ТРУДЫ МИНЕРАЛОГИЧЕСКОГО МУЗЕЯ им. А. Е. ФЕРСМАНА

Вып. 20

Ответственный редактор д-р геол.-мин. наук Г. П. Барсанов

1971

Я. Д. ГОТМАН, В. М. ПОЛЯКОВА, А. К. МИГУТА

НОВОЕ О БРАННЕРИТЕ И ПРОДУКТАХ ЕГО ОКИСЛЕНИЯ

За последние 10-15 лэт в литературе появилось много работ, посвященных титанатам урана и тория. Больчинство таких статей содержат данные о браннерите, который в некоторых промычленных месторождениях урана оказался основным рудным компонентом (Nuffield, 1954; Pabst, 1954; Hewett a.o., 1957; Повилайтис, 1963; и др.). Уайтл в Австралии обнаружил титанат урана с высоким содержанием тория, названный им абситом (Whittle, 1954). Я. Д. Готман (1958) описал титанат урана и тория-лодочникит и в том же году Я. Д. Готман и И. А. Хапаев (1958) опубликовали данные о титанате тория — торутите.

Титанаты урана и тория наиболее широко распространены в россыпях и конгломератах; причем генезис их в месторождениях конгломератового типа остается спорным. Титанаты эндогенного происхождения известны в виде акцессорных минералов в гранитах, образуют значительные концентрации в пегматитах и наблюдаются в гидротермальных жильных телах, чаще всего с кварцевым заполнением. Минеральные парагенезисы титанатов урана и тория таковы, что их формирование всегда связывалось с высокотемпературным процессом минералообразования.

В последние годы в одном из районов страны обнаружен титана урана, который по геологическим данным следует считать продуктом гидротермального процесса средних и низких температур. Этот минерал имеет много общего с минералами группы браннерита, объединенными М. М. Повилайтис (1963) в изоморфный ряд; однако, как будет видно из приведенных ниже данных, он встречается в своеобразной парагенетической ассоциации и характеризуется рядом специфических особенностей.

Условия нахождения. Минерал наблюдался в виде цемента брекчий метаморфических или гранитоидных пород; реже он образует нитевидные непротяженные прожилки. На ранних стадиях гидротермального минералообразования вмещающие породы претерпели метасоматические изменения, приведшие к формированию зон пирит-анкерит-адулярового состава. Последующие тектонические подвижки обусловили образование разнообломочных, чаще микрообломочных брекчий, где обломки в различной степени измененных пород цементируются титанатом урана, тесно ассоциирующим с пиритом и марказитом.

Обычно выделения минерала образуют сплошные массы, содержащае многочисленные мелкие включения вмещающих пород (рис. 1). Реже отмечаются призматически удлиненные кристаллы, размером до 0,08 мм (рис. 2). Местами наблюдаются переходы кристаллически зернистых выделений минерала в более крупные сплошные массы, кристаллическое

Рис. 1. Ераннерит, цементирующий микробрекчию (белос —пирит). Полир. шлиф, увел. 170

Рис. 2. Кристаллы браннерита. Полир. шлиф, увел. 450

Рис. 3. Кристаллически зернистые выделения браннерита, переходящие в сплошные массы. Полир. шлиф, увел. 200

строение которых не всегда различимо (рис. 3). Встречаются также выделения титаната урана в виде щеток кристаллов, нарастающих на стенки трещин, центральные части которых выполнены более поздней минерализацией — кварцем, флюоритом, кальцитом, пиритом.

Физические и химические свойства. Титанат урана имеет черный цвет, в порошке — темно-коричневый. При изменении минерала его окраска становится неоднородной: от коричневой разных оттенков до медовожелтой. Минерал хрупкий с сильным смолистым блеском и раковистым изломом. В некоторых случаях наблюдается пластинчатая, а иногда призматическая трещиноватость, по которой минерал легко крошится. Удельный вес минерала, определенный методом Василевского, 4,32. Он электромагнитен, неплавкий; при прокаливании теряет блеск и черную окраску, становится коричневым, а при температуре около 900° С — желто-зеленым. При дальнейшем нагревании снова приобретает черный цвет, но блеска не восстанавливает.

Титанат урана сильно радиоактивен; ни в длинных, ни в коротких ультрафиолетовых лучах не люминесцирует. Изотропен; в прозрачных шлифах черный, но в тонких сколах просвечивает густо-красным цветом. Показатель преломления 2,06 < n < 2,11. В отраженном свете имеет серую окраску; его отражательная способность колеблется от 13 до 15%. Микротвердость, определенная прибором МПТОС, 387 $\kappa \Gamma/mm^2$, что по шкале Мооса отвечает 5,1.

Парами плавиковой и концентрированной серной кислоты минерал не травится. В кислотах практически нерастворим. Переход его в раствор осуществляется путем предварительного сплавления минерала с K₂S₂O₇ или NaF. Взаимодействие раствора с H₂O₂ дает яркую реакцию на титан. Перлово-люминесцентным анализом в составе минерала обнаруживается значительное количество урана.

Химический состав ¹. Для изучения химического состава использовались прожилковые выделения минерала черной окраски. Материал тяжелой

¹ Химические анализы выполнены Н. Н. Кузнецовой, Е. Е. Левиной, Т. И. Столяровой.

Ta6anua 1

Опир	Зимр	II ₂ 0-	H ₂ O ⁺	K ₂ O	$\Lambda s_2 O_5$	P_2O_5	PbO	ThO ₂		TR_2O_3	(°U)	1102	Al_2O_3	11go	Man T	Fn ()	ZrO.,	SiO.	Nh ₂ O-	WO3	TiO_2	Компоненты		
-0,23	0,46	0,68	6,02	1,45	0,34	0,49	0,34	0,03	0,11	00,6	20,11	28,49	2,20	U, /3	1,38	1,02	1 00	10 50	- 1.0	9 50	26 1	Содер- жание, %		
-0,23	0,46	0,68	6,04	1,45	0,34	0,49	0,34	0.03	74.0	0,07	11,07	28.62	2,20	0,73	1,33	1,01	10,04	10 21	00.4	9 50	26 22	Соцержа- ппе, на 100%		
-	14	37	333	15	1	co	1			C0	40	106	24	17	16	0	671			5	328	Мол. колич.		
						ω				10	2											Апатит		
	12														6	>						Пирит	_	
	12			4	10						_		1		2	-	R.	5	0			Арсено- пирит Полевой	Дани	
				Or									01		_	-	0 8	2				Квари	- c	
	_													-	-	1	0	<u>ر</u>				Остаток	нлин	iers.
						76,03	0.34	0,03	0,42	3,12	11,57	28,62	6	7	0,66	1,02		1,53	2.50	11,00	66. 96	На ми-	arnoro a	HIDI G LO
				P		100,00	0.45	0,04	0,00	4,09	15,21	37,69			0,86	1,34		2,00	0	OF TO	37 70	Ha 100%	нализа	ALTERNY.
				счетный			2	ł	د م	71	52	139	B = 482		сл	10		00	14	i L	129	Мол. колич,		CIVITO AL
				фактор -		$\Lambda = 265$	22		2	71	52	139			10	10		16	14	704	-23	Атомн, колич, катнолов	-	ialinaa opa
				$\frac{82}{2} = 244$		1,086	0,008	.	800,0	0,29	0,21	0,57	2,00		0.04	0,04		0,07	0,05	1,00	00	Коэффи- циенты атомов	-	ннерита
						96,10	* *	19 19	11e 00H.	2.54	17,30	40,50	•		0,71	0,16	Не обн.	0,46	0,63	00,00	03 60	Содержа- пис, %	Дани	-
				Pacy						2.64	18,00	42,15			0,73	0,17	-	0,47	0,65	50,19	07 10	Содержа- ние, на 100%	ные рентген	
				етный фа				_		46	62	155	B = 453		4	+		1	1.9	440		Мол. колич.	IOBCKOFO MM	
			ī	ктор <u>7</u>					A = 263	46	62	155			8	1		12	22	440	110	Атоми, колич, катионов	крозондиро	
				= 226					1 15	0,20	0,27	0,68	2,00		0,03	1		0,01	0,01	1,95		Коэффи- циенты атомов	вания	

🕹 Сумма.. 99,64 100,00 | | | |

,ń

фракции образца был очищен от примеси пирита и других минерале при помощи электромагнита и ручной отборки под лупой. Тем не менее, как видно из результатов силикатного анализа (табл. 1), исследуемы материал содержал механические примеси, которые по микроскопически исследованиям и по данным инфракрасной спектроскопии представлеем полевыми шпатами, кварцем, пиритом и апатитом.

Изучение минерала рентгеновским микрозондированием, выполненныя А. С. Авдониным, показало, что в составе минерала, кроме урана и титана, присутствуют Са, W, Zr, Nb, Fe (см. табл. 1). Данные микрозондирования позволили уточнить формулу минерала, приводившуюся нами ранее

Рис. 4. Соотношение окислов лантанилов и иттрия в осадке редких земель в браниерите

(Готман и др., 1968). В соответствии с этими данными пересчет силикатном анализа на формулу AB₂O₆ дает следующее:

 $(\mathrm{Ca}_{0,29}\mathrm{U}_{0,57}^{4+}\mathrm{U}_{0,21}^{6+}\mathrm{TR}_{0,008}\mathrm{Pb}_{0,008})_{1,08}\,(\mathrm{Ti}_{1,8}\mathrm{W}_{0,05}\mathrm{Nb}_{0,07}\mathrm{Zr}_{0,04}\mathrm{Fe}_{0,01}^{3+})_{2,00}\mathrm{O}_{6}.$

Вместе с тем, по данным микрозондирования, формула минерала — имеет такой вид:

 $(Ca_{0,20}U_{0,68}^{4+}U_{0,27}^{6+})_{1,15}$ $(Ti_{1,95}W_{0,01}Nb_{0,01}Fe_{0,03}^{3+})_{2,00}O_6.$

Редкоземельные элементы в минерале присутствуют в незначительном количестве. Результаты их раздельного определения методом количественного рентгеноструктурного анализа, которому был подвергнут осадок окислов, выделенный из минерала химическим путем, приведены в табл. 2 и, кроме того, представлены в виде графика, построенного по методу Р. Л. Баринского (1958). Обзор кривых графика (рис. 4) показывает, что состав редкоземельных элементов в минерале имеет комплексный характер. Максимальны содержания церия и неодима, т. е. элементов цериевой группы, в то время как редкоземельные элементы иттриевой группы составляют незначительную долю суммы редких земель. Второй максимум на кривой графика отвечает высокому содержанию собственно иттрия.

Результаты химического анализа указывают на сходство исследованного минерала с браннеритом. Его главными компонентами являются титан и уран; причем последний присутствует в минерале как в виде двускиси, так и трехокиси. Так же, как для браннерита, отношение сумми окислов урана к окиси титана в минерале больше единицы. В состав минерала входят элементы-примеси, типичные для титанатов урана: ниобщ

Таблица 2

Элементы	%	Элементы	%
La Ce Pr Nd	7,0 20,0 3,9 18,4	Dy Ho Er Tu	5,6 0,8 4,2 0,6
Eu Gd Tb	8,5 + 6,2 0,82	УВ У Сумма	+ 5,6 18,2 100,2

Анализ суммы окислов лантанидов и иттрия в исследованном минерале

цирконий, кремний, железо, магний, алюминий. В то же время минерал отличается от упомянутых титанатов в первую очередь практическим отсутствием тория, очень незначительным содержанием редкоземельных элементов и наличием такого элемента-спутника, как вольфрам. Весьма характерно присутствие в составе минерала значительного количества воды, что, впрочем, может являться следствием метамиктного состояния минерала.

Рентгенометрические исследования. В естественном состоянии минерал рентгеноаморфен, в связи с чем изучались его продукты прокаливания при температурах 600—1200° С. Исследования проводила Г. К. Кривоконева.

Порошкограммы снимали в камере РКУ-114,6 мм на Fe-излучении при напряжении 35 кв, силе тока 12 ма, с экспозицией 10 час. Изучали образцы из скрытокристаллических образований минерала и его микрозернистые разности. Дебаеграммы продуктов прокаливания обеих разновидностей минерала совершенно идентичны.

Результаты рентгеновского исследования минерала показаны в табл. 3. В естественном состоянии, как уже упоминалось, минерал рентгеноаморфен. После прокаливания его в течение 30 мин. на воздухе при температуре 600° С на порошкограммах становится различимой слабая дифракционная картина браннерита (фаза α).

Таблица З

Условия прокаливания	600°	700°	800°	900°	1000°	1100°	1200°
На воздухе	Слабо рас- кристалли- зованный браннерит (α-фаза)	Слабо рас- кристаллн- зованный (α-фаза + β-фаза)	β-фаза	γ-фаза + + α-фаза	γ-фаза + + α-фаза	β-фаза + + α-фаза	α-фаза (бранне- рит)
В вакууме	Слабо рас- кристалли- зованный браннерит (х-фаза)	Браннерит	_	Бранне- рит			+

Результаты ренгенометрического изучения минерала *

* В естественном состоянии рентгеноаморфен.

6 Заказ № 2206

При температуре 700° С линии, отвечающие браннериту, становятся более диффузными и наряду с ними появляются дополнительные отражения, отвечающие новой фазе, условно названной β -фазой ¹. Прокаливание минерала при температуре 800° С полностью разрушает структуру браннерита и усиливает дифракционную картину фазы β . Последующее прокаливание минерала при температуре 900° С сопровождается образовалием другой фазы- γ . Анализ дебаеграммы показывает, что она является производной структурного типа U_3O_8 ; каждая из этих фаз характеризуется своими параметрами элементарных ячеек.

В дебаеграммах продуктов прокаливания при 1000°, а затем 1100° наряду с отражениями, отвечающими фазам β и γ, снова появляются лини браннерита, а при температуре 1200° С наблюдается четкая структура чистого браннерита.

Для выяснения причин подобных фазовых превращений были выполнены неполные химические анализы минерала в естественном состоянии и продуктов его прокаливания. Результаты анализов приведены в табл. 4.

Таблица 4

Минерал	Тип структуры	UO2, %	UO3, %	Окраска минерала
В естественном состоя- нии Прокаленный до 700° » 800 » 900	Рентгеноаморфный Фаза α + β « β » γ	28,49 5,06 4,23 0,86	11,64 38,0 38,7 36,53	Смоляно-черпая Коричневая Коричнево-желтая Желто-зеленая
» 1200	Браннерит	29,76	11,11	Черная

Соотношение UO₂ и UO₃ в минерале и продуктах его прокаливания

Сопоставление полученных данных показывает, что если в составе минерала, находящегося в естественном состоянии, преобладает окисел четырехвалентного урана, то в составе продуктов нагревания, отвечающих фазам β и γ, которые возникают в интервале температур 700—900°С, напротив, почти весь уран представлен шестивалентной формой. Очевидно, нагревание минерала со свободным доступом кислорода сопровождается окислением входящего в его состав урана и вместе с этим приводит к образованию промежуточных продуктов, имеющих свой тип структуры. Фазовые превращения в области более высоких температур (1000-1200° С) вызываются обратным процессом - восстановлением урана и, как следствие, образованием браннерита. Любопытно, что в этом случае в составе браннерита соотношение окислов урана отвечает соотношению в минерале, находящемся в естественном состоянии. По-видимому, для диагностики метамиктных минералов, содержащих элементы с переменной валентностью, методика прокаливания со свободным доступом кислорода не вполне приемлема. Поэтому дополнительно к проведенным исследованиям были изучены продукты прокаливания минерала в условиях вакуума. Результаты рентгеноструктурных исследований этих продуктов, приведенные в табл. З, показывают, что при нагревании минерал восстанавливает структуру браннерита.

Раскристаллизация минерала начинается с 600° С (дифракционная картина с нечеткой интенсивностью линий) и усиливается при последующем нагревании. На дебаеграммах минерала, прокаленного в вакууме при температурах 700 и 900° С, наблюдается четкая дифракционная картина браннерита (табл. 5).

¹ β-фаза однозначно не идентифицирована.

Таблица 5

Межплоскостные расстояния продуктов прокаливания исследованного минерала

Прокал при 600° С	енный на воздухе	Прокале при 900°С і	енный в вакууме	Про при 600°	каленный С на воздухе	Прокаленный [°] при 900° С в вак уум е		
d /n	Ι	d/n	I	d/n	I	d/n	I	
-	-	6,08	5	1,88	Cp.	1,878	6	
	-	4,31	3	1,85	" Очень слаб.	1,794	1	
3,4	C.	3,43	10	1,73	Слаб.	1,705	3	
3,2	Cp.	3,34	8	1,61	C.	1,629	5m	
2,99	»	3,02	3	1,56	»	1,566	5	
2,88	C.	2,91	7			1,435	1	
2,72	»	2,71	5	1,36	Слаб.	1,377	4m	
	-	2,52	6	_		1,312	2	
2,47	С,	2,46	6	—		1,261	3ш	
2,25	Cp.	2,38	6	1,23	Очень слаб.	1,238	1	
	_	2,03	4		_	1,152	2	
2,00	Слаб.	2,01	4	_	* _	1,142	2	
	—	1,91	8	1,08	Cp.	1,092	3ш	

Термическое изучение минерала проводила Л. И. Рыбакова на пирографе конструкции профессора Ф. В. Сыромятникова. Навеска минерала величиною 50 мг нагревалась от 20 до 1000° С со скоростью 66° в минуту. В качестве эталона применялась окись магния.

На кривой нагревания минерала (рис. 5) фиксируются один эндотермический и два экзотермических эффекта. Эндометрический эффект. связанный с выделением воды, проявлен плавным прогибом кривой с максимумом реакции на 200° С. Основной экзометрический эффект выражен на кривой нагревания резким, сравнительно узким симметричным пиком в интервале температур 640-700° С с максимумом на 670°, что достаточно типично для браннерита. С этим эффектом, по-видимому, связан переход минерала из метамиктного состояния в кристаллическое, что подтверждается данными рентгеноструктурного анализа (см. табл. 3).

Рис. 5. Дифференциальная кривая нагревания браннерита

Второй, дополнительный, экзотермический эффект имеет меньшую величину и проявляется на кривой нагревания широким размазанным пиком с максимумом на 450° С. В соответствии с результатами химического анализа продуктов прокаливания минерала (табл. 5) можно полагать, что выделение тепла, фиксируемое этим экзотермическим пиком, обусловлено окислением урана и переходом его из четырехвалентного в шестивалентное состояние, как отмечалось для уранинитов (Сидоренко, 1960).

83

6*

Разности минерала	TiO2, %	UO2, %	UO3, %	Кислородный коэффициент окислов урана	$\frac{\mathrm{UO}_2 + \mathrm{UO}_3}{\mathrm{TiO}_3}$
Чепная	96.4	28 /0	44 52	9.9	4 52
Темно-коричневая	20,1	20,49	7 9	2,4	1,00
Коричневая	17.13	3 66	18 79	2.8	1 31
Желтан	21.36	Не обн.	36.24	3.0	1.69
Анатазовый урансодержащий продукт	19,6	-	0,29	3,0	0,01
То же	23,15	_	1,44	3,0	0,06
» »	17,26	-	4,90	3,0	0,28

Неполпые хямические анализы миперала и продуктов его изменения

Продукты разрушения. В гипергенных условиях описываемый минерал неустойчив и претерпевает сложные превращения. Внешне это выражается, прежде всего, в изменении окраски минерала от черной через коричневую различных оттенков к желтой.

В табл. 6 приведены данные неполных химических анализов нескольких образцов минерала различной окраски. Сопоставление этих данных показывает, что осветление окраски согласуется с закономерным возрастанием в составе минерала шестивалентного урана. Если в черноокрашенных разновидностях величина кислородного коэффициента окислов урана, т. е. величина атомного отношения кислорода к урану 2,2, то в коричневых она возрастает до 2,8, а в желтых достигает максимального значения (3,0). Таким образом, желтая окраска титаната урана свидетельствует о глубоком окислении минерала (в первую очередь входящего в его состав урана).

Таблица 7

Свойства минерала	Черпый	Темно-коричне- вый	Коричневый	Желтый
Микротвердость:				
$\kappa\Gamma/MM^2$	387	418	443	342
по Моссу	5,1	5,2	5,3	4.9
Отражательная спо-	ť.			
собность, %	13-15	12,2	12,0	10,2
Показатель прелом- ления	2,06< n<2,11	2,06< n <2,11	1,96< n<2,06	1,834 < n < 1,841
Уд. вес	4,32		3,8	3,29

Изменение свойств минерала при окислении

При окислении минерала последовательно уменьшается величина его отражательной способности от 15 до 10% (табл. 7), хотя микротвердость не изменяется.

По той же причине заметно падает показатель преломления минерала, а также его удельный вес. Окисленные разности минерала довольно легко растворяются в концентрированных кислотах.

В окисленном состоянии минерал неустойчив и подвергается разложению. Детальное микроскопическое изучение позволяет видеть, как среди

Рис. 6. Анатазовые продукты разрушения окисленного браннерита. Иммерсия, увел. 1350

однородного изотропного титаната урана выделяются участки, характеризующиеся более высокой отражательной способностью и светлыми внутренними рефлексами, свойственными окислам титана. Эти участки имеют форму точек, полос, пятен. Их исследование при большом увеличении с применением иммерсии показало, что они состоят из скоплений субмикроскопических кристаллов анатаза (рис. 6). Можно проследить процесс разложения минерала от такой начальной формы до более широкого распространения, когда продукты разрушения составляют цемент брекчии, а титанат урана встречается лишь в виде реликтов. В последнем случае эти продукты представлены желто-зелеными или желтыми, плотными либо рыхлыми охристыми массами, трудно поддающимися диагностике и довольно сложными в минералогическом отношении.

Прежде всего обращают на себя внимание стекловатые желтоокрашенные выделения, хотя и плохо, но поддающиеся полировке. В отраженном свете они темно-серые. Их отражательная способность заметно ниже, чем у первичного минерала (7—8%). Они изотропны, но местами испытывают слабую раскристаллизацию и тогда проявляют агрегатную поляризацию. Эти образования в естественном состоянии обычно рентгеноаморфны, но после прокаливания при температуре 900° С превращаются в рутил. Можно полагать, что описываемые продукты представляют собой гидроокись титана. Это подтверждают также данные неполных химических анализов (табл. 8), показывающие, что в продуктах разрушения присутствуют растворимая форма титана и некоторое количество воды.

Выделения гидроокиси титана наблюдаются обычно вокруг сохранившихся реликтов титаната урана. Они распространены нешироко, поскольку из-за своей неустойчивости теряют воду и превращаются в анатаз, который образует рыхлые, охроподобные, реже плотные массы тонкодисперсного сложения. Под микроскопом анатаз, как правило, трудно различим; его присутствие устанавливается обычно при помощи рентгеноструктурного анализа.

Продукты разрушения минерала обладают низкой радиоактивностью. По данным химического анализа (см. табл. 6), содержание урана в них составляет доли процента или первые единицы процентов.

Таким образом, разложение минерала сопровождается выносом значительной доли урана, который в зоне гипергенеза фиксируется в виде урановых слюдок. Вместе с тем следует отметить, что подобного рода изменения браннерита наблюдаются также в связи с внутрижильным карбонатным метасоматозом; но мигрирующий при этом уран фиксируется в форме коффинита в местах, где во вмещающих породах сохранились дисульфиды железа.

Таблица 8

Содержание растворимой окиси титана и воды в продуктах разрушения минерала

Общее содержание, TiO ₂ %	TiO ₂ , раство- римое в 5% H ₂ SO ₄	H ₂ O, %
25,13	2,36	3,54
17,26	4,90	2,98

Приведенные сведения о химическом составе изученного минерала, его рентгеновских и термических свойствах, заставляют считать этот минерал идентичным браннериту, хотя он и отличается от известных в литературе браннеритов некоторыми физическими свойствами (меньший удельный вес, низкий показатель преломления), составом элементов-примесей (весьма низкое содержание тория и редких земель, наличие вольфрама) и значительным количеством воды. Эти специфические черты описанной разности браннерита так же, как и необычные для известных браннеритов парагенетическая ассоциация и условия нахождения, связаны с особенностями генезиса браннерита.

Можно уверенно утверждать, что браннерит имеет значительно более широкий диапазон выделения, чем предполагалось ранее, поскольку, как следует из приведенных данных, он может формироваться не только при высоких температурах гидротермального процесса, но также на средне- и низкотемпературных стадиях минералообразования, продукты которых развиты в земной коре весьма широко.

Интересно отметить, что Б. З. Бурьянова и Е. И. Баранова (1963) описали окисленный водный безториевый минерал титана, урана и кальция, весьма близкий по облику и химическому составу к описанному титанату урана. Минерал наблюдается в виде вкрапленности в цементе песчаников и является в этом цементе поздним эпигенетическим образованием. По мнению авторов, он осаждался из вод, содержащих титан и уран, в участках замены окислительной обстановки на восстановительную. Упомянутая находка еще более расширяет дианазон условий формирования титанатов урана, следовательно, и возможности их пространственного распространения.

Анализируя материалы, имеющиеся по титанатам урана и тория, М. М. Павилайтис (1963) пришла к выводу, что эти минералы, объединяемые в группу браннерита, образуют изоморфный ряд, крайние члепы которого представлены браннеритом и торутитом. Из описанных в литературе браннеритов исследованный минерал по химическому составу наиболее близок к теоретическому браннериту, рассчитанному М. М. Павилайтис. Не исключено, что в результате дальнейших работ важная группа титанатов урана и тория, изученная сейчас недостаточно, значительно пополнится.

Баринский Р. Л. О соотношении четных и нечетных редкоземельных элементов в различных минералах. - Докл. АН СССР, 1958, 120, № 3.

Бурьянова Е. З., Баранова Е. И. Аутигенный водный минерал титана, урана и каль-ция, близкий к браннериту.— Труды ВСЕГЕИ, 1963, 96, № 3.

Готман Я. Д. Лодочникит — новый минерал из группы титанатов тория.— Записки Всес. мин. об-ва, 1958, ч. 87, вып. 2. Готман Я. Д., Хапаев И. А. Торутит — новый минерал из группы титанатов тория.— Записки Всес. мин. об-ва, 1958, ч. 87, вып. 2.

Готман Я. Д., Полякова В. М., Мигула А. К. О новой разновидности браннерита. Докл. АН СССР, 1968, 179, № 2. Мелков В. Г., Пуха съский Л. Г. Поиски месторождений урана. Гостехиздат, 1957.

Повилайтис М. М. По поводу новых минералов — лодочникита, абсита и торутита.--Записки Всес. мин. об-ва, 1963, ч. 92, вып. 1. Сидоренко Г. А. Рентгенографический определитель урановых и урансодержащих

минералов. Госгеолтехиздат, 1960.

Hewett D. F., Stone J. A., Levine H. Brannerite from San Bernardino County, California. — Amer. Min., 1957, 42, N 1-2.
Nuffield A. W. G. Brannerite from Ontario, Canada. — Amer. Min., 1954, 39, N 5-6.
Pabst A. Brannerite from California. — Amer. Min., 1954, 39, N 1-2.
Whitle E. W. Petrology of Crockers Well uranium deposit, South Australia. — Bull. Gr. Brit. Geol. Survey, 1954, N 30.
Wells R. G., Hess F. S. Brannerite, a new uranium mineral. — Franklin Inst. J., 1920, 189.