенистый теллур (до 10-15 мас.% Se), алтаит, штютцит, гессит, колорадоит, калаверит, лайтакариит, минерал Bi₃Se₂. По данным [4], в рудах спорадически также отмечаются ванадийсодержащий касситерит и разнообразные сульфотеллуриды и сульфоселенотеллуриды висмута. Отличительная черта химизма рудных минералов – повышенные содержания в них селена – от 0,3-1,0 мас.% (в блеклых рудах, фаматините, сульфостаннатах меди и железа) до 3-7 мас.% (в висмутовых сульфосолях) и еще более высокие (15-20 мас.%) - в сульфоселенидах.

Ходрушит представлен, как правило, агрегатами пластинчатых зерен, располагающихся в кварц-баритовой жильной массе либо нарастающих на блеклую руду. Практически всегда ходрушит тесно ассоциируется с айкинитом, нарастающим на ходрушит и замещающим его (рис. 1). Размеры выделений ходрушита редко достигают 100–120 мкм.

Минераграфические наблюдения структурных взаимоотношений минералов позволяют наметить последовательность их образования. Не вызывает сомнения принадлежность висмутовых сульфосолей к одной ассоциации, отложение минералов которой происходило после кристаллизации Bi—Te-содержащих блеклых руд на фоне повышения активностей висмута и селена в гидротермальном растворе. Наиболее поздним минералом ассоциации висмутовых сульфосолей является айкинит, возникновение которого связано с повышением активности свинца.

Ассоциации с сульфотеллуридами, сульфоселенидами и сульфоселенотеллуридами висмута отложились после образования висмутовых сульфосолей. Их появление знаменует собой дальнейшее смещение в пользу селена отношения [Se² -]/[S² -] в гидротермальном растворе, происходящее в связи с увеличением окислительного потенциала минералообразующей среды [1].

Химический состав ходрушита из Кайрагача изучен на микрозонде MS-86 "Камека" (ускоряющее напряжение 20 кВ, ток зонда 30 нА; эталоны — стехиометрические Bi₂S₃, PbS, CuFeS₂, PbSe, NiAs, чистые Ag и Sb; аналитические линии: L_{α_1} для Bi, Ag, Sb, Se; K_{α_1} для S, Cu, Fe; K_{β_1} для As; M_{α_1} для Pb). Результаты определения приведены в табл.1, в которой также помещен микрозондовый анализ ходрушита из места первой находки [6]. Сопоставление приведенных данных показывает, что состав ходрушита из Кайрагача отличается от состава минерала из Годруши присутствием главным образом заметных содержаний селена, замещающего серу, и небольших переменных количеств серебра, мышьяка, сурьмы и свинца.

При расчете формул принималось, что элементарная ячейка ходрушита содержит

Рис. 1. Срастание ходрушита (1), айкинита (2) и Ві-Те-тетраэдрита (3) среди барита (темно-серое), аншлиф, увел. 200

42 атома [5], при этом серебро и железо объединялись с медью, свинец, сурьма и мышьяк — с висмутом, а селен — с серой.

На днаграмме, построенной в координатах $Cu(\pm Ag, Fe)-Bi(\pm Pb, Sb, As) -S(\pm Se)$ (рис.2) хорошо видно, что точки состава изученных зерен ходрушита (N° 1–7) располагаются в непосредственной близости от точки теоретического состава минерала (N° 9), отвечающего стехиометрии $Cu_8 Bi_{12}S_{22}$ [5]. По соотношению Me:S состав ходрушита из места первой находки (N° 8) также практически не отклоняется от теоретического, однако по отношению меди к висмуту он ближе к составам синтетической фазы $Cu_6 Bi_8 S_{15}$, отождествляемой с купробисмутитом [7], и синтетического ходрушита, реальный состав которого по данным анализа на микрозонде отвечает формуле $Cu_{4.38}Bi_{5.97}S_{11}$ [8].

Составы ходрушита и других близких к нему по соотношению меди, висмута и серы фаз (Cu₆ Bi₈S₁₅, Cu₃Bi₅S₉) располагаются на линии, соединяющей виттихенит (Cu₃ BiS₃, Me:S = 1,33), эмплектит (CuBiS₂, Me:S = 1) и висмутин (Bi₂S₃, Me:S=0,75) (см. рис. 2). При этом состав ходрушита по соотношениям Me:S и Cu:Bi занимает промежуточное положение между Cu₆Bi₈S₁₅ и теоретическим составом соединения Cu₃Bi₅S₉. Реальный же состав этой искусственной фазы (Cu_{2,93}Bi_{4,89}S₉ [3]) отличается от ходрушита только величиной отношения Me:S (см. рис. 2).

Структурные особенности ходрушита из Кайрагача изучены методом дифракции электронов. Исследования проводились на просвечивающем электронном микроскопе "JEM-100C". Необходимый для приготовления препарата материал извлекался с поверхности аншлифа посредством ультразвукового пробоотборника конструкции Л.Н. Вяльсова. Элементный химический состав каждой частицы минерала контролировался непосредственно в колонне микроскопа с помощью энергодисперсионного рентгеновского спектрометра "Kevex-Ray".

При определенных ориентировках микрообломков монокристаллов ходрушита относительно пучка электронов были зафиксированы микроэлектронограммы, имеющие частые систематические ряды рефлексов с периодичностью $(27,1 \text{ Å})^{-1}$ (рис. 3, *a*). Интервалы между этими рядами, измеренные на различных снимках, составили: $(8,95)^{-1}$, $(3,84)^{-1}$, $(3,28)^{-1}$, $(2,65)^{-1}$, $(2,15)^{-1}$, $(1,97)^{-1}$, $(1,80)^{-1}$ и $(1,49)^{-1}$ (Å)⁻¹.

Рис. 2. Положение ходрушита на диаграмме состава Cu(+Ag, Fe)-Bi(± Pb, Sb, As)-S(±Se) 1 – теоретические составы, 2 – реальные составы ходрушита (цифры на рисунке соответствуют данным в табл. 1)

При этом углы между центральным $(27,1)^{-1}$ рядом отражений и направлениями на ближайшие рефлексы соседнего ряда изменялись от 90° (модуль соответствующего радиусвектора $(1,97 \text{ Å})^{-1}$) до 88° (модуль радиус-вектора $(8,95 \text{ Å})^{-1}$ (рис. 3, $\delta - e$). Такие вариации углов обратной решетки возможны при вращении кристаллов моноклинной или триклинной (при $\gamma \neq 90^{\circ}$) сингонии вокруг оси \vec{c}^* .

Полагая, что изучаемый минерал, так же как ходрушит из Годруши, имеет решетку моноклинной сингонии [5], $(27,1 \text{ Å})^{-1}$ -ряд отражений которой характеризует периодичность по оси \vec{c} *, ось \vec{a} * выбрана вдоль радиус-вектора длиной (8,95 Å)⁻¹, составляющего с осью \vec{c} * угол β = 88° (см. рис. 3, e).

Третья координатная ось (b^*) в этом случае располагается параллельно вектору, ве-

№ п/п	Cu	Ag	Fe	Pb	Bi	Sb	As	Se	S	Сумма
1	12,32	0,74	0,50	0,41	64,45	і І Не обн.	0,41	3,47	17,16	99,46
	7,36	0,26	0,34	0,08	11,72	*7	0,20	1,66	20,34	42
2	13,09	0,75	0,56	Не обн.	65,16	**	1,47	2,09	18,54	101.66
	7,46	0,26	0,36	**	11,30	**	0,72	0,96	20,96	42
3	13,47	0,51	0,18	**	65,21	0,29	1,00	0,84	18,81	100.31
	7,78	0,18	0,12	"	11,44	0,08	0,50	0,38	21,52	42
4	12,06	1,12	0,78	"	64,50	Не обн.	1,31	1,72	18,52	100,01
	7,00	0,38	0,52	"	11,38	**	0,64	0,80	21,28	42
5	13,18	0,63	Не обн.	0,23	65,52	**	0,46	1,37	18,51	99.90
	7,72	0,22		0,04	11,66	**	0,22	0,64	21,46	42
6	11,39	2,18	0,27	1,44	62,90	**	1,00	3,28	17,05	99.51
	6,86	0,78	0,20	0,26	11,50	**	0,50	1,58	20,32	42
7	13,12	Не обн.	0,34	Не обн.	64,38	0,14	0,56	4,31	16,93	99,78
	7,80	"	0,23	**	11,64	0,04	0,28	2,06	19,95	42
8	13,88	*1	0,44	"	64,92	Не обн.	Не опр.	Не обн.	18,98	98,22
	8,12	**	0,30	**	11,56	**		"	22,02	42
9	13,66				67,39				18,95	100,00
	8,00				12,00				22,00	42

Химический состав ходрушита из Кайрагача

Таблица 1

Примечание. Для каждого анализа: верхняя строка – мас. %, нижняя – формульные коэффициенты при Σ_{ат} = 42. 1-7 – ходрушит из Кайрагача, 8 – из жилы "Розалия" (Банска Годруша, ЧССР [6]), 9 – теоретический состав.

Рис. 3. Прямое изображение плоскостей (001) кристаллической решетки ходрушита из Кайрагача (a), микродифракционные картины, отображающие различные сечения обратной решетки ($\delta-e$) и схема реконструкции координатной плоскости ($a^* s^*$) (x)

Таблица	2
---------	---

Результаты расчета рентгенограммы ходрушита

№ п/п	x	Ходрушит из Кайрагача			[5]		10 - I-	Ходрушит из Кайрагача				[5]	
	Ι	d _{иэм} ,Å	d _{расч} ,Å	nki	Ι	d _{изм} ,Å	8** n/n	Ι	d _{иэм} , Å	d _{pacy} ,Å	hkl	Ι	d _{изм} , А
1			r i	1	w/uw	4,38	∥ 30	5	1.941	1.938	1.1.12	w	1,947
2					UW	4,04	31			-,		uw?	1,873
3	3	3,61	3,596	207	S	3,62	32	1	1,841	1.842	3.1.12	w	1,835
4	2	3,51	3,514	405	m	3,48	33					uw?	1,750
5	2	3,42	3,389	405			34	2	1,723	1,722	719	m	1,722
6			3,380	008			35					uw?	1,688
7			3,380	008			36					บพ	1,672
8	2	3,22	3,237	406	m/s	3,22	37					?	1,643
9			3,211	312			38					?	1,616
10			3,202	208			39					UW	1,607
11	10	3,13	3,125	208	US	3,102	40					uw?	1,575
12					uw?	2,976	41					uw??	1,566
13	1	2,83	2,836	315	บพ	2,823	42					uw?	1,539
14	9	2,72	2,716	117	S	2,715	43	1	1,493	1,494	12.0.1.	uw	1,487
15	3	2,56	2,563	2.0.10	m	2,545	44			1,493	12.0.0		
16			2,562	513			45			1,493	11.1.3		
17					uw?	4,450	46	2	1,455	1,455	629	w/m	1,450
18	1	2,34	2,349	2.0.11	uw?	2,382	47			1,454	823		
19					υW	2,301	48			1,453	12.0.5		A.
20					υW	2,223	49					w	1,440
21	2	2,16	2,167	2.0.12	w	2,160	50					UW	1,419
22			2,159	517			51	1	1,393	1,393	11.1.8	w	1,402
23			2,158	609			52			1,393	827		
24	2	2,10	2,110	712	w	2,104	53			1,393	6.2.10		
25			2,103	804			54					uw?	1,353
26			2,103	713									+ 7 реф-
27					υW	2,048							лексов
28						2 003							до <i>d</i> =
29	6	1,967	1,969	6.0.10	w/ow	2,003							= 1,083 A
Пг	ы	мечан	ие. s	сильный.	v - c	чень сил	ьный.	w -	слабый.	m - over	њ спабый		

личина которого равна $(1,97 \text{ Å})^{-1}$, имеющему с осями $\vec{a} * u \vec{c} * углы в 90°$. Однако параметр элементарной ячейки по оси *b* в прямой решетке не может иметь величину, равную 1,97 Å, поскольку она сравнима с размером лишь одного ионного радиуса серы (1,84 Å), а такой интервал не может определять ячейку. В этой связи для параметра $\vec{b} *$ была принята вдвое большая величина – 3,94 Å. Значение *k* соответствующего рефлекса в этом случае равно 2.

Правильность выбранных координатных осей и величины параметров обратной элементарной ячейки была проверена путем реконструкции строения плоскости (a^*b^*) : на основе предполагаемой обратной ячейки были проиндицированы рефлексы различных микродифракционных картин (см. рис. 3, *в*, *г*, *д*). Так как параметры $a^* = (8,95 \text{ Å})^{-1}$ и $b^* = (3,94 \text{ Å})^{-1}$ известны, в произвольном масштабе была отстроена примитивная сетка узлов с индексами *n00* и *n20* (*n* – любые целые числа) (рис. 3, *ж*). На эту сетку нанесены окружности, радиусы которых равны найденным модулям векторов, т.е. $R = (3,84 \text{ Å})^{-1}$, $(2 \times 3,84 \text{ Å})^{-1}$, $(2 \times 3,28 \text{ Å})^{-1}$, $(2,61 \text{ Å})^{-1}$ и т.д. Из данной схемы (см. рис. 3, *ж*) видно, что окружности, отвечающие рефлексам второго порядка R = $= (2 \times 3,84 \text{ Å})^{-1}$, $(2 \times 3,28 \text{ Å})^{-1}$, и окружность с радиусом, равным (2,61 Å)⁻¹, точно совпадают с узлами построенного координатного сечения. Рефлексы первого порядка будут иметь рациональные индексы в том случае, если плоскость (*a*b**) центрирована и первый узел на оси a^* имеет индекс 200. При этом окружности с радиусами, равными $(3,84 \text{ Å})^{-1}$, $(3,28 \text{ Å})^{-1}$, $(2,65 \text{ Å})^{-1}$ и др., совпадут с узлами, с индексами 110, 310, 510 соответственно.

Таким образом, микроэлектронограммы, отображающие различные сечения обратной решетки, хорошо индицируются в выбранной моноклинной обратной ячейке при условии, что координатный вектор a^* имеет величину, в 2 раза меньшую измеренного значения (8,95 Å)⁻¹, т.е. $a^* = (2 \times 8,95 Å)^{-1}$. Параметры прямой элементарной ячейки в этом случае равны: $a = (2 \times 8,95)/\sin\beta = 17,92$ Å, b = 3,94 Å, $c = 27,08/\sin\beta = 27,1$ Å; $\beta = 180 - \beta^* = 92^\circ$.

Анализ индексов наблюдаемых отражений позволил выявить законы погасаний: hkl-h+k – четные, hol-h – четные, h00, 0k0 – четные и 00l – любые, которые отвечают одной из трех пространственных групп симметрии – C2/m, C2 или Cm.

Расчет порошкограммы ходрушита из Кайрагача, полученной из небольшого количества материала и имеющей всего 18 отражений (табл. 2), показал, что она хорошо индицируется в значениях параметров моноклинной ячейки, определенных микродифракционным методом. Уточненные параметры изученного минерала ($a = 17,92 \pm 0,04$, $b = 3,94 \pm 0,04$, $c = 27,1 \pm 0,04$ Å; $\beta = 92,2 \pm 0,1^{\circ}$) близки параметрам кристаллической решетки ходрушита из жилы "Розалия" [5] при условии перемены местами осей a и c, как предлагалось И. Костовым [3]. Такая перемена местами осей a и c представляется логичной, поскольку позволяет привести в соответствие структуры ходрушита и купробисмутита (C2/m, a = 17,520, b = 3,926, c = 15,261 Å; $\beta = 100^{\circ}11'$ [8]), поскольку структура ходрушита состоит из двух параллельных (100) слоев, одни из которых сходны со слоями купробисмутита [5].

Проведенные исследования показали близость состава и кристаллохимических особенностей ходрушита из Кайрагача и ходрушита из жилы "Розалия" месторождения Банска Годруша в ЧССР. Это вторая находка минерала в месторождениях мира и первая — в СССР. Показано, что в состав этого минерала могут входить значительные количества селена, а также серебро. Прямое электронно-дифракционное изображение плоскостей (001), полученное в свете 12 рефлексов 001 (см. рис. 3, *a*), свидетельствует о высоком совершенстве кристаллов ходрушита.

ЛИТЕРАТУРА

- Балицкий В.С., Озерова Н.А., Цепин А.И. и др. О некоторых особенностях вхождения селена в антимонит при перекристаллизации его в селенсодержащих гидротермальных растворах // Новые данные о типоморфизме минералов. М.: Наука, 1983. С. 89–105.
- Коваленко В.А., Евстигнеева Т.Л., Малов В.С. и др. Некрасовит Си₂₆ V₂ Sn₆ S₃₂ – новый минерал группы колусита // Минерал. журн. 1984. № 2. С. 88-97.
- Костов И., Минчева-Стефанова Й. Сульфидные минералы: Кристаллохимия, парагенезис, систематика. М.: Мир, 1984. 280 с.
- Спиридонов Э.М., Бадалов А.С. Ванадийсодержащий касситерит и сульфосоли вулкано-

генного месторождения Кайрагач, Восточный Узбекистан // Докл. АН СССР. 1984. Т. 274, № 2. С. 407-409.

- Kodera M., Kupcik V., Makovicky E. Hodrushite – a new sulphosalt // Miner. Mag. 1970. Vol. 37, N 290. P. 641-648.
- Makovicky E., MacLean W.H. Electron microprobe analysis of hodrushite // Canad. Miner. 1972. Vol. 11, pt 5. P. 504-513.
- Ozawa T., Nowacki W. Die Kristallstructure von synthetischen Cuprobismutit // Neues Jb. Mineral. Monatsh. 1975. H. 2. S. 99-100.
- Srikrishnan T., Nowacki W. Preliminary crystallographic data of Cu₄Bi₆S₁₁ // Ibid. 1973. H. 10. P. 449-451.