- Костов И. Геохимический принцип в классификации минералов. – В кн.: Проблемы геохимии. М.: Изд-во АН СССР, 1965.
- Stenbeck St. Röntgenanalyse der Legierungen von Quecksilber mit Silber, Gold und Zinn. – Zischr anorg Chem 1933 Bd 214 N 1
- Zischr. anorg. Chem., 1933, Bd. 214, N 1. 22. Pearson W.B. The crystal chemistry and physicks of metals and alloys. N.Y.; L., 1972.
- 23. Чвилева Т.Н. Влияние примссей на оптические и некоторые другие свойства блеклых

руд. – В кн.: Исследования в области рудной минералогии. М.: Наука, 1973.

- 24. Хачатурян А.Г. Теория фазовых превращений и структура твердых растворов. М.: Наука, 1974.
- 25. Iwasaki H. The crystal structure of Au₄Zn. J. Phys. Soc. Jap., 1962, vol. 17.
- 26. Чвилева Т.Н., Клейнбок В.Е., Безсмертная М.С. Цвет рудных минералов в отраженном свете. М.: Недра, 1977.

УДК 549.744.12 (574)

В.И. СТЕПАНОВ, Г.Г. ШУЛЬГА, А.В. БЫКОВА, Э.М. СПИРИДОНОВ, Б.Ф. ХРОМЫХ

АКЦЕССОРНЫЙ СИНХИЗИТ ИЗ ЩЕЛОЧНЫХ ГРАНИТОВ ШАНШАЛЬСКОГО ИНТРУЗИВА (Центральный Казахстан)

Синхизит первоначально установлен Г. Флинком в пустотах щелочных пегматитов в Нарсарсуке в Южной Гренландии [1]. Позднее в аналогичных условиях он часто наблюдался в Сент Илере (Канада) [2]. Характерна ассоциация синхизита с торитом в Паудерхорн (Колорадо, США) [2] и с паризитом в измененных трахитах у Пиритес в графстве Равалли, Монтана и в пегматитах щелочных гранитов у Баллоу, Куинси, Массачузетс, США [3]. Известны находки синхизита в оловянных рудах Заайплаатс в Трансваале [4]. Он также найден в анкеритовых карбонатитах Африки [5] – [7]. Наиболее часто синхизит в виде одиночных мелких кристаллов указывался среди минералов открытых трещин в метаморфических породах Альп [8] – [12]. Во всех случаях он обнаруживался в виде одиночных, очень мелких кристаллов, обычно совместно с кальцитом, доломитом, сидеритом или баритом как самый поздний гидротермальный минерал в ассоциации с разнообразными более ранними минералами. Описывались синтаксические сростки синхизита с паризитом, рентгенитом и бастнезитом [13, 9]. Известна необычная находка синхизита в гаверсовых каналах ископаемых ребер динозавров из Монголии [14].

В отличие от зарубежных находок на территории СССР гораздо чаще обнаруживался доверит — иттриевый аналог синхизита [15] – [18]. Доверит почти всегда является вторичным минералом, заместившим иттрофлюорит или гагаринит, и местами наблюдается в значительном количестве. Синхизит в СССР впервые обнаружен А.П. Хомяковым в железорудном месторождении Карасуг (Тува) [19]. Позднее О.Б. Дудкин и И.Ю. Меньшиков описали синхизит из карбонатных и кальцит-биотитовых прожилков

Таблица 1

Оптические свойства синхизита и доверита

Месторождение, автор	Осность	Оптиче- ский знак	n _e	n _o	Минерал
Нарсарсук, Гренландия, [3]	Одно- осный	+	1,770	1,674	Синхизит (?)
Трансвааль, [4]	То же	+	1,744	1,644	Синхизит
Валь Налис, Швейцария, [8]	**	+	1,74	1,649	"
4 месторождения по [13]	"	+	1,740-	1,641- 1,650	
Друкшах, Швейцария, [9]		+	1,750	1.649	"
Хибины, А.П. Хомяков, 1979 г. (новые данные)		+	1,75	1,650	**
В.И. Степанов, 1979 г., Северный Казахстан (новые данные)		+	1,747	1,645	
Северная Киргизия, [15]	**	+	1,72	1,63	Доверит
Котопакси, США, [26]	10	+	1,730	1.643	**
Украина, [16]	**	+	1,748	1,650	Синхизит (?)
Мюзо, Колумбия, [22]		+	1,771	1,672	Паризит

-	Синхизит									
Офтедаль, Нарсарсук			Смит, Куинси, США			Лозиньский, Монголия			Меньшиков, Хибины	
Io	d	hkil	I ₀	d	hkl	I _o	d	hkil	I ₀	d
-	-	_	10	9,1	001	_	-	-	_	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	6	4,55	002	2	4,55	0002	8	4,47
-		1010	-	-	-	-	-		-	-
0	3,30	1010	10	3,30	110	10	3,56	1120	0	3,32
-	-	-	4	2 21	111	10	2 21	1121	1	3.79
_	-	-	4	3,51	003	7	3,097	0003	1	5,20
_	_	_	4	3,07		2	3,067		2	3.037
-	-	-	1	5,04	-	-	5,055	-	-	5,057
9	2.807	1011	10	2.81	112		2.81	1122	10	2.789
-	_	_		_	_	_	_	_		_
_	_	-	1	2,42	_	_	_		1	2,404
_	_	_	4	2,31	113	2	2,292	1123	-	•
-	_	_	4	2,28	004	2	2,276	0004	4	2,282
-	-	<u> </u>	2	2,23	_	-	-	-	-	- 4
_	-		2	2,15	-	-	-		1	2,108
9	2,051	1120	8	2,05	200	2	2,052	3030	10	2,051
-	-	-	4	2,002	131	1	1,196	0331	3	1,195
6	1,922	1012	6	1,918	024	10	1,926	1124	10	1,922
7	1,868	1121	8	1,870	132	-	-	-	8	1,872
-	-	-	-	-	-	7	1,873	-	- 1	-
-	-		2	1,821	005	-	_		-)	
2	1,775	2020	4	1,781	040	3	1,783	2240	2	1,778
		-	4	1,749	221	-	-	-	-	-
-	-	- '	4	1,704		-	-	-	-	1 650
1	1,035	-	0	1,038	042	-	-	-	4	1,058
-	-	-	-	-	_		-	_		- 49Å.
5	1 5 2 5	2071	2							
-	-	_	_	_			_		_	
6	1.404	1122	-	_	-	_	_	_	6	1.404
_	_	-	_	_	-	-	_	-	_	_
3	1,343	2022	_	_	-	-	_		-	-
-	_		_	_		_	-	-	-	-
9	1,288	2131		_	-	-	-	-	8	1,292
-	-	-		-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	- :		-
-	-	-	-	-	-	+	-	-	-	-

Таблица 2 Рентгенограммы синхизита и доверита

в керне скважины в восточной части Хибинского щелочного массива [20]. По сообщению А.П. Хомякова, синхизит обнаружен в большом количестве в прожилках, секущих карбонатиты в керне скважины того же участка Хибинского массива, что и предыдущая находка. Имеются недостаточно обоснованные указания об акцессорном синхизите в протолочках биотитовых гранитов Чайдарозского массива Зиаэтдинских гор в Узбекистане [21].

Необходимо отметить, что и в указанных выше случаях синхизит часто недостаточно надежно диагностирован. Для этой цели обычно использовались оптические константы и неполные рентгенограммы. В справочниках приведены, видимо, ошибочные показатели преломления синхизита из Нарсарсука, по данным Г. Флинка, которые точно соответствуют константам паризита из Мюзо (Колумбия) [22] – [24]. Эта ошибка вполне понятна в свете позднее установленного синтаксического срастания синхизита и

				До	эверит					
Семенов, Северная Киргизия		Смит, Довер, США			Левинс пакси	Левинсон, Кото- пакси		Гуров, Украина		
I _o	d	Io	đ	hki	I	d	I ₀	d	hkil	
-	-	8	9,1	001	5	9,0	-		-	
-	-	-	-	-	0,5	5,6	-	-	-	
_	-	6	4,55	002	5	4,50	4	4,49	0002	
_	-	_	_	_	_	-	1	4,15	-	
7	3,46	10	3,53	110	7	3,47	10	3,47	1120	
-	—	_	_	-	-	-	_	-		
-	_	4	3,30	111	1	3,22	2	3,22	1121	
5	3,13	4	3,05	003		_	1	3,15	-	
-	-	-	-	-	4	3,00	6	3,02	-	
3	2,86	-	-	-	-	-	-	-		
10	2,74	10	2,80	112	8	2,75	10	2,74	1122	
	-	-	-	-	1	2,62	-		-	
-	-	-	-	-	-	-	1	2,48		
-	-	2	2,30	113	-		-	-	-	
5	2,25	4	2,28	004	3	2,25	2	2,26	0004	
_	-	_	_	-	_	_	_	_	-	
1	2.14	_	_	_	_	_		_	_	
1	2.06	8	2.04	200	0.5	2.04	3	2.08	_	
10	1 998	ĩ	1 995	131	9	2,00	8	2,00	3030	
6	1 035	8	1.916	024	6	1 935	1	1.926	5050	
10	1 994	6	1 863	122	1	1,955	8	1 880	1154	
10	1,007	0	1,005	152	1	1,00	0	1,007	2022	
-	-	_	_	-	-	-	2	1,005	3032	
/	1,827	_	-	-	1	1,83	-	-	-	
-	-	6	1,//2	040	-	-	-	-	-	
2	1,731	3	1,727	221	2	1,73	-	-	-	
-	-	-	-	-	1	1,70	-	-	-	
2	1,655	4	1,647	042	1	1,66	1	1,664	3140	
-	-	-	-	-	0,5	1,64	-	1,648		
3	1,621	-	-	-	6	1,62		1,617	2242	
	-	3	1,512	204	-	-	1	1,526	-	
3	1,496	-	_	-	6	1,49	2	1,499	3034	
-	-	4ш	1,395	224	-	-	_	_	-	
7	1,377	_	_	_	9	1,37	3	1,377	_	
_	_	_	_	_	1	1.34	_	_	-	
3	1.315		_		1	1.31	_	-	_	
_	_	4111	1.282	242	0.5	1.28	2	1.264	4152	
7	1 259				7	1.26	-			
2	1 201	3	1 216	206	4	1,20	2	1 203	1.2	
2	1,201	JIII	1,210	200	-	1,20	2	1,205	-	
2	1,130	-		-	-	3	2	1,130	-	
4	1,134	-	-	-	-	-		1,132	-	

-

Таблица З Химический анализ синхизита из Казахстана

Компо- нент	Bec. %	А томн. колич.	Отноше- ния атоми. колич.	Компо- нет	Bec. %	Атомн. колич.	Отноше- ния атомн. колич.
CaO	17,45	0,311166	1,01	Dv. O.	1,34	0.007325	0.02
Ce, 0,	23,20	0,141361	0,46	Fe.O.	0,63	-	-
La, O,	10,90	0,066908	0,22	có,	27,30	0.620314	2.01
Nd, O3	9,97	0,059261	0,19	F	6,00	0,315823	1.02
Pr ₂ O ₃	2,60	0,015766	0,05	Current	102.28		
Sm, O,	1,67	0,009578	0,03	Cymma	102,38		
Gd ₂ O ₂	1,31	0,007228	0,02	$O=F_2$	2,50 99,88		

Таблица 4

31

2

8

1,1825

3.2.25; 330*

Гексагональная ячейка Моноклинная ячейка, $\beta = 90^{\circ}$ N⁰ I^1 da, Ausm m hklh da, Арассчит hklim da, Арассчит 18,3 0,03 18,17 1 1 _ 006* 2 33 9,11 6ш 9,08 001 9,08 3 7,29 ? 3 010 7,10 104* 4 4 5,62 5,602 011 5.59 5 3 31 4,54 108; 0.0.12* 002* 4,563: 4,542 4.541 6 0,5 4,085 1.0.10* 7 4,078 100^{*} 4,092 7 3,826 1.0.11012* 3 5 3,857 3,825 110^{*} 8 020*; 110* 8 84 3,546 3,548 3,547: 3,545 116*; 1.0.14 9 6 43 3,304 021*: 111* 3,305; 3,289 3,304; 3,302 10 5 3,021 203; 0.018* 033* 16 3,029; 3,028 3,028 11 9 2,796 208; 1.1.12* 58 2,801: 2,796 022*: 112* 2,796: 2,794 12 2 2,369 1.1.17; 0.0.23* -----2,379; 2,370 030* 2,365 213*; 1.1.18*; 1.0.22 13 2,302 10 2,304; 2,303; 2,298 113* 2,303 215*; 0.0.24* 14 1 11 2,270 2,272; 2,271 004* 2,271 15 302*; 2.0.20 10 100 2,045 2,043; 2,039 130': 200* 2,048; 2,046 1.997 306*; 2.1.14 16 3 8 1,998; 1,995 131* 1,997 8 23 1.0.27; 1.1.24* 17 1,914 1,918; 1,913 024*; 114* 1,912 18 25 3.0.12* 8 1.866 1,867 132*:033* 1.867: 1.864 19 2 2 1,816 $0.0.30^{*}$ 005* 1.817 1,8165 20 220, 221*; 222 3 16 1,772 040*; 220* 1,774; 1,773; 1,770 1,7735; 1,7725 21 1.0.30*; 226* 3 17 1,738 221* 1,742; 1,741 1,7395 22 ----9 1,696 313*; 3.0.18*; 2.1.22 1,697; 1,697; 1,694 133* 1.696 23 22 318*; 2.2.12*; 0.0.33* 7 1,652 042*; 222* 1,653; 1,652; 1,652 1,652; 1,651 24 0,5 2 1,616 1.1.30+, 2.2.14 1,617; 1,614 025*; 115* 1,617; 1,6165 406*: 0.036* 25 1.513 006* 4 8 1,515; 1,514 1,514 326*; 1.1.36* 26 5 14 1,394 026* 1,393; 1,393 1,393 27 3 10 1,3415 3.1.25; 410* 1,343; 1,341 240* 1,340 416*; 3.2.14* 28 1 10 241*; 311 1,326 1,3265; 1,3255 1,326; 1,325 29 0.0.42* 1,297 1 1.298 007* -_ 1,2975 4.1.12*; 3.0.33* 30 6 20 1,286 1,286; 1,286 152*; 242*; 053*; 312* 1,286; 1,2855; 1,285; 1,285

1,1838; 1,1826

-060*

1,1825

Рентгенограмма синхизита Шаншальского интрузива Центрального Казахстана

1

32	-	7	1,181	332*	1,1815	330*	1,1816
33	-	6	1,1725	4.0.30; 336*; 5.0.14*; 2.0.43	1,1731; 1,1727; 1,1720; 1,1718	323*; 061*; 331*	1,1736; 1,1726; 1,1717
34	0,5	1	1,167	3.1.34; 4.1.23	1,1677; 1,1670	127*; 250*	1,1679; 1,1660
35	6	2	1,151	426*; 2.2.36*; 3.3.11	1,1519; 1,1516; 1,1503	046*; 226*	1,1514; 1,1511
36	4	19	1,1441	427*; 3.3.12*	1,1448; 1,1444	062*; 332*	1,1443; 1,1435
37	-	2	1,1349	4.2.10; 0.0.48*; 3.0.40*	1,1358; 1,1355; 1,1345	008*	= 1,1353
38	-	2	1,1273	3.2.29*; 2.0.45*	1,1277; 1,1268	252	1,1294
39	2щ	1	1,1101	5.0.21*; 3.3.17	1,1107; 1,1095	324*	1,1105
40	2ш	2	1,0958	3.0.42; 516*	1,0962; 1,0956	137*	1,0960
41	-	1	1,0365	5.1.18*	1,0369	254*	1,0372
42	-	3	1,0093	609*; 432*; 0.0.54*	1,0098; 1,0095; 1,0093 ₅	009*	1,0092
43	7ш	4	1,0040	436*; 4.1.36	1,0040; 1,0038	156*	1,00365
44	-	4	1,0029	2.1.49; 6.0.11*	1,0032; 1,0029	316*	1,00315
45	-	3	0,9943	6.0.13	0,9949	237*	0,9942 ₅
46	-	3	0,9912	4.1.37; 4.0.42; 3.3.30*	0,9916; 0,9914; 0,9911	065*	0,9910
47	-	3	0,9905	6.0.14*	0,99044	335*	0,99048
48	-	4	0,9838	520*	0,98396	218*	0,98316
49	-	4	0,9821	523*; 4.3.13*	0,98252; 0,98210	420	0,98297
50	-	3	0,9816	524*; 3.3.31	0,98140; 0,98127	255	0,98125
51	-	4	0,9778	526*	0,97823	421	0,97726
52	-	3	0,9768	527	0,97620	344	0,97624
53	-	5	0,9618	5.2.12*; 3.3.33	0,96165; 0,96153	073	0,96112
	a	, A		7,095		4,092	
	b), Å		_		7,095	
	C.	, Å		54,506		9,083	
	V	, Å ³		3168		263,7	

Примечания. Индицирование проведено аналитическим способом; параметры элементарной ячейки рассчитаны МНК по величинам межплоскостных расстояний отражений, помеченных " + "; аналитик Э.М. Спиридонов.

Условия съемки: дифрактометр ДРОН-1,5, Си-антикатод, Ni-фильтр; 1⁹ _{Си} = 4 см на диаграммной ленте; внутренний стандарт NaCl a₀ = 5.421 Å. I¹-интенсивности по визуальной 10-балльной шкале по дебаеграмме, λ Fe (В.И. Степанов).

Таблица 5

Параметры элементарной ячейки синхизита (1-6) и доверита (7-10)

Месторождение, автор	Монов β = 90	слинная я °	чейка,	Гексагональная ячейка		Гексагональная ячей- ка в полной уста- новке		
	a ₀	b ₀	c _o	ao	<i>c</i> ₀	a ₀	C ₀	V, A ³
Нарсарсук, Гренландия, [3]				7,091	18,20	7,091	54,60	3170
По [13]	4,10	7,10	9,12			7,10	54,72	3185
Друкцах, Швейцария, [9]				4,08	54,72	7,067	54,72	3156
Карасуг, Тува [19]				4,08	9,06	7,067	54,36	3135
Нарсарсук, Гренландия, [25]					54,72			
Шанцал, Казахстан, Спиридонов Э.М. (новые данные), 1979 г.	4,092	7,095	9,083			7,095	54,50 ₆	3168
Северная Киргизия, [15]				4,01	8,98	6,945	53,88	3001
Довер, ClilA, [27]	4,07	7,06	9,12			7,06	54,72	3149
Украина, [16]				6,94	9,00	6,94	54,00	3003
Северная Киргизия	4,02	7,02	9,06			7,02	54,36	3093

паризита в кристаллах из Нарсарсука [13, 25]. Оптические константы для недостаточно полно изученных образцов синхизита в периодической литературе, видимо, близки к истинным (табл. 1). Исключением являются явно ошибочные данные О.Б. Дудкина и Н.К. Джамалетдинова. Для более полной характеристики оптических свойств в изоморфном ряду синхизит-доверит в табл. 1 приведены данные А.А. Левинсона и русских авторов для доверита [26, 15, 16]. Что касается рентгенограмм образцов синхизита и доверита, опубликованных Дж. Офтедалем, Е.И. Смитом, Е.И. Семеновым, А.А. Левинсоном, Я. Лозиньским, Ю.П. Меньшиковым, Е.П. Гуровым, Г.А. Сидоренко и Н.К. Джамалетдиновым (табл. 2), то расхождения между ними столь велики, что их трудно надежно сравнивать. Большое число линий опубликованных рентгенограмм синхизита из Узбекистана и доверита из Киргизии не поддаются индицированию. Затруднения в использовании этих рентгенограмм для диагностических целей понятны из результатов рентгеновского и электроно-графического исследования монокристаллов синхизита Г. Донней, И. Ийтака и Дж. Ван Ландуита [13, 9, 25].

По данным этих исследователей, эффектно подтвержденным прямыми наблюдениями кристаллической решетки методами просвечивающей электронной микроскопии высокого разрешения [25], структура синхизита обнаруживает несколько порядков субъячеек в истинной элементарной ячейке минерала. Обнаружена псевдоось субъячейки ~4,1 Å, перпендикулярная оси с при истинном параметре $a_0 ~ 7,1$. Вдоль оси с, нормальной слоистой структуре минерала, имеется три порядка периодичности субъячеек:

Интенсивности рефлексов

c''' - 4,6 Å (000.12) - очень сильные

c" - 9,12 Å (0006) - сильные

c' - 18,24 Å (0003) - слабые

c₀ - 54,72 Å (0001) - очень слабые

Последняя величина соответствует истинным размерам параметра c_0 элементарной ячейки синхизита. В литературе отсутствуют полные рентгенограммы, соответствующие этим данным. Изученный нами материал оказался пригодным для получения такой рентгенограммы и химического анализа.

Синхизит был найден Г.Г. Шульгой и Б.Ф. Хромых среди минералов тяжелой фракции протолочек щелочных гранитов из центральной части Шаншальского интрузива в Баян-Аульском районе Центрального Казахстана. Интрузив принадлежит к среднедевонскому карасорскому комплексу поздних каледониц Центрального Казахстана. 152 Щелочные граниты интрузива сложены максимальным микроклин-пертитом с "шахматным" альбитом 58,7 объемн. %, кварцем – 35,4%, эгирином и рибекитом – 1,7 и акцессорными минералами – 4,2%. Из акцессорных минералов наиболее распространены мартитизированный магнетит, ильменит-гематит, менее – циркон, флюорит, анатаз, циртолит, синхизит и апатит. В виде единичных зерен отмечены пирит, титанит, барит, рутил и галенит. Средний химический состав щелочных гранитов (в вес. %): Na₂O – 3,80; K₂O – 3,70; CaO – 0,72; MgO – 1,40; MnO – 0,04; FeO – 0,88; Al₂O₃ – 12,71; Fe₂O₃ – 1,18; TiO₂ – 0,30; SiO₂ – 74,70; P₂O₅ – 0,03; п.п.п. – 0,41; сумма – 99,87%.

Синхизит обогащает центральную часть Шаншальского интрузива, где его содержание достигает 500 г/т. Он ассоциирует с анатазом (400 г/т), циртолитом (40 г/т) и флюоритом. Синхизит наблюдается в виде хорошо образованных боченкообразных и реже призматических коричневато-розовых кристаллов 0,05–0,2 длиной и 0,01– 0,05 мм шириной. Кристаллы представляют собой гексагональные дипирамиды с хорошо развитым пинакоидом (0001) и с очень грубой штриховкой на гранях, параллельной (0001). Кристаллы чистые, полупрозрачные без следов изменений.

Химический анализ синхизита произведен в химической лаборатории института минералогии, геохимии и кристаллохимии редких элементов (ИМГРЭ) из навески 90 мг А.В. Быковой (табл. 3). Выделенный в ходе анализа осадок редких земель анализировался в рентгено-спектральной лаборатории ИМГРЭ и дал следующие результаты в весовых процентах элементов: La – 21,3; Ce – 45,4; Pr – 5,1; Nd – 19,16; Sm – 3,3; Eu – 0,42; Gd – 2,6; Tb – 0,36; Dy – 1,2; Ho – 0,17; Er – 0,31; Tm – 0,07; Yb – 0,14; Lu – 0,03; сумма – 100,00. В ходе пересчета химического анализа индивидуальные редкие земли пересчитаны на окислы, приведенные к сумме 51,00 весовых процентов TR_2O_3 , найденной в ходе анализа. Атомные количества Eu, Tb, Ho, Er, Tm, Yb и Lu из-за их низкого содержания при пересчете анализа суммированы с таковыми Dy. При пересчете химического анализа, для устранения арифметических ошибок за счет неполного деления, использовалось математическое правило числа зна-ков. При этом условно-значимые два знака после запятой величин химического анализа множились на 3 (три операции деления–умножения), т.е. величины атомных количеств брались до 6 знака.

Пересчет химического анализа привел к эмпирической формуле: Ca_{1,01} (Ce_{0,46} La_{0,22} x Nd_{0,19} Pr_{0,05} Sm_{0,03} Gd_{0,02} Dy_{0,02})_{0,99} (CO₃)_{2,01} F_{1,02}. Эти результаты показывают близость состава минерала к теоретическому при отсутствии иттрия и очень низком содержании иттриевых редких земель. Крайний церий-лантановый состав изученного минерала позволяет его рассматривать как эталонную разновидность синхизита.

Рентгеновское исследование синхизита из Казахстана проведено Э.М. Спиридоновым (дифрактометр ДРОН-1,5) и В.И. Степановым (камера РКД-57, 3 мм). В табл. 4 приведены величины интенсивностей как по 100-балльной шкале для дифрактограммы, так и в 10-балльной визуальной шкале для дебаеграммы; значения интенсивности по обоим шкалам находятся в удовлетворительном соответствии, за исключением нескольких линий на больших углах. Рентгенограмма синхизита индицируется как в моноклинной (псевдоромбической) ячейке с $a_0 = 4,095$, $b_0 = 7,095$; $c_0 = 9,083$ Å, $\beta = 90^\circ$, впервые предложенной Г. Донней [13], так и в примитивной гексагональной ячейке с $a_0 = 7,095$; $c_0 = 54,506$ Å. Однако в рентгенограмме имеется отражение 18,3 Å, которое не индицируется в моноклинной ячейке. Учитывая, что при монокристальной съемке синхизита, изученного Г. Донней, не обнаружено отражений, которые не индицируются в гексагональной симметрии, версия о моноклинной сингонии минерала остается сомнительной. Оптические свойства синхизита однозначно свидетельствуют о гексагональной метрике минерала. Как известно, оптические свойства более чувствительны к вариациям структуры минерала по сравнению с рентгеновской дифракцией. Нередко оптическая симметрия минерала ниже рентгеновской (оптические аномалии), но не наоборот. В связи с этим имеющиеся данные различных установок параметров синхизита, при выборе которых не были учтены факты наличия субъячеек разного размера в кристаллах, пересчитаны на полную гексагональную ячейку (табл. 5).

Объем элементарной ячейки минералов ряда синхизит-доверит колеблется от 3001 до 3185 Å³. Остается недостаточно ясным вопрос о границах минеральных видов синхизит-доверит. При рассмотрении этого вопроса, в первую очередь, необходимо отметить неправомочность распространения правила А. Левинсона с лантаноидов на иттрий, занимающий свое самостоятельное место в периодической таблице элементов. Исходя из общего правила номенклатуры всех минералов, членов бинарных рядов твердых растворов, к синхизиту следует относить составы $TR_{Ce} > Y + TR_Y$, а к довериту $Y + TR_Y > TR_{Ce}$. Рассмотрение имеющихся к настоящему времени данных также позволяет надежно отличить паризит и минералы ряда синхизит-доверит (табл. 1). Рентгенограммы паризита и синхизита очень похожи, но визуальное сравнение рентгенограмм, полученных фотометодом, позволяет очень легко их различить. По цифровым данным эти различия не столь очевидны, в том числе и из-за обычного плохого качества рентгенограмм. Только интенсивные отражения 3,24 и 3,00 синхизита отличаются от сходных слабых линий паризита. На рентгенограмме кристалла паризита из Мюзо, кроме того, обнаружена индивидуальная сильная линия 4,15 Å неясной природы, отсутствующая на рентгенограмме синхизита.

ЛИТЕРАТУРА

- 1. Flink G. On the minerals from Narsarsuk on Firth of Tunugdii arfik in South Greenland. -Medd. Grønland, 1901, vol. 24.
- 2. Roberts W.L. et al. Encyclopedia of Minerals, 1974.
- 3. Oftedal J. Uber Parisit, Synchisit und Kordilit. Röntgenographische Untersuchungen. - Ztschr. Kristallogr., 1931, 79.
- 4. Sohnge P.G. The structure, one genesis and mineral sequense of the cassiterite in the Zaaiplaats Tin mine, Potgietersrust District, Transvaal. - Trans. Geol. Surv. South Africa, 1944, vol. 47.
- 5. Pecora W.T. Carbonatites. Buil. Geol. Surv. Amer., 1956, vol. 67, N 11.
- 6. Dyxey F. et al. The Chilwa series of Southern Nyasaland. - Nyasaland Geol. Surv., Bull., 1955, vol. 5.
- 7. Garson M.S. The Tundulu carbonatite ring complex of Southern Nyasaland. Mem. Malawi Geol. Surv., 1963, vol. 2.
- 8. Parker R.L., Branderberger E. Notiz über den Synchisit von Val Nalps. - Schweiz. miner. und petrogr. Mitt., 1946, vol. 26, Hf. 1.
- 9. litaka Y., Stalder H.A. Synchisit und Bastnäsit aus dem Druckschach: des Krafwerkes Oberaat. - Ibid., 1961, vol. 26, Hf. 2.
- Weibel M. Scheelit und Synchisit aus dem Tavetsch. Ibid., 1964, vol. 44, Hf. 1.
- 11. Fray A. Synchisit aus dem Unterwallis. Ibid., 1977, vol. 4, Hf. 5.
- 12. Stalder H.A. et al. Die Mineralien des Binnentales. 1978.
- 13. Donney G., Donney J. The Crystallography of bastnesite, parisite, roentgenite and synchisite. -Amer. Miner., 1953, N 11-12.
- 14. Lozinski J. Synchisite from fossil bones. Miner. Pol., 1971 (1973), N 2.

- 15. Семенов Е.И. О возможном новом фторкарбонате редких земель. – Тр. ИМГРЭ, 1959, вып. 2.
- 16. Гуров Е.П., Гурова Е.П. Иттросинхизит из камерных пегматитов. - В кн.: Новые данные о минералах СССР, 1975, вып. 24.
- 17. Минеев Д.А. Лантанонды в рудах. М.: Наука, 1974.
- 18. Александрова И.Т., Сидоренко Г.А. Фазовые превращения иттросинхизита при термической обработке. – Рентгенография мин. сырья. 1977, № 11.
- 19. Хомяков А.П., Семенов Е.И. Гидротермальные месторождения фторкарбонатов редких земель. М.: Наука, 1971.
- 20. Костылева Е.Е. и др. Минералогия Хибинского массива. М.: Наука, 1978, т. 2.
- 21. Джамалетдинов Н.К. О находке синхизита в гранитоидах Западного Узбекистана. Зап. Узб. отд. Всесоюз. минерал. об-ва, 1978, № 31.
- 22. Дэна Дж. и др. Система минералогии. 1953, т. 2, полутом 1.
- 23. Ларсен Е., Берман Г. Определение прозрачных минералов под микроскопом. 1937.
- 24. Винчелл А.Н., Винчелл Г. Оптическая минера-
- логия. М.: Изд-во иностр. лит., 1953. 25. Van Landuite J., Amelinckx S. Multiple beam direct Lattice inaging of new mixed-layer compounds of bastnesite-synchisite series. - Amer. Miner., 1975, vol. 60, N 5/6.
- Levinson A.A., Borup R.A. Doverite from Cotopaxi, Colorado. Ibid., 1962, vol. 47, N 3/4.
- 27. Smith W.L., Stone J., Ross D.R., Levine H. Doverite, a possible new fluocarbonate from Dover, Morris County, New Jersey. - Ibid., 1960, vol. 45, N 1-2.

УДК 549.612

В.Г. ФЕКЛИЧЕВ, Т.Н. ИВАНОВА, Г.Е. ЧЕРЕПИВСКАЯ, И.Б. НИКИТИНА

ИССЛЕДОВАНИЕ ЗАВИСИМОСТЕЙ СОСТАВ-СВОЙСТВА У МИНЕРАЛОВ ГРУППЫ ТУРМАЛИНА

Исследованию зависимостей между составом и физическими свойствами у минералов группы турмалина посвящено огромное количество работ, анализ которых показал, что в группе турмалина в целом зависимости между химическим составом и химическими свойствами не могут быть выражены простыми графиками, за исключением, пожалуй, магнитной восприимчивости, хорошо коррелирующей с содержанием суммар-