МИНЕРАЛОГИЧЕСКИЙ МУЗЕЙ им. А. Е. ФЕРСМАНА

Труды, вып. 17

1966 r.

Редактор д-р геол.-мин. наук Г. П. Барсанов

т. б. здорик, н. к. финягина

ЛИНДОКИТ И ФЕРГЮСОНИТ В КАРБОНАТИТАХ

Линдокит (существенно ниобиевый и бедный торием аналог эшинита) и фергюсонит до последнего времени описывались как акцессорные минералы в гранитах, сиенитах и пегматитах (Барсанов, 1949; Калита, 1961) либо, реже, в силикатных метасоматических породах (Жабин и др., 1961; Chang Pey Schan, 1962).

В одном из карбонатитовых массивов Восточной Сибири линдокит был встречен нами в амфибол-кальцитовых карбонатитах в ассоциации с тетрафлогопитом и амфиболом актинолитового ряда на участке, характеризующемся наложением амфиболкальцитовых карбонатитов на различные форстерит-кальцитовые пирохлорсодержащие карбонатиты¹.

В амфиболизированных полосчатых среднезернистых форстерит-кальцитовых карбонатитах линдокит образует радиальнолучистые и сноповидные сростки тонкопризматических кристаллов или обрастает с периферии зерна темно-бурого Та- и Тi-содержащего пирохлора.

В гигантозернистых форстерит-кальцитовых карбонатитах (отличающихся от среднезернистых полосчатых форстерит-кальцитовых карбонатитов такситовой текстурой, составом слюды и пирохлора и другими особенностями) минерал со структурой, идентичной ² линдокиту, также встречен в амфиболизированных участках. Но здесь он образует не самостоятельные кристаллы, а тонкоагрегатные псевдоморфозы по кубическим кристаллам луешита. Псевдоморфный минерал имеет серовато-желтую окраску. Его структура, совершенно идентичная призматическому кристаллическому линдокиту, выявляется лишь после прокаливания. Поскольку в этих породах четко видно более позднее развитие луешита по отношению к пирохлору (мелкие кристаллы луешита нарастают на грани ферсмитизированного с периферии пирохлора), в них выявляется следующая последовательность образования Nb-минералов:

пирохлор -> (луешит + ферсмит) -> линдокит (?) (или натрониобит)

т. е. луещит, очевидно, образуется при освобождении натрия, вытесняемого в процессе ферсмитизации пирохлора. Пирохлор в этих породах существенно ниобиевый, почти безтитановый. Естественно, что линдокит (или, тем более, натрониобит) как следующая фаза развивается уже не

14 Новые данные

¹ Краткая характеристика геологического строения массива и расчленение карбонатитов приведены в статье «Бербанкит и продукты его изменения» (см. настоящий сборник).

² По данным Г. А. Сидоренко ту же структуру имеет натрониобит.

по нирохлору, а по относительно обогащенному титаном луешиту (см. табл. 2).

Приведенные ниже результаты изучения физических свойств и химического состава линдокита относятся к более распространенной кристаллической разновидности из амфиболизированных полосчатых форстериткальцитовых карбонатитов.

Размеры индивидов линдокита достигают 1-2 мм в длину при ширине 0,1-0,2 мм; призмы уплощены по оси *a* и часто изотнуты по удлинению. На гранях наблюдается резкая штриховка по (001) и отдельность по (100). Цвет минерала от темно-бурого до оранжево-красного. Блеск стеклянный на гранях и смолистый в изломе. Излом занозистый. Удельный вес 4,81. Показатель преломления¹, измеренный в серо-селеновых сплавах, Ne = 2,3. Знак удлинения (±) свидетельствует об ориентировке [001] = Nm; кристаллическое состояние линдокита позволило определить его параметры до прокаливания. Съемка велась на Fe-нефильтрованном излучении при напряжении 35 kV и силе тока 12 mA в течение 5 час.; *d* камеры 57,3 мм; $a_0 = 5,26 kX$, $b_0 = 10,74 kX$, $c_0 = 7,36 \pm 2 kX$ (рентгеновская лаборатория ВИМС; Г. А. Сидоренко).

Полный химический анализ кристаллического линдокита, проведенный в микрохимической лаборатория ВИМС (табл. 1), показал, что по составу минерал наиболее близок кристаллическому линдокиту из КНР, описанному С. А. Горжевской и Г. А. Сидоренко (1962). При пересчете химического анализа на структурную формулу вида (TR, Ca) (Nb, Ti)₂O₆ принимается B = 2. Состав минерала выражается при этих условиях формулой

 $(TR_{0.65}Ca_{0.25}Th_{0.07}U_{0.02})$

 $(Nb_{0,79}Ti_{1,06}Fe_{0,08}^{3+}Si_{0,04}Al_{0,03})_2O_{3,76}.$

При расчете формулы принимался во внимание состав (в %) редкоземельных окислов, определенный рентгеноспектральным методом Е. М. Шмелевой ($\Sigma TR = 100\%$): La₂O₃ 23, Ce₂O₃ 44,3, Pr₂O₃ 6,7, Nd₂O₃ 20,5, Sm₂O₃ 2, Gd₂O₃ 1,9, Dy₂O₃ 0,6, Y₂O₃ 1,3.

Из сопоставления физических свойств и химического состава минерала с имеющимися в литературе данными можно сделать вывод, что повышение в нем количества титана $(TiO_2 = 23,56\%)$ и тория $(ThO_2 = 5,17\%)$ приводит к заметному снижению параметров элементарной ячейки, особенно ее параметра b_0 , на котором, как это следует из рассмотрения структуры минерала (Александров, 1962), сказывается как величина В-полиэдров (определяемая количеством Ti), так и величина А-полиэдров (обратнопропорциональная содержанию Th) (Комков, 1963).

Широко известен в литературе процесс колумбитизации пирохлора при смене кальцитовых и доломитовых карбонатитов анкеритовыми, т. е. процесс смены кубических редкоземельно-кальциевых и натриевых ниобатов ромбическим ниобатом железа в результате снижения щелочности растворов и соответственно снижения активности кальция и повышения активности железа (Гайдукова, 1960).

Появление в карбонатитах ромбических тантало-ниобатов ферсмита, луешита и линдокита и замещение ими пирохлора в участках наложения амфибол-кальцитовых карбонатитов на форстерит-кальцитовые можно рассматривать как сигнал начавшегося сдвига равновесия в сторону образования ромбических ниобатов. Самое начало этого процесса подтверждает сосуществование новообразованных фаз и пирохлора — пол-

...

¹ Из-за интенсивной окраски минерала при незначительном двупреломлении нельзя было измерить отдельно Ng, Nm и Np.

Таблица 1

Окислы	Исследуемый минерал	Линдокит из КНДР	Ниобиевый эши- нит из Китая	Ниобиевый эшинит с Урала	
$\begin{array}{c} N b_2 O_5 \\ T a_2 O_5 \\ T i O_2 \\ F e_2 O_3 \\ A l_2 O_3 \\ S i O_2 \\ C a O \\ N a_2 O \\ K_2 O \\ T R \\ U O_3 \\ T h O_2 \\ M g O \\ F e O \\ P_2 O_5 \\ F \\ H_2 O \\ \Pi, \pi, \pi, \end{array}$	30,88 Не обн. 23,86 1,65 0,50 1,45 3,97 — 30,13 1,44 5,17 Не обн. — —	$\begin{array}{c} 35,90\\ \text{He odh.}\\ 17,10\\ 1,28\\ 3,80\\ 3,84\\ 5,34\\ 0,063\\ 0,063\\ 27,03\\ 0,063\\ 27,03\\ 0,08\\ 3,75\\ 0,56\\ 0,026\\ 0,39\\ 0,15\\ 1,39\\ \end{array}$	$\begin{array}{c} 41,13\\ 0,51\\ 12,13\\\\ 0,015\\ 0,55\\ 3,54\\\\ 31,87\\ 0,83\\ 2,15\\ 0,05\\ 6,12\\\\ -\\ 0,1\\ 0,64\\ \end{array}$	38,40 22,53 1,43 0,65 2,60 	
Сумма	99,05	100,99	_		
Аналитики	Н. Н. Куз- нецова	Т. А. Ухина, В. М. Лурье, Н. Н. Кузнецова		М. Е. Казаков	
Источник	Т. Б. Здорик	С. А. Горжевская (1962 г.)	Chang Pei Schan A. Г. Жаби (1962) др. (1961 г		
Уд. вес	4,81	4,54-4,82	5,056	1,30	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5,33 10,97 7,50	5,92 11,09 7,52	5,42 10,97 7,55	

Химический состав линдокитов и эшинитов (вес. %)

ных псевдоморфоз ни линдокит, ни луешит, ни ферсмит не образуют и пирохлоровая фаза также широко распространена и в виде реликтовых ядер в замещенных кристаллах, и в виде новообразований (табл. 1).

Дальнейшее повышение кислотности растворов в анкеритовых карбонатитах приводит и на данном массиве к широко проявленному процессу колумбитизации пирохлоров, совершенно аналогичному описанному ранее В. С. Гайдуковой (1960) и состоящему в образовании пористых, кавернозных псевдоморфоз колумбита по ферсмитизированному пирохлору. В отдельных случаях удается наблюдать и развитие мелких самостоятельных друз пластинчатых кристаллов колумбита. Оптически различается две генерации колумбита: непрозрачный в проходящем свете колумбит, слагающий центральные части псевдоморфоз, и красный, анизотропный, тонкокристаллический колумбит, развитый по периферии зерен. Химически удалось проанализировать лишь более распространенный непрозрачный колумбит (табл. 2).

Развитие колумбита по ферсмитизированным кристаллам пирохлора в некоторых случаях приводит к растворению и частичному переотложению ферсмита в виде мелких друз соломенно-желтых призматических

14*

Таблица 2

Окислы	Темно- бурый пирохлор	Красно- бурый пирохлор	Луешит	Ферсмит	Линдокит	Колумбит
$\begin{array}{c} Na_{2}O \\ K_{2}O \\ CaO \\ SrO \\ TR \\ Al_{2}O_{3} \\ Fe_{2}O_{3} \\ ThO_{2} \\ U_{3}O_{8} \\ TiO_{2} \\ SiO_{2} \\ ZrO_{2} \\ Nb_{2}O_{5} \\ Ta_{2}O_{5} \\ FeO \\ MnO \\ MgO \\ PbO \\ F \\ H_{2}O^{+} \\ H_{2}O^{-} \end{array}$	4,96 0,1 10,20 Не обн. 3,14 2,38 1,16 11,28 3,68 4,56 0,34 1,86 47,8 3,57 0,66 0,13 Не обн. — 0,22 2,02 —	$\begin{array}{c} 5,71\\ 0,20\\ 13,63\\ 0,58\\ 9,16\\ 1,46\\ 0,70\\ 0,36\\ 2,31\\ 0,57\\ 2,18\\ 60,67\\ \hline \\ 0,05\\ 0,31\\ 0,019\\ 1,02\\ 1,52\\ 0,024\\ \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,027 0,023 14,09 0,30 2,32 0,54 1,32 0,58 0,055 5,14 1,19 0,15 72,0 Не обн. 0,072 0,54 Не обн. 0,25 0,25 0,25 0,40		0,08 0,06 Не обн.
Сумма	99,59	100,823	99,54	98,53	99,05	99,71
Аналитик	Т. А. Ухи- на	К. А. До- рофеева	Н. Н. Куз- нецова	Т. А. Ухи- на	Н. Н. Куз- нөцова	Т. А. Ухина

Химический состав тантало-ниобатов (в 0/о)

кристаллов, для которых Г. А. Сидоренко уже в естественном состоянии без дополнительного прокаливания удалось замерить следующие параметры: $a_0 - 5,76$, $b_0 - 14,86$, $c_0 - 5,19 \pm 0,02$.

Чрезвычайно интересно обнаружение в ассоциации с этим поздним тонкопризматическим ферсмитом фергюсонита, находка которого в карбонатитах явилась некоторой неожиданностью. Трудно было ожидать появления этого иттриевого минерала в карбонатитах, в которых на протяжении всего процесса, от самых ранних его стадий до завершающих, концентрируются почти исключительно цериевые земли. Фергюсонит встречен в анкеритизированных кальцитовых карбонатитах и в виде тонких корочек, обрастающих с периферии переотложенный пирохлор, п в виде агрегатов тонкопризматических кристаллов размером 0,5-1 мм кремово-желтого цвета с сильным алмазным блеском. Минерал кристаллический. Четкая порошкограмма получена до прокаливания; ее анализ (Г. А. Сидоренко, Н. И. Чернова) показал, что минерал относится к моноклинной модификации и имеет следующие параметры: $a_0 = 5,06$, $b_0 = 10,99, c_0 = 5,28, \varphi = 86°17'.$

Принято считать, что моноклинная сингония характерна лишь для высокотемпературных генераций фергусонита. Образование низкотемпературного моноклинного фергюсонита следует, по-видимому, связывать с частичным вхождением в его структуру цериевых редких земель, столь характерных для титано-тантало-ниобатов карбонатитового генезиса.

Имеющиеся данные о смене танталониобатов по стадиям карбонатитового процесса в изучаемом нами массиве позволяют сформулировать следующие выводы (табл. 3).

Таблица З

Смена тантало-ниобатов в ходе карбонатитового процесса

Стадия Вторая * процесса Чствертая Третья Под-Б Λ стадия Парагене-тическая ассоциация Форстерит, тетрафлогопит, Рибекит, хлорит, апкерит, до-Форстерит, флагопит, маг-Актинолит, эккерманит, арфведсонит, апатит, кальцит, ломит. бербанкит, карбоцернетит, апатит, кальцит магнетит, апатит, кальцит Циркелит, дизаналит наит, бастнезит, монацит Цирколит, бадделеит, диздоломит Сфалерит, молибденит, гале-Ильмепит, циркон, сфен аналит Бербанкит нит, пирит Колумбит Fe, NB₂O₆ Пирохлор III-A (Ca, Th)₂ (Nb, Ta, Ti)₂ (O, F)₇ Пирохлор I (Ca, U)₂ (Nb, Ta)₂(O, F)₇ Ферсмит II (Ca, TR) (Ti, Nb)₂O₆ Титано-тантало-ниобаты Пирохлор II Пирохлор III-Б (Ca, TR)₂ (Nb, Ti)₂ (O, F)₇ Пирохлор IV (Ca, TR)₂ (Nb)₂ (O, F)₇ $(Ca, Sr)_2 (Nb)_2O_7$ Фергюсонит Ферсмит I < (TR, Ca) (Nb, Ta)O₄ (Ca, TR) (Nb, Ti)₂O₆ Луешит (Na, Ca) (Nb, Ti)O₃ Линдокит (TR, Ca) (Ti, Nb)₂O₆

* На первой стадии тантало-ниобаты не образуются. Формулы минералов схематизированы.

213

1. При замещении кальцитовых карбонатитов доломитовыми и далее анкеритовыми кубические титано-тантало-ниобаты постепенно сменяются ромбическими.

Состав титано-тантало-ниобатов закономерно изменяется, главным образом в отношении катионов группы A, от Ca (в пирохлорах) к Ca, TR, Na (в линдоките и луешите) и наконец к Fe (в колумбитах), тогда как состав катионов группы A минералов (Ti, Nb) сохраняет большее

Состав редких земель в тантало-ниобатах 1 — урано-ториевый пирохлор, 2 — редкоземельный пирохлор, 3 — луешит, 4 — линдокит

постоянство. Это дает основание считать, в соответствии с широко известными представлениями Н. В. Белова, что в титано-тантало-ниобатах тип структуры определяется свойствами (в частности, координационными числами) катионов группы А. Наблюдаемая в ходе карбонатитового процесса смена структурных типов титано-тантало-ниобатов обусловлена эволюцией химизма минералообразующих растворов, происходящей на фоне общего понижения их температуры.

2. Линдокит, ферсмит, луешит — минералы, фиксирующие начало сдвига равновесия в пользу ромбических титано-тантало-ниобатов при наложении амфибол-кальцитовых карбонатитов на форстерит-кальцитовые. При этом в амфибол-кальцитовых карбонатитах отмечается сосуществование ромбических и кубических титано-тантало-ниобатов при явном преобладании последних, а в анкеритовых карбонатитах резко преобладают ромбические ниобаты (колумбит), кубические же выполняют роль раритетов (пирохлоры).

3. Намечается сопоставление смены тантало-ниобатов при уменьшении щелочности растворов в ходе карбонатитового процесса с эволю-214 цией ниобатов по схеме: колумбит → эвксенит → обручевит → бетафит, приведенной А. П. Калитой (1961) для гранитных пегматитов Аллакурти при наложении поздних фаз щелочного метасоматоза, т. е. при последовательном увеличении шелочности растворов.

4. При рассмотрении изменения фазового состава тантало-ниобатов в ходе карбонатитового процесса намечается некоторая аналогия с изменением фазового состава тантало-ниобатов при прокаливании (Горжевская, Сидоренко, 1962); общим для этих процессов является устойчивость кубической пирохлоровой структуры в самом широком диапазоне температур и pH растворов. При низких температурах растворов (300-200°-III и IV стадии) снижаются изоморфная емкость решетки пирохлора и вынос катионов, нарушающих ее стехиометрию.

В обоих случаях, и в ходе карбонатитового процесса, и в ходе искусственного прокаливания образцов, состав дополнительной фазы зависит от состава исходных минералов, но состав природных новообразованных фаз тесно связан, кроме того, с общим химизмом растворов; так, с возрастанием потенциала Fe в анкеритовых карбонатитах преобладающей фазой становится колумбит.

Порядок образования фаз при прокаливании [пирохлор -> ферсмит -> ферсмит + луешит -> фергюсонит] аналогичен порядку появления природных фаз в ходе карбонатитового процесса.

5. При рассмотрении состава редких земель (см. рисунок) в последовательно сменяющихся тантало-ниобатах можно отметить, кроме общего для всех кривых церо-ниодимового максимума, незначительное убывание отношения Се: La в более поздних титано-тантало-ниобатах. Характерно также появление в наиболее поздних ниобатах иттрия, т. е. эволюция состава редких земель в минералах также обратна таковой в альбитизированных пегматитах, где состав редкоземельных окислов в тантало-ниобатах характеризуется преобладанием иттровых земель и появлением церия на завершающей стадии.

6. Следует отметить наличие большого количества кристаллических минералов на завершающей стадии карбонатитового процесса — все тантало-ниобаты (пирохлор, колумбит, ферсмит, эшинит, фергюсонит) при низких температурах образуют высокостехиометричные кристаллические решетки.

Авторы приносят большую благодарность А. И. Гинзбургу, Г. А. Сидоренко и С. А. Горжевской за помощь в работе и консультации по ряду конкретных вопросов.

ЛИТЕРАТУРА

- Александров В. Б. Кристаллическая структура эшинита. Докл. АН СССР, 1962, 142, № 1.
- Барсанов Г. П. Эшинит. В кн. «Минералы Ильменского заповедника». М., 1949, стр. 463-475.

Гайдукова В. С. Процессы изменения пирохлора в карбонатитовых месторождениях. — Минеральное сырье, 1960, вып. 1.

Горжевская С. А., Сидоренко Г. А. Находка кристаллической разновид-ности линдокита. — Докл. АН СССР, 1962, 146, № 5. Горжевская С. А., Сидоренко Г. А. Особенности минералов структурного типа эшинита. — Минеральное сырье, 1963, вып. 8.

Жабин А. Г., Мухитдинов Г. Н., Казакова М. Е. Парагенетические ассоциации акцессорных минералов редких элементов в экзоконтактовых фени-тизированных породах интрузии миаскитов Вишневых гор. — Труды ИМГРЭ, вып. 4, 1960.

Жабин А. Г., Александров В. Б., Казакова М. Е. Об эшините гидротермального генезиса из Вишневых гор. — Труды ИМГРЭ, вып. 7, 1961.

Калита А. П. Редкоземельные пегматиты Аллакурти и Приладожья. Изд-во АН СССР, 1961.

Комков А. И. Рентгенометрическое исследование эшинитов. - Труды ВСЕГЕИ, новая серия, т. 96, 1963.

Chang PeySchan. Niobian esshynite. — Scientia sinica, 1962, 11, 7.