когда нарушения — неупорядоченность относится уже не к отдельным атомам или ионам, а к их совокупности, т.е. когда имеет место неупорядоченность блоков решетки, ее прерывность, т.е. наличие кристаллитов, - упорядоченных "внутри" участков, связанных посредством сброса, шаг которого равен дробной величине трансляции.

Поэтому, нередко, величина степени дисперсности служит мерилом кристалличности; для дифракционных методов значительное уменьшение величины кристаллитов способствует размыванию контуров дифракционных пиков в результате невозможности усреднения по всему объему кристаллической решетки. Таким образом, в понижении кристалличности, т.е. в нарушении, главным образом, дальнего порядка заключена основная причина снижения чувствительности для дифракционных методов.

ЛИТЕРАТУРА

- 1.Юм-Розери В., Рейнор Г.В. Структура металлов и сплавов. - Изд-во Иностр. лит., М., 1959.
- 2. Darvin C.J. Phil. Mag., 1914, 27, 675.
- 3. Darvin C.J. Phil. Mag., 1922, 43, 800. 4. Bragg W.L., Darvin C.J., Yames R.W. Phil. Mag., 1926, 1, 897.
- 5. Murata K.Y., Norman M.B. An Index of cristallinity for Quarz. - Amer. Journ. Sci., 1976, v. 276, N 9, 1120.
- 6.Плюснина И.И. Исследование структурной неупорядоченности халцедона методом ин-

фракрасной спектроскопии. - ДАН СССР, 1978, т. 240, № 4, 839.

- 7. Яковлева М.Е., Свешникова О.Л., Бут Т.С. О рентгеновской диагностики кварца и халцедона. – Тр. Мин. Музея АН СССР, 1975, вып. 25, с. 234-237.
- 8. Kuellmer F.J., Poe T.J. The quarz-cristoba-lite transformations. J. Amer. Ceram. Soc., 1964, vol. 47, p. 311.
- 9. Barret C.S. Symposium on Imperfections in Nearly Perfect Crystals. 1952, vol. 97, N4.

УЛК 548.736.6

З.П. РАЗМАНОВА, В.А. КОРНЕТОВА, М.Н. ШИПКО, Н.В. БЕЛОВ УТОЧНЕНИЕ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ ЖЕЛЕЗИСТОГО УВИТА, ОПРЕДЕЛЕНИЕ ЗАСЕЛЕННОСТИ ЕЕ ПОЗИЦИЙ

В общирной группе турмалина с общей формулой: $XY_{3}Z_{6}Si_{6}O_{18}$ (BO₃)₃ (OH)₁₊₃ к настоящему времени четко обозначаются следующие типы: тип шерла, "ferric iron", бюргерита, эльбаита, увита [1]. Среди увитов, т.е. Са-содержащих турмалинов¹, формула которых по Кунитцу [3] $CaMg_3$ (Mg, Al₅) (Si₆O₁₈) (BO₃)₃ (OH)₁₊₃, обращает на себя внимание (помимо магнодравита) группа железосодержащих кальциевых турмалинов, в которых всегда наблюдается дефицит Al в позиции Z, и место Mg в этой же позиции занимает Fe как двухвалентное [4], так и трехвалентное.

Турмалины этой группы обладают специфическими типоморфными особенностями. Они обычно встречаются либо на контактах пегматитов с карбонатными породами (Похабиха, Забайкалье [5]) или в боромагнезиальных скарнах [6]. Для них характерна очень темная окраска и густые цвета плеохроизма [5]. Для турмалинов из магнезиальных скарнов, откуда происходит и исследуемый нами турмалин, характерны короткостолбчатый облик, интенсивно черный цвет, который в тонких сколах меняется на темно-зеленовато-синий. У представителей этой группы турмалинов всегда заметно увеличен параметр с элементарной ячейки [1], и они, будучи сильно кальцийсодержащими, могут обнаруживать дефицит Al в позиции Z до двух формульных единиц. В отличие от турмалина, описанного Фронделем, так называемого ferric iron [7], наш турмалин не только высококальциевый, но в нем дефицит Al в позиции Z восполняется еще и двухвалентным и трехвалентным железом.

¹ Недавно описанный, богатый Са лиддикоатит относится к типу эльбаита [2].

Таблица 1

Железистый увит. Анали	з заселенностей позиций	Y, Z катионами,
опреде	ленные методами РСА	

Струк-		Расстояния он-анион	Расстояния кати- он-анион			R _{hkl} изо-
турная пози- ция	Заселенности позиций	Средние по поли- эдрам	Суммы ионных радиу- сов	Bj	анизо- тропное уточне- ние	троп- ное уточ- нение
	I Bar	і мант				
X	$(Na_{a}, K_{a}, Ca_{a}, Ca_{a})$	2,645	2,58?**			
Y	$(Ca_{0,1}, Mg_{2,40}, Fe_{2,4}^{2+}, Ti_{0,0,4})_{3}$	2,049	2,09	0,37	0.040	0.049
Ζ	$(Fe_{0}^{2+}, Fe_{0}^{3+}, Al_{5,00})_{5,98}$	1,936	1,91	1,09	0,040	0,048
	II вај	риант				
Y	$(Fe^{2+}, Fe^{3+}, Mg,, Ti,)$	2,050	2,07	0,37	0.027	0.045
Z	$(Ca_{0}, Fe_{2}^{2+}, Fe_{2}^{2+}, Al_{2}, a)$	1,936	1,91	1,06	0,037	0,045
	III ва	риант				
V	$(\mathbf{F}a^{2+} \mathbf{M}a \mathbf{E}a^{3+} \mathbf{T}i)$	2 050	2.06	0.59		
Z	$(\mathbf{F}_{0}, \mathbf{G}_{3}, \mathbf{M}_{2}, \mathbf{G}_{3}, \mathbf{F}_{0}, \mathbf{G}_{3}, \mathbf{F}_{1}, \mathbf{G}_{0}, \mathbf{G}_{3}, \mathbf{G}_{1}, G$	1,937	1.92	0.94	0,033	0,041
-	(Ca _{0,11} , Co _{,33} , Co _{,34} , Co _{,20} , Ci _{5,00} , S _{,98}		-,	-,		
	IV Ba	риант				Ъ,
Y	$(Fe_{0}^{2+}3 Fe_{0}^{3+}5 Mg_{2,1} Ti_{0,04})_{3}$	2,051	2,05	0,75	0,029	0,038
L	$(Ca_{0,11}Fe_{0,17}Fe_{0,33}Mg_{0,37}Al_{5,00})_{5,98}$	1,930	1,95	0,00		
	V ва	риант				
Y	$(\mathrm{Fe}_{0}^{3+}_{67}\mathrm{Fe}_{0}^{2+}_{33}\mathrm{Mg}_{196}\mathrm{Ti}_{0004})_{3}$	2,051	2,04	0,91	0.027	0.036
Ζ	$(Ca_{0,11}Fe_{0,33}^{2+}Mg_{0,54}Al_{5,00})_{5,98}$	1,936	1,93	0,78	-,	0,000
	VI ва	риант				
Y	$(Fe_{0,6,7}^{3+}Fe_{0,4,8}^{2+}Mg_{1,6,0}Ti_{0,0,4})_{3}$	2,051	2,03	1,05	0.028	0.027
Ζ	$(Ca_{0,11} Fe_{0,17}^{2+} Mg_{0,70} Al_{5,00})_{5,98}$	1,935	1,93	0,67	0,020	0,057
	VII B	ариант				
Y	$(Fe^{3+}, Fe^{2+}, Mg^{-}, Ti^{-})$	2,051	2,03	1,05	0.021	0.010
Ζ	$(Ca_{0}, 6, 7, 2, 6, 6, 6, 6, 8, 1, 6, 3, 2, 6, 6, 4, 7, 3, 1, 6, 6, 7, 1, 6, 6, 7, 1, 6, 7, 1, 6, 7, 1, 6, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$	1,935	1,94	0,56	0,031	0,040
	VIII B	ариант				
Y	$(Fe^{3+}, Fe^{2+}, M\sigma, Ti)$	2.050	2.06	0.47		
Z	$(C_{a},, Fe^{3+}, Fe^{3+}, Mg,, Al,)$	1,937	1,91	1.02	0,036	0,042
	IX Ba	риант				
Y	$(Ee^{3+} Ee^{2+} Ma$ (c Ti)	2 050	2.06	0.53		
Z	$(Fe_{0,22}Fe_{0,33}Mg_{2,30}Ca_{0,11}H_{0,04})_3$ $(Fe^{2+}Fe^{3+}Mg_{1,11}Mg_{1,0})$	1 936	1.91	0.99	0,035	0,043
	(1 0,331 0,45 WE0,20 A15,00 / 5,98	1,200	1,71	0,75		

Структуры многих представителей группы турмалина уже прецизионно изучены. Самой первой была изучена структура дравита [8], затем шерла [9], бюргерита [10], эльбаита [11, 12], обычно, богатого Mg увита [13]. В настоящей работе этот список дополнен данными по уточнению кристаллической структуры ранее не изученного железного увита. Целью изучения было не только получение точной информации о координатах, межатомных расстояний, валентных углах и тепловых параметрах колебания атомов (табл. 1–5), но также анализ по данным РСА и мессбауэровской спектроскопии сложной системы замещений изоморфными атомами структурных положений Y, Z исследуемого турмалина.

Атомы и число их в ячейке	x/a	У/Ъ	z/0	Bj		
X ¹ (3)	0	0	0,8700(3)	1,43 (4)		
$Y^{1}(9)$	0,0619(1)	-x	0,4586 (2)	0,91(2)		
$Z^{1}(18)$	0,2617(1)	0,2980(1)	0,4811(6)	0,78(2)		
Si (18)	0,1900(1)	0,1919(1)	0,0933(6)	0,62(2)		
B (9)	0,8902(1)	-x	0,6417(8)	0,63 (8)		
O*(3)	0	0	0,3158(8)	1,05 (3)		
O ₂ (9)	0,9395 (2)	- <i>x</i>	0,6186 (5)	1,04 (7)		
O ₃ (9)	0,1330(2)	-x	0,5830(5)	1,10(7)		
O ₄ (9)	0,9079(2)	- <i>x</i>	0,0209(5)	1,02(7)		
O ₅ (9)	0,0908(2)	- <i>x</i>	0,0015 (5)	1,00(7)		
O ₆ (18)	0,1867(2)	0,1956 (2)	0,3148(3)	0,88(5)		
O ₇ (18)	0,2840(2)	0,2847(2)	0,0135 (3)	0,92(5)		
O ₈ (18)	0,2699(2)	0,2090(2)	0,6520(3)	1,02(5)		

Таблица 2 Координаты и изотропные тепловые параметры базисных атомов структуры железистого увита

* Атом О в группе ОН.

Примечание. ¹ $X = (Na_{0,11}K_{0,04}Ca_{0,85})_1$; $Y = (Mg_{1,96}Fe_{0,67}^{3+}Fe_{0,35}^{2+}Ti_{0,4})_3$; $Z = (Ca_{0,11}Mg_{0,54}Fe_{0,33}^{2+}Al_5)_{5,98}$.

Таблица 3

Анизотропные параметры *B*_{ij} тепловых колебаний атомов кристаллической структуры железистого увита

Атом	B 1 1	B 2 2	B 3 3	B 1 2	B 2 3	B 1 3
X1	0,00183(5)	0,00183 (5)	0,0071(2)	0,00183 (9)	0	0
Y^1	0,00097 (5)	0,00097(5)	0,0051(2)	0,00063 (9)	-0,0007(2)	0,0007(2)
Z^1	0,00106 (4)	0,00099(5)	0,0035(2)	0,00098(8)	0,0004 (2)	0,0001(2)
Si	0,00079(4)	0,00082(5)	0,0029(2)	0,00078(9)	0,0005(2)	0,0005 (2)
В	0,0007(1)	0,0007(1)	0,0038(5)	0,0007(2)	0,0002(4)	-0,0002(4)
0*	0,0013(1)	0,0013(1)	0,0061(5)	0,0013(2)	0	0
0,	0,0014(1)	0,0014(1)	0,0064 (5)	0,0020(2)	-0,0004(4)	0,0004 (4)
0,	0,0014(1)	0,0014(1)	0,0034 (5)	0,0007 (2)	0,0003 (4)	0,0003 (4)
0,	0,0011(1)	0,0011(1)	0,0047 (5)	0,0002(2)	0,0000(4)	0,0000(4)
0,	0,0011(1)	0,0011(1)	0,0050 (5)	0,0004 (2)	0,0004 (4)	0,0004 (4)
0,	0,0015(1)	0,0013(1)	0,0027 (5)	0,0015(2)	0,0005(4)	0,0009(4)
0,	0,0012(1)	0,0014(1)	0,0039(5)	0,0012(2)	0,0003 (4)	0,0008(4)
O ₈	0,0013 (1)	0,0008(1)	0,0068(5)	0,0010(2)	-0,0005(4)	-0,0010(4)
™*-е	см. примечание і	к табл. 2.				

Экспериментальные структурные факторы и параметры элементарной ячейки получены на автоматическом монокристальном дифрактометре CAD = 4F, сферический обр. r = 0.015 см, 843 | F| эксп. с $I \ge 2\sigma(I)$ 0.1 $\le \sin\theta/\lambda \le 1.18$ Å⁻¹, a = 15.979 (2), c = 7.222 (2) Å, $V_{элем. яч.} = 1596.9$ Å³, z = 3, пр. гр. R3m, Мо-излучение, $\mu r = 0.30, \mu = 19.9$ см⁻¹, $d_{\text{рентт.}} = 3.175$ г/см³.

Уточнение МНК кристаллической структуры железистого увита осуществлялось по программе [14] с введением поправок на поглощение и вторичную экстинкцию на изготовленном нами сферическом монокристалле. Исходными служили координаты атомов дравита [8], а исходный химический состав взят из [1].

Таблица 4

10

Межатомные расстояния (в А) и валентные углы (в градусах)	
для кристаллической структуры железистого увита	

Х-девяти	вершинник		Z-or	стаэдр		
3 X - 0.	2,470 (5)		Z = 0,	1,896 (4)		
$3 X - O_c$	2,686 (5)		$Z - O_{s}^{IV}$	1,904 (5)		
$3 X - 0_{A}$	2,772(5)		$Z - O_2^{IV}$	1,916 (5)		
Среднее	2,643		$Z - O_8$	1,936 (5)		
2.0 0'	2 000 (9)	71.9(2)	$Z = O_2^{V}$	1,969(5)		
$5 O_2 - O_2$	2,900(0)	71, 9(2)	$Z - O_3^{I}$	1,995 (6)		
$0 0_2 - 0_5$	2 024 (9)	705(2)	Среднее	1,936		
$5 0_2 - 0_4$	2 5 3 5 (6)	70,3(2) 55 3 (2)	0 -0 ^{IV}	2 795 (7)	94.7(3)	
$2 \circ 0^{IV}$	2,333(0)	1063(2)	$0_{6} - 0_{8}$	2,775(7)	90.9(2)	
$3 U_4 = U_4$	4,413(0)	76 1	$O_6 = O_8$	2,031(0)	92 1 (2)	
Среднее	5,215	70,1	$O_6 - O_7$	2,703(0)	83 5 (2)	
-	V OKTO		$O_{1}^{IV} - O_{3}^{IV}$	2,392(0)	96.0(2)	
	I OKIA:	μ	$O^{IV} - O^{V}$	2,000(0)	78.1(2)	
			$0^{IV} - 0'$	2,884(5)	95.4 (2)	
$Y - O_1$	2,000 (5)		$O_{i}^{IV} O_{i}$	2,439(7)	78.6 (2)	
$2 Y - O_6'$	2,021 (5)		$O'_{r} = O_{r}^{V}$	2,762 (6)	90,7 (2)	
$2 Y - O_2^{2}$	2,051 (5)		$\dot{0}_{-} = 0_{+}$	2,880(6)	94.8(2)	
$Y - O_3$	2,163 (6)		$0_{1} - 0_{2}^{V}$	2,903 (5)	96.0(2)	
Среднее	2,051		$0_{0} - 0_{1}'$	2,803 (7)	90,9 (2)	
$2 O_1 - O_6'$	3,057 (?)	99,0(2)	Срелнее	2.738	90,1	
$2 O_1 - O_2'''$	2,754 (7)	85,7(2)				
$O_{6} = O_{6}''$	2,841(5)	89,3 (2)		Si-T	етраэдр	
$2 O'_6 - O''_2$	2,883 (6)	90,1 (2)	-			
$2 O_6' - O_3$	2,592(6)	76,5 (2)	$Si - O_7$	1,600(4)		
$O_2^{\prime\prime\prime} - O_2^{\prime}$	2,900 (5)	90,0(2)	$Si - O_6$	1,603(6)		
$2 O_2'' - O_3'$	3,202 (8)	98,9(2)	$Si - O_4^{m}$	1,636 (5)		
Среднее	2,893	90,0	$Si - O'_s$	1,649 (4)		
-			Среднее	1,622		
	В-треугол	ьник	$0_{\pi} - 0_{4}$	2,639(5)	111,0(2)	
-			$0_{2} - 0_{1}^{'''}$	2,666 (7)	- 111,0 (3)	
$B - O_{2}$	1,374 (5)		$0_{2} - 0_{3}'$	2,677 (6)	111,0(3)	
$2 B - O''_{*}$	1.375 (4)		$0_{4} - 0_{4}^{'''}$	2,679(6)	111,6 (2)	
Среднее	1,375		$0_{6} - 0_{5}^{\prime}$	2,678(6)	110,9(2)	
20 0 "	2 299 (5)	1204(2)	0"' 0'	2 534 (3)	101 0(2)	
$2 O_2 - O_8$	2,300(3)	1186(2)	$O_4 = O_5$	2, 337 (3)	101, 0(2)	
$O_8 = O_8^{**}$	2,303(1)	110.0 (2)	Среднее	2,040	107,7	
Среднее	2,311	117,0				

Примечание. Одним штрихом обозначены атомы, полученные из базисных плоскостью $m(1 \ b)$, тремя штрихами — плоскостью $m(1 \ a)$. Двумя штрихами, а также римскими цифрами IV-VII обозначены атомы, преобразованные осями 3.

Параметры	Дублеты				
	Z	Y	Z	Y	
Квадрупольное расщепление Δ , мм/с	1,53	2,34	0,98	0,38	
Химический сдвиг б, мм/с	1,04	1,06	0,41	0,42	
Погрешность ± 0,04 мм/с					

Таблица 5 Параметры мессбауэрского спектра железистого увита

Заселенности катионных позиций Y, Z определялись методом проб и ошибок. На основе кристаллохимических соображений задавались составы позиций Y, Z и затем проводилось для каждого пробного варианта заселенности полное уточнение МНК (уточнение координат и анизотропных тепловых параметров колебаний атомов B_{ij}). Критериями правильности результата служили уменьшение фактора расходимости и близость экспериментальных средних по полиэдрам расстояний катион—анион к суммам средневзвещенных (с учетом состава позиций) эффективных ионных радиусов из [15]. При этом сохранялся неизменным общий химический состав [1]. В расчетах МНК для факторов атомного рассеяния использованы средние f-кривые для нейтральных атомов железа и др. [16]. Выбранный рентгеновский метод определения заселенностей трудоемок, однако дает надежные результаты.

Проанализированы 13 вариантов замещений изоморфными катионами позиций у и Z. Полученные результаты по заселенностям представлены в табл. 1 и на рис. 1, 2, из которых следует, что V вариант заселенностей является лучшим — ему соответствует низкий фактор расходимости $R_{hkl} = 0,027$ и удовлетворительное соответствие межатомных расстояний (табл. 1). Этот вариант характеризуется замещением одной единицы Al в позиции Z двухвалентными катионами Mg, Fe²⁺, Ca. В позиции Y находятся атомы Mg, Fe³⁺, Fe²⁺ и Ti. Состав позиции X не изменялся, так как X-девятивершинник структуры заполнен единственным образом наиболее крупными катионами [1]. Однако среднее по полиздру экспериментальное расстояние в X больше на 0,06 Å, чем соответствующая сумма ионных радиусов (см. табл. 1). Это, возможно, объясняется недостаточной точностью ионных радиусов Na и K с к.ч. = 9[15, с. 939].

Анализ результатов уточнений МНК показал, что уменьшение для варианта заселенностей V (по сравнению с I) достигнуто за счет изменения относительных координат атомов максимально до 2,7 σ и тепловых параметров колебаний атомов, изображенных на рис. 2. С увеличением полного содержания железа в позициях Y, Z изотропный температурный фактор D_j увеличивается, причем варианту заселенностей V соответствуют близкие значения B_i атомов в октаэдрах Y и Z.

Заключительные координаты (табл. 2), анизотропные тепловые параметры атомов B_{ij} (табл. 3), межатомные расстояния и валентные углы (см. табл. 4), величины и ориентация главных осей эллипсоидов тепловых колебаний определены из уточнения МНК со схемой заселенностей варианта V.

Дополнительно методом Мессбауэра было произведено определение валентности железа и распределения его по позициям Y и Z.

Рис. З мессбауэровского спектра железистого увита (при комнатной температуре) показывает, что он представляет собой суперпозицию нескольких дублетов от ионов Fe³⁺ и Fe²⁺, расположенных в неодинаковых кристаллографических позициях. Заметное уширение компонент дублетов свидетельствует о значительном структурном разупорядочении решетки турмалина.

Химический сдвиг дублетов Y и Z (табл. 5) указывает на то, что они обусловлены ионами Fe²⁺. Кроме того, низкое значение квадрупольного расщепления дублета Z

Рис. 1. Факторы расходимости R_{hkl} для анизотропного (I) и изотропного (II) уточнений МНК железистого увита в зависимости от содержания Fe в позициях Y (a) и Z (б) Точки на графиках соответствуют вариантам I-VII, крестики - VIII-X (табл. 1)

Рис. 2. Изотропные тепловые параметры колебания атомов В для структурных положений У, Z железистого увита для вариантов заселенностей позиций I-X (табл. 1)

Светлые кружки - варианты I-VII, темные - VIII-Х.

по сравнению с дублетом У указывает на то, что он обусловлен ионами Fe²⁺, локализованными в наиболее искаженных октаэдрических положениях¹.

В структуре турмалина наиболее высокая степень локального искажения координационного полиздра свойственна октаздрическим позициям, образуемым пятью атомами кислорода и группой ОН (Z-октаэдр). В свою очередь, дублет Y обусловлен ионами железа, расположенными в менее искаженных октаэдрических позициях (У-октаэдрах).

Из анализа интегральной интенсивности дублетов от ядер ионов, расположенных в У и Z позициях следует, что их заселенности ионами Fe²⁺ в пределах ошибки эксперимента одинаковы.

В соответствии с результатами работы [18] спектр от ионов Fe³⁺ был разложен на два дублета Y' и Z' (табл. 5). Величина квадрупольного расщепления дублета Z' указывает на то, что он обусловлен ядрами ионов Fe^{3+} , расположенных в сильно искаженных октаэдрических позициях (Z-октаэдрах)². В то же время дублет Y' характеризует-

ī Для силикатов с шестерной координацией ионов Fe²⁺ химический сдвиг и квадрупольное расщепление спектров уменьшается с увеличением степени искажения координационного полиэдра [17].

Квадрупольное расщепление спектров от ионов Fe³⁺ растет с увеличением степени искажения их локального окружения.

^{8.} Зак. 610

Рис. 3. Мессбауэровский спектр железистого увита

ся относительно малым значением величины Δ и его можно связать с ионами Fe³⁺, расположенными в Y-октаэдрах, причем в них находится в два раза меньшее количество ионов Fe³⁺ по сравнению с Z-октаэдрами.

Важной особенностью исследованного увита является высокий коэффициент окисления железа, составляющий 0,56±0,01 в результате чего в образце содержится 56% ионов Fe³⁺ от общего количества железа.

Таким образом, нами были изучены заселенности позиций У и Z тремя разными мето-

Таблица 6

Распределение разновалентного железа по позициям Y и Z в железистом увите, установленное тремя методами				
 Метод		Y	Z	
2		Fe ²⁺ _{0,35}	$Fe_{0,31}^{27}Fe_{0,67}^{3+}$	
б		Fe ²⁺ _{0,33} Fe ³⁺ _{0,67}	Fe ²⁺ _{0 33}	
B		Fe ³⁺ _{0,33} Fe ³⁺ _{0,22}	Fe ²⁺ _{0,33} Fe ³⁺ _{0,45}	

Таблица 7

Основные результаты баланса валентностей структуры железистого увита

Отношение кратностей	Анионы струк- туры	Валентные суммы на анионах для вариантов заселенностей позиций Y, (табл. 1)			
		I	Y	VIII**	tx I
1	0*	1,095	1,245	1,152	1,152
3	02	1,940	1,995	1,954	1,950
3	03**	1,124	1,108	1,115	1,118
3	0,	2,085	2,070	2,080	2,064
3	0,	1,982	1,997	2,002	1,987
6	0,	1,962	1,989	1,967	1,966
6	0,	2,044	2,009	2,032	2,046
6	O _B	2,016	1,977	2,003	2,006
	Συ	58,62	58;61	58,62	58,62
	$\Sigma \Delta v $	0,480	0,474	0,463	0,483
	Dв%	3,4	3,3	3,2	3,4
	AV Make/ 2 B %	6,2	12,3	7,6	7,6

* атом 0 в группе ОН. **'в вариантах VIII, IX одинаковое распределение Fe²⁺, Fe³⁺ по позициям *Y*, *Z*, определенное из спектров Мессбауэра (табл. 1).

Рис. 4. Проекция на плоскость(001)-каркаса кристаллической структуры турмалина

дами: а) методом пересчета химических анализов, который исходит из общих представлений об изоморфных замещениях; б) методом рентгено-структурного анализа (PCA), вариант V; в) методом Мёссбауэра. Результаты сведены в табл. 6.

Из изложенного следует вывод, что в железистом увите именно двухвалентное железо входит в позицию Z наряду с Mg, восполняя дефицит Al в этой позиции. Интересно также, что трехвалентное железо входит и в Y-октаэдры.

Примерно такую же картину в распределении разновалентных катионов железа по позициям Y и Z мы находим в работе Фортье и Донней [9], посвященную изучению Са-содержащего шерла Саксонии.

Увеличение размера параметра *c*, всегда наблюдавшееся в увитах [1], обусловлено замещением "маленького" иона Al ($r_{ион.} = 0,530$ Å) в *Z*-каркасе, на большие по размерам двухвалентные катионы Ca ($r_{ион.} = 1,00$), Mg ($r_{ион.} = 0,720$), Fe²⁺ ($r_{ион.} = 0,61$ Å) [15].

Хотя структура турмалина достаточно хорошо описана, мы приводим проекцию на плоскость (001)-каркаса из Z-октаэдров. В работах [21, 12] говорится обычно о "стержнях" и витых колонках из Z-октаэдров. Последние, однако, не являются изолированными, а объединяются в единый трехмерный каркас (рис. 4). Этот каркас увязывает между собой непрерывные дискретные "колонки" (параллельные поворотной оси третьего порядка) сложного состава и строения, состоящие из "антигоритовых островов" (Y-октаэдров), шестерных колец (S1₆O₁₈) и девятивершинников, которые дополнительно скрепляются В-треугольниками.

Балансы валентностей вычислены по методу [19] с учетом расстояний катионанион для крайних составов I, V, VIII, IX (см. табл. 1), валентные суммы из которых приведены в табл. 7; при расчетах использовались средние параметры *n* и средние (при гетерогенных замещениях) валентности катионов в позициях *X*, *Y*, *Z*.

- 1. Корнетова В.А. О классификации минералов группы турмалина. ЗВМО, 1975, ч. СІV, вып. 3, 532.
- Dunn P.J., Appleman D.E., Nelen J.E. Liddicoutite, a new calcium and member of the tourmaline group. – Amer. Miner., 1977, vol. 62, N 11/12, p. 1121.
- 3.Kunitz W. Die Mischungreihen in der Turmalingruppe und die genetischen Beziehungen zwischen Turmalin und Glimmern. – Chem. Erde, 1929, Bd. 4, H. 2.
- 4. Hermon E., Simkin D.J., Donnay G.H., Muir W.B. The distribution of Fe²⁺ and Fe³⁺ iron-bearing tourmalines: Mössbauer Study. – Tschermaks miner. und petrogr. Mitt., 1973, Bd. 19, H. 1/4, S. 124.
- 5. Яковлева М.Е., Осолодкина Г.А Турмалин. В кн.: Новые данные о минералах. М.: Наука, 1966, вып. 17.
- 6. Перцев Н.Н. Парагенезисы борных минералов в магнезиальных скарнах. М.: Наука, 1971.
- 7. Frondel C., Biedel A., Ito I. New type of ferric iron tourmaline. – Amer. Miner., 1966, vol. 51, N 9/10.
- Buerger M.J., Burnham M.W., Peacor D.R. Assessment of the several structures proposed for tourmaline. Acta crystallogr., 1962, vol. 15, N 6, p. 583.
- 9. Fortier S. V., Donnay G.H. Schorl refinement showing composition dependence of tourmaline structure. - Canad. Miner., 1975, vol. 13, N 2.
- Barton R. Refinement of the crystal structure of Buergerite and the absolute orientation of tourmalines. - Acta crystallogr. B, 1969, vol. 25, N 8, p. 1524.
- 11. Donnay G.H., Barton R. Refinement of the

crystal structure of Elbaite and the mechanism of tourmaline solid solution. - Tschermaks miner. und petrol. Mitt., 1972, Bd. 18, S. 273.

- 12. Горская М.Г., Франк-Каменецкая О.В., Рождественская И.В., Франк-Каменецкий В.А. Уточнение кристаллической структуры богатого Аl эльбаита и некоторые вопросы кристаллохимии турмалинов. – Кристаллография, 1982, т. 27, № 1, с. 107.
- Schmetzer K., Nuber B., Abraham K. Kristallchemie Magnesiumreicher Turmalin. – N.Jb. Miner. Abh., 1979, Bd. 136, S. 93.
- 14. Мурадян Л.А. Учет вторичной экстинкции и аномального рассеяния при уточнении атомной структуры кристаллов методом наименьших квадратов. 1974, ИКАН, вып.3.
- Shannon R.D., Prewitt C.T. Effective ionic radii in oxides, fluorides. – Acta crystallogr. B, 1969, vol. 25, N 5, p. 925.
- 16. International tables for X-ray crystallography. Birmingham: Kynoch press, 1952, vol. 1; 1974, vol. 4.
- 17. Бенкрофт Г., Меддок А., Барнс Р. Физика минералов. М.: Мир, 1979.
- 18. Korovushkin V.V., Kuzmin V.I., Belov V.F. Phys. and Chem. Miner., 1979, vol. 4, p. 209.
- 19. Пятенко Ю.А. Анализ локального баланса валентностей и надежность определения кристаллической структуры минералов. Исследования в области прикладной минералогии и кристаллографии. М., 1973. 51 с.
- 20.Zachariazen W.M. The crystal structure of monodinic metaboric acid. – Acta crystallogr., 1963, vol. 16, N 5, p. 385.
- 21. Белов Н.В. Очерки по структурной минералогии. М.: Недра, 1976. 75 с.

УДК 548.646.3

Г.Н. ТАРНОВСКИЙ, В.А. ШИРЯЕВА

АКВАМАРИН ИЗ ГИДРОТЕРМАЛИТОВ И ПЕГМАТИТОВ Восточной сибири

Берилл является обычным акцессорным, реже второстепенным породообразующим минералом редкометальных пегматитов.

Аквамарин — голубая, прозрачная, бесщелочная или с низким содержанием щелочей разновидность берилла, в пегматитах встречается весьма редко. Аквамарин описан из альбит-микроклиновых пегматитов Памира [1], а также из хрусталеносных пегматитов Сибири [2]. Находки аквамарина в редкометальных пегматитах неизвестны.

На одном из месторождений редкометальных пегматитов Восточной Сибири установлены поздние гидротермальные образования, выполняющие трещины в пегматитах. Мощность таких жил и прожилков колеблется в пределах 0,3-6 см; по простиранию они прослеживаются на расстояние до 5 м и, как правило, пересекают по всей мощности крупные жильные тела, сложенные среднезернистым сподумен-микроклиновым пегматитом.