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The modular structure of pyroxenes

MASSIMO NESPOLO1,* and MOIS I. AROYO2

1 Department of Geology and Mineralogy, Faculty of Science, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku,
Kyoto-shi 606–8502, Japan

*Corresponding author, e-mail: massimo.nespolo@crm2.uhp-nancy.fr
2 Fı́sica de la Materia Condensada, Facultad de Ciencia y Tecnologı́a, Universidad del Paı́s Vasco, Apartado 644, 48080

Bilbao, Spain

Abstract: The structures of pyroxenes can be described as cell-twins based on a common module (a layer) consisting of half the unit
cell of the P21/c polymorph. Atomic models of the different polymorphs are computed and the close similarity between the models
and the corresponding experimental structures is shown. The cell-twin operations building the structures of pyroxenes are partial
operations belonging to a special case of space groupoid which was called ‘‘twinned space group’’ in the pioneering studies by Ito
started in 1935. The groupoid analysis of clino-, proto- and orthoenstatite is presented and the special place occupied by pyroxenes in
the category of polytypes is discussed.
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1. Introduction

Warren & Modell (1930) first reported the structure of
enstatite and pointed out its relation with that of diopside:
the former can be roughly obtained from the latter by a glide
reflection perpendicular to the orthorhombic a axis, disre-
garding the chemical differences in the M2 site. Ito (1935)
took the opposite view, starting from the diopside structure
described in a pseudo-orthorhombic cell, and showed that
the systematic absences in this cell are compatible with the
polysynthetic repetition of the diopside structure through a b-
glide perpendicular to the a axis of the pseudo-orthorhombic
cell. This observation led him to adopt a more general
description of the symmetry of the pyroxene structures
based on an extension of the group structure obtained by
superposing to the space group a set of operations reminis-
cent of the twin operations mapping domains or individuals
in a twinned crystal. Based on this analogy, he called the set
of operations a ‘‘twinning group’’ and the result of the
extension of the space group a ‘‘twinned space group’’
(Ito, 1938). According to Ito’s definition, the operations of
the ‘‘twinning group’’ act on a domain corresponding to ‘‘a
multiple (or submultiple) of that of the original unit cell’’, so
that a ‘‘new cell is formed, governed by the operation of the
twinning group’’ (Ito, 1950).

According to modern usage, the polysynthetic struc-
tures, as later termed by Sadanaga (1978), which were
the object of Ito’s investigation, are monoarchetypal mod-
ular structures (Makovicky, 1997; Ferraris et al., 2008),
i.e. structures built by periodically juxtaposing one mod-
ule. The module is a three-dimensional but less than tri-
periodic object which can ideally be described as cut from
a (real or hypothetical) structurally and chemically homo-
geneous parent structure: the archetype. In the above
example, making abstraction from the Ca vs. Mg differ-
ence in the M2 site and allowing some small deviation in
the atomic coordinates, the diopside is the archetype, while
the enstatite is a structure derived from it. The operations
relating the modules are cell-twinning operations and
monoarchetypal structures are also known as cell-twins
(Nespolo et al., 2004). The operations that Ito collected
in the ‘‘twinning group’’ are partial operations which,
together with the total operations of the space group,
form a groupoid in the sense of Brandt (1927) (for details,
see Ito & Sadanaga, 1976; Sadanaga, 1978). A groupoid
analysis has been presented by the OD school (Sedlacek
et al., 1979) but using two modules whose relation with the
modular nature of pyroxenes is less immediate: we present
here an alternative analysis which uses directly the module
which can be seen as a common denominator of all the
pyroxenes.

Ohashi (1984) analysed the polysynthetic relation
between clino- and orthoenstatite and completed Ito’s
interpretation by adding the cell-twin operations that are
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equivalent under the space group of the crystal. This would
correspond to decomposing the space groupoid in cosets
with respect to the space group, but no groupoid analysis
was given in Ohashi’s description. Meanwhile, Brown
et al. (1961) had suggested a more general structural rela-
tion, extending to protoenstatite as well, based on the
displacement of the SiO3 chains of either þc/3 (þ) or
-c/3 (�) along the a axis of the clino-enstatite, so that the
three polymorphs would correspond to the sequence
þþþþ (clino), þ � þ � (proto) and þþ– (ortho), when
expressed in a unit cell with comparable a parameter.

The above set of observations has prompted us to chal-
lenge a unifying modular interpretation of the pyroxene
structures where the full relations among the atomic posi-
tions in the various polymorphs can be obtained once the
module is correctly identified. The purpose of a modular
description of crystal structures is to point out the existence
of one or more common building blocks as well as the
operations relating these blocks in the various structures of
the series. The module(s) building one polymorph is(are)
conserved, apart from secondary effects like the thermal
expansion, while the relative position and/or orientation of
successive modules are modified. As we are going to see,
this is what happens in pyroxenes and the results show a
very close similarity between the structures of the three
polymorphs based on the cell-twinned model of clinoen-
statite. The estimation of the structural similarity between
the cell-twinned clinoenstatite and the orthorhombic poly-
morphs is obtained with the COMPSTRU routine at the
Bilbao Crystallographic Server (see Tasci et al., 2012, and
Aroyo et al., 2006 respectively) and the results are
expressed by four parameters:

� the degree of lattice distortion is the spontaneous
strain (the square root of the sum of squared eigen-
values of the strain tensor divided by 3);

� the maximum distance shows the maximal displace-
ment between the atomic positions of the paired
atoms;
� the arithmetic mean, dav¼

P
imiui/n, where mi is the

multiplicity of the Wyckoff position in the primitive
unit cell, ui is the atomic displacement of the i-th
atomic position and n is the number of atoms in the
primitive unit cell;
� the measure of similarity is a function of the differ-
ences in atomic positions (weighted by the multi-
plicities of the sites) and the ratios of the
corresponding lattice parameters of the structures
(Bergerhoff et al., 1999).

2. Structure, composition and polymorphism of
pyroxenes

The structure of pyroxenes is well known, we give here a
very brief summary to remind some features of use in the
following discussion (for details, see Cameron & Papike,
1981).

Figure 1 shows a schematic structure of pyroxenes
seen in projection along the a (left) and c (right) axes.
Chains of corner-sharing tetrahedra with apical and
basal oxygen atoms produce respectively octahedral
sites (M1) and larger, less well-defined sites (M2) occu-
pied by a variety of cations. The tetrahedral chains are
drawn in different colours because in some pyroxenes
(those crystallising in space-group types Pbca, P21/c and
P2/n) they are crystallographically independent (unre-
lated by symmetry operations of the space group).1

The oxygen atom forming a bridge between two tetra-
hedra in a chain, commonly known as the O3 oxygen, is
the flexible point of the pyroxene structure: rotations

Fig. 1. Schematic view of the pyroxenes structure in projection along the a (left) and c (right) axes. The tetrahedral chains are drawn in
different colours to emphasize their crystallographic independence in some of the space-group types in which pyroxenes crystallise (Pbca,
P21/c and P2/n). In the right part of the figure the a* axis is indicated to make it valid for both ortho- and clinopyroxenes. The red full lines
indicate the regions of weaker bonds, which correspond to the 87� macroscopic cleavage, shown by black dashed lines (modified after
Nespolo et al., 1999). (online version in colour)
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about this oxygen allow the structure to respond to the
variations in the external conditions (temperature, pres-
sure) and to adapt to the presence of cations of different
size.

Figure 2 emphasizes the effect of the relative rotations of
the tetrahedral chains on the size of the M2 site, which
decreases from PP to PN to NN configuration (P for posi-
tive, N for negative, meaning the same or opposite orienta-
tion of the triangular bases of the tetrahedra with respect to
the triangular faces of the octahedra with which the chains
share one of their basal oxygen atoms). The chains are
shown in their extreme configuration, corresponding to a
120�O3-O3-O3 angle, which is hardly realized in any
experimental conditions; depending on the experimental
conditions the angle varies between 120� and 180�.

The general formula of pyroxenes, [6–8]X[6]Y[4]Z2O6,
allows for a wide range of compositions. The digit in
square brackets gives the coordination number; X repre-
sents the cations entering in the M2 site, whose coordina-
tion number depends on the P or N rotations of the
tetrahedral chains and on the O3-O3-O3 angle, Y are the
cations occupying the M1 site, and Z are the cations in the
tetrahedra. Accordingly, a general composition scheme for
most of the naturally occurring pyroxenes can be repre-
sented as follows (Morimoto et al., 1988):

� ferromagnesian pyroxenes, X¼Y¼ (MgwFe1-w)0.95-1
Ca0-0.05, Z ¼ Si; end-members are enstatite (w ¼ 1)
and ferrosilite (w ¼ 0);
� calcic pyroxenes, X ¼ Ca; end-members are diop-
side (Y¼Mg, Z¼ Si), hedenbergite (Y¼ Fe2þ, Z¼
Si), johannsenite (Y ¼ Mn2þ, Z ¼ Si), petedunnite
(Y ¼ Zn, Z ¼ Si), esseneite (Y ¼ Fe3þ, Z ¼ Al,Si);
� pyroxenes of intermediate composition: X ¼
Caw(Mg,Fe)1-w, Y ¼ (Mg,Fe): pigeonites (0.05 � w
� 0.2), augites (0.2 � w � 0.45);
� sodic pyroxenes, NaMFeSi2O6, M¼ Al (jadeite), Fe
(aegirine), Cr (kosmochlor), Sc (jervisite);
� lithium-pyroxenes: spodumene, LiAlSi2O6.

A wide range of solid solutions exist among several of
the end-members, and the same term is often used to
indicate both the end-member and a composition range
including it. For example, the term ‘‘enstatite’’ can be
used to indicate the pure end-member Mg2Si2O6 or the
compositional field defined by Mg2Si2O6, Mg1.95Ca0.05
Si2O6, MgFeSi2O6 and Mg0.975Fe0.975Ca0.05Si2O6.
Similarly, jadeite can indicate, besides the end-member,
the composition field (NaxCa1-x)(AlyFe1-y)Si2O6 with 0 �
x� 0.2 and 0� y� 0.5, and aegirine the composition field
corresponding to the same formula but with 0.5 � y � 1.
For 0.2� x� 0.8 the terms omphacite and aegirine-augite
are used for 0 � y � 0.5 and 0.5 � y � 1 respectively.
Unless specified otherwise, when a term can indicate an
end-member or a solid solution, in the following we make
reference to the former.

We are interested in the structure relations among the
various pyroxenes; therefore we largely make abstraction
from the chemical composition but rather consider the
spatial position of atoms with the same type of coordina-
tion. The chemical nature of those atoms leads to small
differences in the cell parameters and fractional coordi-
nates but this has no influence on the structural relations,
which correspond to polymorphism when the chemistry is
the same. For example, (ortho)enstatite and clinoenstatite
are clearly polymorphs when they have the same composi-
tion, but not when they represent different points in the
composition range of enstatite. In the following we impli-
citly assume the same composition when speaking of
polymorphism.

Pyroxenes occur in various space-group types:

� Pbca, for orthorhombic pyroxenes (enstatite and fer-
rosilite with calcium content lower than 0.05 per
formula unit);
� Pbcn, or ‘‘protopyroxenes’’, occurring for the com-
position of enstatite or very close to it;
� P21cn, reported in a series of high-pressure experi-
ments on (Mg1.54Li0.23Sc0.23)Si2O6 with protopyrox-
ene structure (Yang et al., 1999);
� P21/c, for clinopyroxenes in the compositional field
of enstatite–ferrosilite and of pigeonites (low-
temperature);
� C2/c, for clinopyroxenes in the compositional field
of augites, omphacites (high-temperature), pigeo-
nites (high-temperature), sodic-pyroxenes, spodu-
mene, as well as high-temperature phase of
enstatite–ferrosilite;
� P2/n, in the compositional field of omphacites (low-
temperature).

The tetrahedral chains have configuration PP in augites,
high-temperature clinopyroxenes; PN in orthopyroxenes
and low-temperature clinopyroxenes; NN in protopyrox-
enes and spodumene (Griffen, 1992). The NN configura-
tion corresponds to the smallest M2 site and is realized for
small cations, like lithium in spodumene andmagnesium in
proto-enstatite. The latter however exists only at high

Fig. 2. The size of the M2 site decreases for tetrahedral chain
configuration moving from PP (C2/c pyroxenes with the exception
of spodumene; omphacites, augites), to PN (orthopyroxenes, low-
clinoenstatite) to NN (protopyroxenes, spodumene) configuration.
The chains are shown in their extreme configuration, corresponding
to a 120� O3-O3-O3 angle, but this is hardly realized in any experi-
mental condition, the actual angle depending on the conditions and
being intermediate between 120� and 180� (modified after Cameron
& Papike, 1981). (online version in colour)
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temperature and low pressure, conditions favouring an
increase in the size of theM2 site due to thermal expansion.

Because enstatite occurs in all the space-group types
mentioned above but P2/n, in the following we take it as
representative and analyse the structure of the enstatite
(pure end-member Mg2SiO6) polymorphs. The structures
of the other pyroxenes are then obtained by replacing
the atoms in enstatite by different species, allowing
small relaxations which take into account the difference
in the atomic dimensions. Concretely, we will use the
following terminology, widely present in the literature,
although not all these terms correspond to accepted
mineral names.

� high-clinoenstatite, space-group type C2/c; it occurs
in two variants, one at high-pressure, unquenchable,
and the other at high-temperature, quenchable, the
two being possibly related by a first-order phase
transition (Shimobayashi et al., 1998); the crystal
structure of the high-temperature high-clinoenstatite
was reported by Yoshiasa et al. (2013), with cell
parameters a ¼ 9.5387 Å, b ¼ 8.6601 Å, c ¼
5.2620 Å, b ¼ 108.71�; the high-pressure phase is
unquenchable, but the corresponding phase in ferro-
silite is stable: we use its coordinates (Hugh-Jones
et al., 1994) and confirm the close similarity of the
two structures;
� low-clinoenstatite, stable at ambient conditions,
crystallizing in a space group of type P21/c; the
crystal structure was reported more than once, here
we make reference to Ohashi (1984), who reported
cell parameters a ¼ 9.606 Å, b ¼ 8.8131 Å, c ¼
5.170 Å, b ¼ 108.35�.
� orthoenstatite, stable at ambient conditions, crystal-
lizing in a space group of type Pbca; here we make
reference again to Ohashi (1984), who reported cell
parameters a¼ 18.225 Å, b¼ 8.8128 Å, c¼ 5.180 Å;

� protoenstatite, stable at high temperature and low
pressure, not quenchable, crystallizing in a space
group of type Pbcn; here we make reference to the
structure reported by Yang & Ghose (1995) in a high-
temperature (1360 K) experiment, who found cell
parameters a ¼ 9.306 Å, b ¼ 8.886 Å, c ¼ 5.360 Å.

The P21cn structure reported by Yang et al. (1999) is
simply a distortion of the protopyroxene structure; each of
the Si and O atomic positions in Pbcn are split into pairs
obtained by the inversion lost in the phase transition fol-
lowed by a small relaxation (maximal deviation for the O3
oxygen atom, which is the bridge between two tetrahedra
in a chain). The structure is thus still pseudo-symmetric
with respect to the parent phase and does not need to be
considered separately.

In the official nomenclature of pyroxenes (Morimoto
et al., 1988) the two orthorhombic polymorphs are differ-
entiated as enstatite-Pbca and enstatite-Pbcn, respectively.
However, the terms used widely in the literature are

orthoenstatite and protoenstatite. In the same way, the
two monoclinic polymorphs are not listed under separate
mineral names, yet the terms ‘‘high-’’ and ‘‘low-’’ clino-
enstatite are widespread in the literature. In the following,
in the need to clearly differentiate these four polymorphs of
enstatite, we stick to their names widely used in the
literature.

The relation between the cell parameters of the
clino- and orthoenstatite was given by Ito (1935):
aortho ¼ 2aclino � cclino, b and c being in common. This
applied to the axial setting chosen by Warren & Modell
(1930), with acute monoclinic angle. Modern reports give
an obtuse angle so that the transformation becomes
aortho¼ 2aclino þ cclino (Sadanaga et al., 1969). If we apply
this transformation to the low-clinoenstatite cell para-
meters given above, we obtain a ¼ 18.2562 Å, b ¼
8.8131 Å, c ¼ 5.170 Å, b ¼ 92.76�, which are close to
the cell parameters of the orthoenstatite. To be noted that
the b angle deviates slightly from 90� so that the above
transformation leads to a pseudo-orthorhombic cell.

The high and low clinoenstatite show a group-sub-
group relation and are related by a displacive phase
transition. The space group of the low-clinoenstatite is
a klassengleiche subgroup of that of the high-clinoensta-
tite: the geometric crystal class is the same, but half of
the symmetry operations are lost in the transition (all
those generated by the C centring translation).
Consequently, in this phase transition antiphase domains
but no twin domains could arise. Antiphase domain
boundaries have indeed been observed by electron
microscopy following the C2/c to P21/c transition from
high- to low-pigeonite, which is isostructural to enstatite
(Shimobayashi, 1992). The phase transition from proto-
enstatite to low-clinoenstatite is of martensitic type
(Smyth, 1974; Boysen et al., 1991) and allow twins but
not antiphase domains. No direct phase transition is
observed between ortho- and low-clino enstatite, both
being the product of transition from protoenstatite,
favoured by the absence (ortho) or presence (clino)
of shear stress, respectively (Smyth, 1974). The corre-
sponding space-group types, Pbca and P21/c, are not in
group-subgroup relation. Pbcn and Pbca are not in a
group-subgroup relation either but the corresponding
phases (proto- and orthoenstatite) are related by a phase
transition. A structural relation between proto- and
orthoenstatite can be found only through an intermediate
common subgroup or supergroup: the transformation is
much more sluggish than the proto- to clino and the
high-clino to low-clino transitions and needs slow cool-
ing rates to produce ordered orthoenstatite from proto-
enstatite (Boysen et al., 1991), which is indicative of a
reconstructive phase transition.

In general, the same scheme of phase transitions holds
for ferrosilite, the iron-counterpart of enstatite, with the
difference that at low pressure the pyroxene structure is
unstable and decomposes in olivine and quartz (Lindsley,
1980).

4 M. Nespolo, M. I. Aroyo PrePub Article
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3. The fundamental pyroxene module

First of all, we note (Table 1) that the structure of low-
clinoenstatite reported by Ohashi (1984) in P21/c is pseu-
dosymmetric with respect to C2/c (axial settings related by
an origin shift 1=41=40). The atomic displacements necessary
to acquire the higher space-group symmetry vary from
0.1706 Å for Mg to 0.5599 Å for two of the six oxygen
atoms (the pseudo-symmetry analysis is performed with
the PSEUDO routine at the Bilbao Crystallographic
Server: Capillas et al., 2011). The low-clinoenstatite struc-
ture idealized to C2/c symmetry is very close to the high-
clinoenstatite structure experimentally determined by
Yoshiasa et al. (2013; with respect to the published coor-
dinates, we use the equivalent description obtained by
shifting the origin 1=2 along a, which is one of the opera-
tions in the Euclidean normalizer of C2/c2).

In the following we use the idealized structure of the
low-clinoenstatite in the P21/c setting: unless specified
otherwise, this is the structural model we refer to when
saying simply ‘‘clinoenstatite’’. Half of this structure is the
fundamental pyroxene module; the operations repeating
this module according to the clino-, proto- and ortho ensta-
tite topology give the idealized structures of the corre-
sponding polymorphs; the real structures are then seen as
a desymmetrization (relaxation) of the structures obtained
in this way.

Table 2 shows the fractional atomic coordinates in the
whole unit cell of clinoenstatite in the P21/c axial set-
ting. Atoms are arranged so that those in first module
occupy the first four columns and those in the second
module are in the second four columns and are obtained
from the previous ones by the transformation x,y,z ! x
þ 1=2,y þ 1=2,z. The structure can thus be ideally divided
into two modules having their boundary at x ¼ 1=2. The
operation mapping a module onto the next one is a
translation by half of the a parameter of the unit cell
(a full module translation along a) and a half-translation
along b, with no change along c Fig. 3. This module
corresponds to what Ito (1950) called ‘‘a submultiple of
the original unit cell’’. Given the monoclinic angle of
about 108�, the mapping of two adjacent modules cor-
responds to a constant stacking of the module along a,
in agreement with the þþ sequence given by Brown
et al. (1961).

Either of the two modules with x coordinate in the two
intervals a/2 apart can be taken as fundamental module.
We choose the one with x coordinate between 1=2 and 1,
which correspond to the x coordinate between 1=4 and 1=2 in
the cell of orthoenstatite used by Ohashi (1984). In the
following, we use this module to build up the model struc-
tures of the other polymorphs: the comparison with the
experimental coordinates will show how close these mod-
els are to the real structures.

Table 1. Atomic coordinates of low-clinoenstatite taken from Ohashi (1984) (structure in P21/c), idealized to the C2/c supergroup of high-
clinoenstatite but still described in the subgroup (idealized structure in the setting of P21/c) and the corresponding description in the
supergroup (idealized structure in the setting of C2/c). The atomic coordinates in the HT high-clinoenstatite show a close similarity with
those of the idealized low-clinoenstatite (pairs of oxygen orbits in P21/c coalesce to single orbits inC2/c). An origin shift of 1=41=40 relates the
settings of P21/c and of C2/c. The HP high-clinoenstatite being unquenchable, the structure of the high-clinoferrosilite, a stable phase
occurring in the phase diagram of ferrosilite, is used instead.

Structure in P21/c Idealized structure in the setting of P21/c

Atomic
site

Wyckoff
position x y z x y z

Displacement
(Å)

Mg 1 4e 0.25111 0.65330 0.21770 1=4 0.65330 1=4 0.1706
Mg 2 4e 0.25581 0.01312 0.21460 1=4 0.01312 1=4 0.2075
Si A 4e 0.04331 0.34088 0.29449 0.04835 0.33903 0.26228 0.1882
Si B 4e 0.55339 0.83718 0.23007 0.54835 0.83903 0.26228 0.1882
O 1A 4e 0.86670 0.33960 0.18510 0.87145 0.33975 0.15490 0.1759
O 1B 4e 0.37620 0.83990 0.12470 0.37145 0.83975 0.15490 0.1759
O 2A 4e 0.12280 0.50090 0.32180 0.12840 0.49170 0.35545 0.1840
O 2B 4e 0.63400 0.98250 0.38910 0.62840 0.99170 0.35545 0.1840
O 3A 4e 0.10660 0.27950 0.61530 0.10595 0.23685 0.53465 0.5599
O 3B 4e 0.60530 0.69420 0.45400 0.60595 0.73685 0.53465 0.5599

Idealized structure in the setting of C2/c
High-clinoenstatite
(Yoshiasa et al., 2013)

High-ferrosilite
(Hugh-Jones et al., 1994)

Atomic
site

Wyckoff
position x y z x y z x y z

Mg 1 4e 1=2 0.90330 1=4 1=2 0.90420 1=4 1=2 0.90540 1=4
Mg 2 4e 1=2 0.26312 1=4 1=2 0.28560 1=4 1=2 0.27121 1=4
Si 8f 0.29835 0.58903 0.26228 0.29223 0.59198 0.2457 0.2988 0.5882 0.2225
O 1 8f 0.12145 0.58975 0.15490 0.1130 0.5828 0.1380 0.126 0.595 0.154
O 2 8f 0.37840 0.74170 0.35545 0.3636 0.7577 0.3179 0.377 0.733 0.373
O 3 8f 0.35595 0.48685 0.53465 0.3543 0.4935 0.5280 0.352 0.553 0.934

PrePub Article The modular structure of pyroxenes 5
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4. The modular structure of protoenstatite

The structure of protoenstatite was indicated as þ� by
Brown et al. (1961), i.e. obtained from the fundamental
pyroxene module through one cell-twinning operation
about a plane at the boundary of the module. The unit
cell of protoenstatite has half the period along a with
respect to that of orthoenstatite so that the metric transfor-
mation is aproto ¼ aclino þ 1=2cclino. If we apply this trans-
formation to the low-clinoenstatite cell parameters given
above, we obtain a¼ 9.1281 Å, b¼ 8.8131 Å, c¼ 5.170 Å,
b ¼ 92.760�, which are close to the cell parameters of the
protoenstatite - a ¼ 9.306 Å, b ¼ 8.886, c ¼ 5.36 Å (Yang
& Ghose, 1995). The b angle deviates from 90�, which
means that the cell-twinned clinoenstatite is only pseudo-
orthorhombic. Besides the metric transformation, we need
a shift of the origin to move the fundamental pyroxene
module in a position matching half of the structure of
protoenstatite. There is however no group-subgroup rela-
tion between Pbcn (protoenstatite) and P21/c (clinoensta-
tite) compatible with the metric relation between the unit

cells of the two polymorphs so that the shift of the origin to
obtain a comparable description of the two models (cell-
twinned clinoenstatite and protoenstatite) is not known a
priori but can be found by moving the atoms of the clin-
oenstatite described in the pseudo-orthorhombic setting to
the corresponding positions in the protoenstatite setting.
With this constraint, the axial transformation becomes:

aproto ¼ aclino þ 1=2cclino;bproto ¼ bclino;

cortho ¼ cclino; origin shift 3=31=40

xproto ¼ xclino þ 3=4; yproto ¼ yclino þ 1=4;

zortho ¼ � 1=2xclino þ zclino � 3=8

(1)

A modular model of the protoenstatite can then be
obtained by cell-twinning of the clinoenstatite through
the following steps Fig. 4:

� The atomic coordinates of clinoenstatite are trans-
formed in a pseudo-orthorhombic setting through the
transformation in Eq. (1);
� the first module (þ) spans half of the structure and is
bounded at x ¼ 1=4 and is common to clino- and
protoenstatite;
� the second module (�) is obtained from the first
one by a (100) b-glide at x ¼ 1=4 in the pseudo-
orthorhombic setting.

The results are shown in Tables 3–4, where for each
of the two modules and for each atom in that module
the closest atom in the experimental structure of proto-
enstatite is listed next, followed by the absolute value
of the difference in the fractional coordinates (d). With
respect to the published coordinates, an alternative,
equivalent description of the experimental structure is
obtained by a 2-fold rotation about the [010] direction
and passing through the origin (coordinates transforma-
tion: xyz ! xyz), which is one of the operations

Table 2. Fractional coordinates of the idealized clinoenstatite structure in the whole monoclinic unit cell, P21/c setting. The structure of
clinoenstatite can be ideally divided into two modules having their boundary at x¼ 1=2: atoms with x , 1=2 have their corresponding atoms in
the second module related by the transformation x,y,z! x þ 1=2,y þ 1=2,z.

Mg2,Mg1 x 1/4 1/4 1/4 1/4 3/4 3/4 3/4 3/4
y 0.01312 0.6533 0.48688 0.8467 0.51312 0.1533 0.98688 0.3467
z 1/4 1/4 3/4 3/4 1/4 1/4 3/4 3/4

Si1,Si2 x 0.04835 0.04835 0.45165 0.45165 0.54835 0.54835 0.95165 0.95165
y 0.33903 0.16097 0.16097 0.33903 0.83903 0.66097 0.66097 0.83903
z 0.26228 0.76228 0.73772 0.23772 0.26228 0.76228 0.73772 0.23772

O3,O2 x 0.10595 0.10595 0.1284 0.1284 0.60595 0.60595 0.6284 0.6284
y 0.23685 0.26315 0.0083 0.4917 0.73685 0.76315 0.5083 0.9917
z 0.53465 0.03465 0.85545 0.35545 0.53465 0.03465 0.85545 0.35545

O1,O4 x 0.12855 0.12855 0.37145 0.37145 0.62855 0.62855 0.87145 0.87145
y 0.66025 0.83975 0.83975 0.66025 0.16025 0.33975 0.33975 0.16025
z 0.8451 0.3451 0.1549 0.6549 0.8451 0.3451 0.1549 0.6549

O5,O6 x 0.3716 0.3716 0.39405 0.39405 0.8716 0.8716 0.89405 0.89405
y 0.0083 0.4917 0.23685 0.26315 0.5083 0.9917 0.73685 0.76315
z 0.64455 0.14455 0.96535 0.46535 0.64455 0.14455 0.96535 0.46535

Fig. 3. Schematic view of the modular structure of clinoenstatite.
The structure-building operation (1=21=20) acts on the fundamental
module, of diperiodic symmetry P(1)2/c1 (notation after
Dornberger-Schiff, 1959), leading to a triperiodic structure of sym-
metryC2/c (Table 2). This can then be lowered to P21/c by distortion
(Table 1). (online version in colour)
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Fig. 4. Schematic view of the modular structure of protoenstatite. The structure-building operation is this time a (100) b-glide reflection at the
boundary of the fundamental module, i.e. at 1=4yz in the axial setting of protoenstatite (blue unit cell). The result is a triperiodic structure of
symmetry Pbcn (Tables 3 and 4). (online version in colour)

Table 3. Comparison of the fractional coordinates of the cell-twinned clinoenstatite and of the experimental protoenstatite structure in the
Pbcn setting. Starting module with �0.25 � x � 0.25. Differences in the fractional coordinates (d) are given as absolute values.

Clino Proto d Clino Proto d Clino Proto d Clino Proto d

Mg x 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000
y 0.9033 0.8997 0.00360 0.0967 0.1003 0.00360 0.26312 0.2621 0.00102 0.73688 0.7379 0.00102
z 0.75 0.75 0.00000 0.25 0.25 0.00000 0.75 0.75 0.00000 0.25 0.25 0.00000

Si x �0.20165 �0.2072 0.00555 �0.20165 �0.2072 0.00555 0.20165 0.2072 0.00555 0.20165 0.2072 0.00555
y 0.58903 0.5901 0.00107 0.41097 0.4099 0.00107 0.58903 0.5901 0.00107 0.41097 0.4099 0.00107
z 0.863105 0.9258 0.06270 0.363105 0.4258 0.06270 0.636895 0.5742 0.06270 0.136895 0.0742 0.06270

O x �0.12145 �0.1184 0.00305 �0.12145 �0.1184 0.00305 �0.1216 �0.1225 0.00090 �0.1216 �0.1225 0.00090
y 0.91025 0.9053 0.00495 0.08975 0.0947 0.00495 0.7417 0.7454 0.00370 0.2583 0.2546 0.00370
z 0.405825 0.4207 0.01488 0.905825 0.9207 0.01488 0.91625 0.9328 0.01655 0.41625 0.4328 0.01655

O x �0.14405 �0.1511 0.00705 �0.14405 �0.1511 0.00705 0.12145 0.1184 0.00305 0.12145 0.1184 0.00305
y 0.48685 0.5153 0.02845 0.51315 0.4847 0.02845 0.08975 0.0947 0.00495 0.91025 0.9053 0.00495
z 0.106675 0.1929 0.08623 0.606675 0.6929 0.08623 0.594175 0.5793 0.01488 0.094175 0.0793 0.01488

O x 0.1216 0.1225 0.00090 0.1216 0.1225 0.00090 0.14405 0.1511 0.00705 0.14405 0.1511 0.00705
y 0.2583 0.2546 0.00370 0.7417 0.7454 0.00370 0.51315 0.4847 0.02845 0.48685 0.5153 0.02845
z 0.08375 0.0672 0.01655 0.58375 0.5672 0.01655 0.893325 0.8071 0.08623 0.393325 0.3071 0.08623

Table 4. Comparison of the fractional coordinates of the cell-twinned clinoenstatite and of the experimental protoenstatite structure in the
Pbcn setting. Module with 0.25 � x � 0.75 obtained from the starting module through a (100) b-glide at x ¼ 0.25. Differences in the
fractional coordinates (d) are given as absolute values.

Clino Proto d Clino Proto d Clino Proto d Clino Proto d

Mg x 0.5 0.5 0.00000 0.5 0.5 0.00000 0.5 0.5 0.00000 0.5 0.5 0.00000
y 0.4033 0.3997 0.00360 0.5967 0.6003 0.00360 0.76312 0.7621 0.00102 0.23688 0.2379 0.00102
z 0.75 0.75 0.00000 0.25 0.25 0.00000 0.75 0.75 0.00000 0.25 0.25 0.00000

Si x 0.70165 0.7072 0.00555 0.70165 0.7072 0.00555 0.29835 0.2928 0.00555 0.29835 0.2928 0.00555
y 0.08903 0.0901 0.00107 0.91097 0.9099 0.00107 0.08903 0.0901 0.00107 0.91097 0.9099 0.00107
z 0.863105 0.9258 0.06270 0.363105 0.4258 0.06270 0.636895 0.5742 0.06270 0.136895 0.0742 0.06270

O x 0.62145 0.6184 0.00305 0.62145 0.6184 0.00305 0.6216 0.6225 0.00090 0.6216 0.6225 0.00090
y 0.41025 0.4053 0.00495 0.58975 0.5947 0.00495 0.2417 0.2454 0.00370 0.7583 0.7546 0.00370
z 0.405825 0.4207 0.01488 0.905825 0.9207 0.01488 0.91625 0.9328 0.01655 0.41625 0.4328 0.01655

O x 0.64405 0.6511 0.00705 0.64405 0.6511 0.00705 0.37855 0.3816 0.00305 0.37855 0.3816 0.00305
y 0.98685 1.0153 0.02845 0.01315 0.0153 0.02845 0.58975 0.5947 0.00495 0.41025 0.4053 0.00495
z 0.106675 0.1929 0.08623 0.606675 0.6929 0.08623 0.594175 0.5793 0.01488 0.094175 0.0793 0.01488

O x 0.3784 0.3775 0.00090 0.3784 0.3775 0.00090 0.35595 0.3489 0.00705 0.35595 0.3489 0.00705
y 0.7583 0.7546 0.00370 0.2417 0.2454 0.00370 0.01315 �0.0153 0.02845 0.98685 1.0153 0.02845
z 0.08375 0.0672 0.01655 0.58375 0.5672 0.01655 0.893325 0.8071 0.08623 0.393325 0.3071 0.08623
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obtained by decomposing the Euclidean normaliser of
Pbcn with respect to the group. A simple inspection of
the results shows the close similarity between the
model obtained by cell-twinning of the monoclinic
module and the experimental structure. The fact that
Mg atoms show two sets of four equal d values is not
accidental: it is a consequence of the distribution of the
Mg atoms in two orbits in Pbcn, each of them of
multiplicity 4. Similarly, Si and O atoms show sets of
eight equal d values, as the Wyckoff positions they
occupy have multiplicity eight. When taking into
account the metric differences between the pseudo-
orthorhombic cell of the model and the experimental
orthorhombic cell, the degree of lattice distortion is
0.0117, the maximum distance of paired atoms is
0.5313 Å, the arithmetic mean is 0.2401 Å and the
measure of similarity is 0.064.

5. The modular structure of orthoenstatite

The structure of orthoenstatite was indicated as þþ––
by Brown et al. (1961); Ohashi (1984) gave the position
of the glide planes transforming the clinoenstatite to
orthoenstatite at 1=4 and 3=4 of a axis of the orthorhombic
unit cell.

The axial transformation given by Ito, and the corre-
sponding one from the monoclinic cell with obtuse mono-
clinic angle, have been reported above but the origin shift
was not determined. To compare the atomic coordinates
and find this origin shift it is useful to pass through an
intermediate transformation via a monoclinic cell with
doubled a parameter, which will be indicated a ‘‘clino2’’
below. The axial setting and coordinate transformations
are as follows Fig. 5:

aortho ¼ 2aclino þ cclino;bortho ¼ bclino;

cortho ¼ cclino; origin shift 1=200

xortho ¼ 1=2xclino � 1=4; yortho ¼ yclino;

zortho ¼ � 1=2xclino þ zclino þ 1=4

(2a)

aortho ¼ aclino2 þ cclino2;bortho ¼ bclino2;

cortho ¼ cclino2; origin shift 1=400

xortho ¼ xclino2 � 1=4; yortho ¼ yclino2;

zortho ¼ � 1=2xclino2 þ zclino2 þ 1=4

(2b)

The change of the origin (1=2 along the a of the original
monoclinic unit cell, or 1=4 along the a of the doubled unit
cell) is added for compatibility with the group-subgroup
relation Pbca to P21/c between ortho- and clinoenstatite.

Fig. 5. Schematic view of the modular structure of orthoenstatite. (Top) Two structure-building operations act alternatively, which are the
same resulting in the clino- and protoenstatite when acting separately. The translation becomes (1=41=20) when expressed in the 18Å unit cell.
The result is a triperiodic structure of symmetry Pbca (blue unit cell) (Tables 5–8). (Bottom) The same result is obtained starting from a
module corresponding to a unit cell of the high-clinoenstatite (i.e. obtained by the first structure-building operation), of diperiodic symmetry
C(1)2/c1, acting with a (100) b-glide reflection at 1=4yz in the axial setting of orthoenstatite. This is the easiest way to find the global and
partial operations by a groupoid analysis, as shown in section 7.3. (online version in colour)
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Such a transformation brings the atoms in the first module
to coincide approximatively with one fourth of the atoms in
the structure of orthoenstatite (Table 5).

A structural model for orthoenstatite can then be
obtained by composing four modules in the following way:

� the first module (Table 5) is the one located between
x ¼ 1=4 and x ¼ 1=2 in the ‘‘clino2’’ cell, with coordi-
nates transformed in the pseudo-orthorhombic set-
ting according to Eq. (2b);
� the second module (Table 6) is obtained by the
(1=41=20) translation in the ‘‘clino2’’ cell, followed
by a change of coordinates to the pseudo-orthorhom-
bic setting according to Eq. (2b);
� the third module (Table 7) is obtained from the
second one by a (100) b-glide at x ¼ 3=4 in the
pseudo-orthorhombic setting;

� the fourth module (Table 8) is obtained from the first
one by a (100) b-glide at x ¼ 1=4 in the pseudo-
orthorhombic setting.

The results in Tables 5–8 compare the model and experi-
mental structure of orthoenstatite (Ohashi, 1984) with the
same presentation seen in Tables 3–4 for protoenstatite.
Here again, by simple inspection the close similarity
between the model obtained by cell-twinning of the mono-
clinic module and the experimental structure is evident. All
atoms show two sets of eight equal d values, which reflects
the multiplicity of the general Wyckoff position (8c) in
Pbca. When taking into account the metric differences
between the pseudo-orthorhombic cell obtained by cell-
twinning of clinoenstatite and the orthorhombic cell of
protoenstatite, the degree of lattice distortion is 0.114, the

Table 5. Comparison of the fractional coordinates of the cell-twinned clinoenstatite and of the experimental orthoenstatite structure in the
Pbca setting. Starting module with 0.25 � x � 0.5 with coordinates transformed to the pseudoorthorhombic setting according to Eq. (2b).
Differences in the fractional coordinates (d) are given as absolute values.

Clino Ortho d Clino Ortho d Clino Ortho d Clino Ortho d

Mg x 0.375 0.37584 0.00084 0.375 0.37584 0.00084 0.375 0.37677 0.00177 0.375 0.37677 0.00177
y 0.6533 0.65383 0.00053 0.8467 0.84617 0.00053 0.01312 0.01313 0.00001 0.48688 0.48687 0.00001
z 0.875 0.866 0.00900 0.375 0.366 0.00900 0.875 0.8589 0.01610 0.375 0.3589 0.01610

Si x 0.274175 0.27173 0.00244 0.274175 0.27173 0.00244 0.475825 0.47353 0.00229 0.475825 0.47353 0.00229
y 0.33903 0.34155 0.00252 0.16097 0.15845 0.00252 0.33903 0.33739 0.00164 0.16097 0.16261 0.00164
z 0.011895 0.0505 0.06240 0.488105 0.5505 0.06240 0.761895 0.798 0.03611 0.261895 0.298 0.03611

O x 0.314275 0.31657 0.00230 0.314275 0.31657 0.00230 0.3142 0.31106 0.00314 0.3142 0.31106 0.00314
y 0.66025 0.6602 0.00005 0.83975 0.8398 0.00005 0.4917 0.5023 0.01060 1.0083 0.9977 0.01060
z 0.530825 0.5347 0.00387 0.030825 0.0347 0.00387 0.04125 0.0433 0.00205 0.54125 0.5433 0.00205

O x 0.302975 0.30322 0.00025 0.302975 0.30322 0.00025 0.435725 0.43757 0.00185 0.435725 0.43757 0.00185
y 0.23685 0.27738 0.04045 0.26315 0.2227 0.04045 0.83975 0.8402 0.00045 0.66025 0.6598 0.00045
z 0.231675 0.3311 0.09943 0.731675 0.8311 0.09943 0.719175 0.6999 0.01928 0.219175 0.1999 0.01928

O x 0.4358 0.43258 0.00322 0.4358 0.43258 0.00322 0.447025 0.44742 0.00040 0.447025 0.44742 0.00040
y 0.0083 0.0173 0.00900 0.4917 0.4827 0.00900 0.26315 0.3048 0.04165 0.23685 0.1952 0.04165
z 0.20875 0.1895 0.01925 0.70875 0.6895 0.01925 0.018325 0.1039 0.08558 0.518325 0.6039 0.08558

Table 6. Comparison of the fractional coordinates of the cell-twinned clinoenstatite and of the experimental orthoenstatite structure in the
Pbca setting. Module with 0.5 � x � 0.75 obtained from the starting module through (1=41=20) translation in the monoclinic cell. Resulting
coordinates transformed to the pseudoorthorhombic setting according to Eq. (2b). Differences in the fractional coordinates (d) are given as
absolute values.

Clino Ortho d Clino Ortho d Clino Ortho d Clino Ortho d

Mg x 0.625 0.62416 0.00084 0.625 0.62416 0.00084 0.625 0.62323 0.00177 0.625 0.62323 0.00177
y 0.1533 0.15383 0.00053 0.3467 0.34617 0.00053 0.51312 0.51313 0.00001 0.98688 0.98687 0.00001
z 0.625 0.634 0.00900 0.125 0.134 0.00900 0.625 0.6411 0.01610 0.125 0.1411 0.01610

Si x 0.524175 0.52647 0.00229 0.524175 0.52647 0.00229 0.725825 0.72827 0.00245 0.725825 0.72827 0.00245
y 0.83903 0.83739 0.00164 0.66097 0.66261 0.00164 0.83903 0.84155 0.00252 0.66097 0.65845 0.00252
z 0.738105 0.702 0.03611 0.238105 0.202 0.03611 0.511895 0.4495 0.06240 1.011895 0.9495 0.06240

O x 0.564275 0.56243 0.00184 0.564275 0.56243 0.00184 0.5642 0.56742 0.00322 0.5642 0.56742 0.00322
y 0.16025 0.1598 0.00045 0.33975 0.3402 0.00045 0.9917 0.9827 0.00900 0.5083 0.5173 0.00900
z 0.280825 0.3001 0.01928 0.780825 0.8001 0.01928 0.79125 0.8105 0.01925 0.29125 0.3105 0.01925

O x 0.552975 0.55258 0.00039 0.552975 0.55258 0.00039 0.685725 0.68343 0.00229 0.685725 0.68343 0.00229
y 0.73685 0.6952 0.04165 0.76315 0.8048 0.04165 0.33975 0.3398 0.00005 0.16025 0.1602 0.00005
z 0.981675 0.8961 0.08558 0.481675 0.3961 0.08558 0.469175 0.4653 0.00388 0.969175 0.9653 0.00388

O x 0.6858 0.68894 0.00314 0.6858 0.68894 0.00314 0.697025 0.69678 0.00024 0.697025 0.69678 0.00024
y 0.5083 0.4977 0.01060 0.0083 0.0023 0.01060 0.76315 0.7227 0.04045 0.73685 0.7773 0.04045
z 0.95875 0.9567 0.00205 0.45875 0.4567 0.00205 0.768325 0.6689 0.09943 0.268325 0.1689 0.09943
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maximum distance of paired atoms is 0.5335 Å, the arith-
metic mean is 0.2403 Å and the measure of similarity is
0.064. We note that despite the different stability fields of
the two orthorhombic polymorphs, the degree of pseudo-
symmetry of the cell-twinned clinoenstatite model is prac-
tically the same.

6. The modular structure of the other
pyroxenes

The structures of the four polymorphs of enstatite can be
described as cell-twins of a common module. By making
abstraction from the chemical differences, the same con-
clusions can be applied to the whole solid solutions in the
enstatite-ferrosilite interval and to the other monoclinic
pyroxenes, which are isostructural with either low-

clinoenstatite (pigeonites) or high-clinoenstatite (augites,
jadeite, spodumene).

Omphacite crystallises in two polymorphs, with space-
group types C2/c at high temperature and P2/n, which is an
alternative setting of P2/c, at low temperature. The phase
transition from C/2c to P21/c or to P2/c leads to splitting of
the Wyckoff positions (Wondratschek, 1993), which
allows chemical ordering. This is not realised in clinoen-
statite, whereas the cations in the octahedral sites of
omphacite undergo ordering as a result of the phase transi-
tion and each of the two sites, M1 and M2, splits in two
subtypes which are then differently occupied in the low-
temperature omphacite.

Wemake reference to the structure of a low-temperature
titanian omphacite reported by Curtis et al. (1975), who
gave cell parameters a¼ 9.622 Å, b¼ 8.8825 Å, c¼ 5.279
Å, b ¼ 106.92�, comparable to those of clinoenstatite.

Table 7. Comparison of the fractional coordinates of the cell-twinned clinoenstatite and of the experimental orthoenstatite structure in the
Pbca setting. Module with 0.75 � x � 1.0 obtained from the previous module through a (100) b-glide at x ¼ 0.75. Differences in the
fractional coordinates (d) are given as absolute values.

Clino Ortho d Clino Ortho d Clino Ortho d Clino Ortho d

Mg x 0.875 0.87584 0.00084 0.875 0.87584 0.00084 0.875 0.87677 0.00177 0.875 0.87677 0.00177
y 0.6533 0.65383 0.00053 0.8467 0.84617 0.00053 0.01312 0.01313 0.00001 0.48688 0.48687 0.00001
z 0.625 0.634 0.00900 0.125 0.134 0.00900 0.625 0.6411 0.01610 0.125 0.1411 0.01610

Si x 0.975825 0.97353 0.00229 0.975825 0.97353 0.00229 0.774175 0.77173 0.00245 0.774175 0.77173 0.00245
y 0.33903 0.33739 0.00164 0.16097 0.16261 0.00164 0.33903 0.34155 0.00252 0.16097 0.15845 0.00252
z 0.738105 0.702 0.03611 0.238105 0.202 0.03611 0.511895 0.4495 0.06240 1.011895 0.9495 0.06240

O x 0.935725 0.93757 0.00185 0.935725 0.93757 0.00185 0.9358 0.93258 0.00322 0.9358 0.93258 0.00322
y 0.66025 0.6598 0.00045 0.83975 0.8402 0.00045 0.4917 0.4827 0.00900 0.0083 0.0173 0.00900
z 0.280825 0.3001 0.01928 0.780825 0.8001 0.01928 0.79125 0.8105 0.01925 0.29125 0.3105 0.01925

O x 0.947025 0.94742 0.00040 0.947025 0.94742 0.00040 0.814275 0.81657 0.00229 0.814275 0.81657 0.00229
y 0.23685 0.1952 0.04165 0.26315 0.3048 0.04165 0.83975 0.8398 0.00005 0.66025 0.6602 0.00005
z 0.981675 0.8961 0.08558 0.481675 0.3961 0.08558 0.469175 0.4653 0.00388 0.969175 0.9653 0.00388

O x 0.8142 0.81106 0.00314 0.8142 0.81106 0.00314 0.802975 0.80322 0.00025 0.802975 0.80322 0.00025
y 1.0083 0.9977 0.01060 0.4917 0.5023 0.01060 0.26315 0.2227 0.04045 0.23685 0.2773 0.04045
z 0.95875 0.9567 0.00205 0.45875 0.4567 0.00205 0.768325 0.6689 0.09943 0.268325 0.1689 0.09943

Table 8. Comparison of the fractional coordinates of the cell-twinned clinoenstatite and of the experimental orthoenstatite structure in the
Pbca setting. Module with 0 � � � 0.25 obtained from the starting module through a (100) b-glide at �E ¼ 0.25. Differences in the
fractional coordinates (d) are given as absolute values.

Clino Ortho d Clino Ortho d Clino Ortho d Clino Ortho d

Mg x 0.125 0.12416 0.00084 0.125 0.12416 0.00084 0.125 0.12323 0.00177 0.125 0.12323 0.00177
y 0.1533 0.15383 0.00053 0.3467 0.34617 0.00053 0.51312 0.51313 0.00001 0.98688 0.98687 0.00001
z 0.875 0.866 0.00900 0.375 0.366 0.00900 0.875 0.8589 0.01610 0.375 0.3589 0.01610

Si x 0.225825 0.22827 0.00245 0.225825 0.22827 0.00245 0.024175 0.02647 0.00229 0.024175 0.02647 0.00230
y 0.83903 0.84155 0.00252 0.66097 0.65845 0.00252 0.83903 0.83739 0.00164 0.66097 0.66261 0.00164
z 0.988105 0.0505 0.93761 0.488105 0.5505 0.06240 0.761895 0.798 0.03611 0.261895 0.298 0.03611

O x 0.185725 0.18343 0.00230 0.185725 0.18343 0.00230 0.1858 0.18894 0.00314 0.1858 0.18894 0.00314
y 0.16025 0.1602 0.00005 0.33975 0.3398 0.00005 0.0083 0.0023 0.01060 0.5083 0.4977 0.01060
z 0.530825 0.5347 0.00387 0.030825 0.0347 0.00387 0.04125 0.0433 0.00205 0.54125 0.5433 0.00205

O x 0.197025 0.19678 0.00024 0.197025 0.19678 0.00024 0.064275 0.06243 0.00185 0.064275 0.06243 0.00185
y 0.73685 0.7773 0.04045 0.76315 0.7227 0.04045 0.33975 0.3402 0.00045 0.16025 0.1598 0.00045
z 0.231675 0.3311 0.09943 0.731675 0.8311 0.09943 0.719175 0.6999 0.01928 0.219175 0.1999 0.01928

O x 0.0642 0.06742 0.00322 0.0642 0.06742 0.00322 0.052975 0.05258 0.00039 0.052975 0.05258 0.00039
y 0.5083 0.5173 0.00900 0.9917 0.9827 0.00900 0.76315 0.8048 0.04165 0.73685 0.6952 0.04165
z 0.20875 0.1895 0.01925 0.70875 0.6895 0.01925 0.018325 0.1039 0.08558 0.518325 0.6039 0.08558
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Table 9 is obtained in the same way as Table 1 for clin-
oenstatite, i.e. by small displacement of atomic positions to
reach the positions of the idealized structure in the C2/c
supergroup. This requires ignoring the chemical difference
in the M sites, which actually lead to the splitting of the
Wyckoff positions and are responsible for the lower sym-
metry. For the ease of comparison, the last column repeats
the corresponding coordinates of the idealized clinoensta-
tite: the close similarity is evident at a glance. From the
idealized clinoenstatite model in the C2/c supergroup one
gets the P21/c structure of low-clinoenstatite by small
atomic displacements, and the P2/n structure of omphacite
by chemical ordering, with some small relaxation in the
coordinates; the cell-twinning operation building the struc-
tural model of the two pyroxenes from the fundamental
module is however the same.

7. Groupoid analysis of pyroxenes

A detailed and updated presentation of crystallographic
space groupoids is beyond the scope of this article and
will be presented elsewhere. Nevertheless, because the
research on space groupoids in crystallography took its
origin precisely with Ito’s pioneer studies on pyroxenes,
our presentation of the modular structure of these minerals
would be incomplete without an update on this subject.

A structure composed by identical substructures
requires three types of operations for its full description:

(1) local operations: these are the symmetry opera-
tions of the substructure and act only in the sub-
space spanned by the substructure;

(2) partial operations: these are operations mapping
different substructures; a given partial operation is
in general defined only for the pair of substruc-
tures to which it applies;

(3) total (global) operations: these are ordinary
space-group operations valid in the whole space
spanned by the structure.

The set of local operations forms a group, called the
kernel of the substructure, which is necessarily a subper-
iodic group because the substructure does not span the
whole crystal space. In the ordinary three-dimensional
space, the kernel can be diperiodic (a layer group), mono-
periodic (a rod group) or non-periodic (a point group). A
structure composed by n identical substructures is charac-
terized by n kernels, isomorphic to each other, differing for
their orientation and/or position in space. The set of partial
operations, instead, does not form a group but a set called
the hull.

By taking one substructure as reference – let it be S0 – its
kernel will be indicated as K0 and the hull as H0. If hj is one
partial operation mapping Sj to S0, the product K0hj is the
whole set of partial operations mapping these two sub-
structures: in fact, the composition of a partial operation
with the set of the local operations of the targetT
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substructure gives the whole set of mappings from Sj to S0.
The hull can therefore be written as the set of K0hj for all
possible j.

By adjoining the kernel and the hull one obtains what
Loewy (1927) has called Mischgruppe, a term which can
be translated as hybrid group (Sadanaga, personal commu-
nication) or compound group (Brown, 1987), although it is
not a group but a set of operations.

M0 ¼ K0 [ H0 ¼ K0 [j K0hj

The kernel Kj of the j-th substructure Sj is obtained by
conjugating K0 with hj:

Kj ¼ h�1j K0hj

This expression is the composition of the mapping
Sj ! S0 with the whole set of local operations of S0
and with the opposite mapping S0 ! Sj. If this is
extended to different elements of the hull, say hj and
hm, one gets the mapping from Sj to Sm via S0:

h�1m K0hj: Sj ! S0 ! Sm

Finally, the complete set of all the mappings obtained in
this way gives the space groupoid D of the structure:

D ¼ [i Mi ¼ [ijh�1i K0hj

whose structure can be shown in a tabular form3:

where the diagonal terms Kj are the kernels obtained by
conjugation (Sadanaga, 1978; Sadanaga et al., 1980). The
set-theoretical union of the hulls of the nþ 1 hybrid groups
constitutes the hull of the groupoid.

In the case of pyroxenes, the partial operations are
translations (clinoenstatite), (100) b-glides (protoenstatite)
or a combination of the two (orthoenstatite), producing
what Ito (1950) called echelon gliding in the clinoenstatite,
alternate gliding in the protoenstatite and complex gliding
in the orthoenstatite.

The fundamental pyroxene module is obtained by
taking half of the idealized clinoenstatite structure
(obtained from the fractional coordinates in Table 1),
for example with 0 � x � 0.5, doubling the x frac-
tional coordinate to simulate a fictitious structure
composed by only one module. The corresponding
space group is compatible with a space group of
type P2/c. Accordingly, the kernel of the fundamental
pyroxene module is P(1)2/c1 (notation after
Dornberger-Schiff, 1959; p2/b11–No. 16 - in volume
E of the International Tables for Crystallography:
Kopský & Litvin, 2010), which is a diperiodic group

because the module is a layer lacking periodicity
along the a direction.

7.1. Groupoid analysis of clinoenstatite

The groupoid of clinoenstatite is obtained by the set-theo-
retical union of the hybrid groups, the hull of each being
generated by a single cell-twinning operation, t(1=21=20), in
the monoclinic setting:

Note that t�1(1=21=20) occurs in the first line of the group-
oid, because the set of operations P(1)2/c1 t�1(1=21=20)
relates the second module to the first. Since t(1=21=20)
gives the opposite relation and since the operations are
applied from the left, the partial operation is here
t�1(1=21=20). The second diagonal term is the kernel of the
second module. The conjugation of P(1)2/c1 with t(1=21=20)
gives back P(1)2/c1 with a shift of the origin by a full
translation along a of the unit cell of clinoenstatite.

The operations of a kernel are local operation of a single
module N. A subset of these operations may however also

act as mappings of modulesNþ j and N – j located on both
sides sides of N. In other words, these local operations of
the modules become total operations of the structure. This
is true at least for the identity operations of each module,
which become the only identity operation of the whole
structure. In the case of clinoenstatite, this happens for
the whole set of operations of the kernels, which are pro-
moted to total operations of the structure, restoring the
periodicity of two modules along a and forming a space
group of type P2/c.

The extra-diagonal terms represent the hull of each
hybrid group building the groupoid. In the first line we
find the mapping of the second layer to the first; in the
second line, we find the opposite mapping, of the first layer
to the second. In this special, simple case, the partial
operations are identical: indeed, the inverse of a translation
by half the period along a lattice direction is again a
translation by half the period along the same lattice direc-
tion. As a consequence, also the partial operations are
active in the whole crystal space and are thus promoted
to total operations. The final result is that the whole set of
the operations of the groupoid is promoted to total

M0 ¼ K0 [ K0h1 [ K0hi2 [ . . . [ K0hp [ . . . [ K0hn
M1 ¼ h1

�1K0 K1 [ h1
�1K0h2 [ . . . [ h1

�1K0hp [ . . . [ h1
�1K0hn

M2 ¼ h2
�1K0 [ h2

�1K0h1 K2 [ . . . [ h2
�1K0hp [ . . . [ h2

�1K0hn
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mn ¼ hn

�1K0 [ hn
�1K0h1 [ hn

�1K0h2 [ . . . [ hn
�1K0hp [ . . . [ Kn

P(1)2/c1 P(1)2/c1 t�1(1=21=20)

t(1=21=20)P(1)2/c1 t(1=21=20)P(1)2/c1 t�1(1=21=20)
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operations, i.e. the groupoid degenerates into a group. This
is just the extension of the P2/c by t(1=21=20), which is a C-
centring. The result is C2/c, which is precisely the space-
group type of clinoenstatite.

7.2. Groupoid analysis of protoenstatite

Similarly to the case of clinoenstatite, the groupoid of
protoenstatite is composed of two hybrid groups, each
obtained by adding to the kernel the hull generated by a
single cell-twinning operation, this time a (100) b-glide
located at x ¼ 1=4 in the orthorhombic setting (the partial
operation is indicated below through its Seitz symbol:
Glazer et al., 2014):

As in the case of clinoenstatite, conjugation of P(1)2/c1
with the partial operation, this time {m100|..0}, gives back
P(1)2/c1 and the local operations of the two modules in the
protoenstatite structure are again promoted to total opera-
tion, leading to P2/c.

As in the case of clinoenstatite, the two extra-diagonal
terms give the same result, a set of four operations: b-glide
reflection at x ¼ 1=4, n-glide reflection at z ¼ 1=4, twofold
screw rotation at y ¼ 1=4 and z ¼ 0 and another twofold
screw rotation at x ¼ 1=4 and y ¼ 1=4. These, together with
the kernels, give Pbcn, i.e. the space-group type of proto-
enstatite. Here again, the whole set of partial and local
operations is promoted to total operation and the groupoid
degenerates to a group.

7.3. Groupoid analysis of orthoenstatite

The structure of orthoenstatite can be described as built
from the fundamental pyroxene module with three partial
operations: a translation by a vector t(1=41=20) (in the
‘‘clino2’’ setting), and two (100) b-glide reflections at
x ¼ 1=4 and x ¼ 3=4. The first partial operation, t(1=41=20),
leads to a double module whose width is twice that of the
fundamental module and coincides with the full unit cell of
clinoenstatite. The structure of orthoenstatite can thus also
be described as built by this double module, cell-twinned
on (100), which makes the groupoid analysis simpler. The
kernels of the two identical substructures are obviously
C(1)2/c1. The groupoid is thus:

When expressed in the axial setting of the pseudo-
orthorhombic unit cell, half of the translations along the
orthorhombic a direction are lost so that only the

operations of a klassengleiche subgroup of C(1)2/c1
remain in the supercell. This leads to two possibilities,
either P(1)21/c1 or P(1)2/c1, both compatible with the
axial transformation 2aþ c,b,c but with a shift of the origin
by 1=41=40 for the former. However, we have adopted a
description of clinoenstatite in the setting of P21/c, which
also implies a shift of the origin by 1=41=40 with respect to
C2/c (Table 1). As a consequence, the axial relation in Eq.
(2b) is compatible with P(1)21/c1 so that the local opera-
tions of the modules promoted to total operations of the
structure form a group of type P21/c. The extra-diagonal
elements of the groupoid include each eight operations
about geometric elements within the unit cell; of these
four are common to the hulls of both hybrid groups (b-
glide reflection at x ¼ 1=4, a-glide reflection at z ¼ 1=4,
twofold screw rotation at x ¼ 1=4 and y ¼ 0 and another
twofold screw rotation at y¼ 1=4 and z¼ 1=4), which are the
cell-twin operations given by Ohashi (1984) in his Table
10, while the other four are not common to both hulls, i.e.
they are not promoted to total operations. The set-theore-
tical union of the intersection of the kernels and of the four
total operations in the hull of the groupoid gives Pbca,
which is precisely the space-group type of orthoenstatite.

8. Discussion

The modular interpretation of the pyroxene structure shows
that, making abstraction from the chemical differences and
the small deviations from the idealized coordinates, pyrox-
enes polymorphs can be considered as polytypes. An OD
interpretation was proposed by Sedlacek et al. (1979) based
on the choice of two kinds of layers. The choice of OD
layers is in general not unique (Grell, 1984). We have
shown that the structures of pyroxenes can be described as
based on a single common module. The partial operations
relating successive layers are cell-twin operations, i.e.
operations that map the same module in the different posi-
tions and orientations it takes in the structure. Cell-twins
have been classified as follows (Nespolo et al., 2004):

� polytypes, where the configuration at the interface is
not modified;
� chemical twins, where the configuration at the inter-
face is modified, subdivided in:

* isochemical, without modification of the
chemistry at the interface;

* heterochemical, where the chemical variation
observed in the final structure derives from the
creation or annihilation of coordination poly-
hedra at the boundary between two modules

Takéuchi (1997) gathered polytypes and isochemical
chemical twins into a single category called Ito twins,
term he used to indicate what Sadanaga (1978) had called
polysynthetic structures. On the basis of the nature of the
partial operations, this identification does not seem
justified.4

P(1)2/c1 P(1)2/c1{m100|1=21=20}
�1

{m100|1=21=20}P(1)2/c1 {m100|1=21=20}P(1)2/c1{m100|1=21=20}
�1

C(1)2/c1 C(1)2/c1 {m100|1=21=20}
�1

m100|1=21=20} C(1)2/c1 {m100|1=21=20} C(1)2/c1 {m 100|1=21=20}
�1
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Partial operations can be divided in two types:

(1) ordinary space group operations, not valid every-
where in the crystal space;

(2) operations for which the order of the correspond-
ing point group operation is not an integer multi-
ple of the order of the corresponding screw or
glide translation.

The partial operations building the structures of pyrox-
enes from the fundamental module are precisely of the first
type. A space groupoid which contains only this type of
partial operations corresponds to what Ito (1938, 1950), in
his investigation of pyroxenes, has called a ‘‘twinned space
group’’ and the set of partial operations is Ito’s ‘‘twinning
group’’. Sadanaga (1978) defined polysynthetic structures
precisely in this way and identified Ito’s ‘‘twinning group’’
with the set-theoretical union of the groupoid hull with the
identity operation; this is correct provided that the opera-
tions in the hull are combined up to closure.

Operations of the second type above can be exemplified
by the well-known hcp stacking of spheres. Beyond the
space group operations relating the pair of hexagonal
layers, partial operations do exist with unconventional
translation parts, like a three-fold axis parallel to the hex-
agonal [001] direction but with a screw component of 1=2,
relating an A and a B sphere. These partial operations do
not form an ordinary space group. Sadanaga (1978) called
‘‘polytypism groupoid’’ the set of partial operations, to
extend Ito’s scheme based on the definition of a ‘‘twinning
group’’. Clearly, polytypes are a larger category including
polysynthetic structures as a special case. As a conse-
quence, either Takéuchi’s Ito twins are a much larger
category than the polysynthetic structures which were the
object of Ito’s investigation, spanning both polytypes and
isochemical chemical twins, as in the classification above;
or, if the term has to be used as synonym of polysynthetic
structures, the taxonomy proposed by Nespolo et al. (2004)
should be slightly modified to fit the category of polytypes.
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Notes
1. Pyroxenes with one or two types of tetrahedral chains are termed

‘‘high pyroxenes’’ and ‘‘low pyroxenes’’, respectively, in the
OD theory (Sedlacek et al., 1979).

2. In general, the same crystal structure has more than one equiva-
lent description with respect to the same setting and origin of the
space group. The various descriptions are related by the opera-
tions obtained by coset decomposition of the Euclidean nor-
maliser with respect to the space group. For details, see Koch
et al. (2005).

3. Sadanaga (1978) and Sadanaga et al. (1980) used the letter M to
indicate the groupoid, without giving a specific label to the
hybrid group. On the other hand, Sadanaga (1963) used Mi (M

for Mischgruppe) to indicate the hybrid group of the substruc-
ture Sj and D for the groupoid. We follow this older but more
complete notation.

4. Let us remind that a symmetry operation can be represented in a
matrix-column form, where the matrix (linear part) corresponds
to a point group operation and the column (translation part)
gives the translation, including in general an intrinsic compo-
nent (the screw or glide component) and a localisation compo-
nent, related to the position of the symmetry element with
respect to the origin of the unit cell.
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Kopský, V. & Litvin, D. B. (2010): International tables for crystal-

lography volume E: subperiodic groups. Dordrecht/Boston/

London, Wiley.

Lindsley, D.H. (1980): Phase equilibria of pyroxenes at pressures

. 1 atmosphere. Rev. Miner., 7, 309–339.
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1, S. Merlino, ed. Eötvös University Press, Budapest, 315–343.

Morimoto, N., Fabries, J., Ferguson, A.K., Ginzburg, I.V., Ross, M.,

Seifert, F.A., Zussman, J., Aoki, K., Gottardi, G. (1988):

Nomenclature of pyroxenes. Am Mineral., 73, 1123–1133.
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