Карбонатит

Certificate information

Образец собран для исследования П.Ю. Плечовым в январе 2024. Место отбора: Гора Кармель, овраг или бывший карьер в пределах вулканической постройки, Израиль, 32,649578° N, 34,984955° E.

Данный образец хранится в научноисследовательском фонде МинМузея РАН под номером FN1071. Сертификат составлен А. Заблудовской, студентом 3-го курса МГРИ.

Sample study

Макроскопически образец представляет собой фрагмент жилы и имеет уплощённую форму. Образец сложен кальцитом, который последовательно заполнял жилу, что отразилось в его "слоистой" текстуре. Слои имеют ширину около 1 мм и выделяются по цвету и прослоям вторично изменённых поверхностей (окрашены В бледно оранжевый цвет). Центральная часть прожилка сложена более светлым кальцитом и так же имеет выветрелый контакт с формировавшейся ранее зоной. Образец рассечён трещиной, вокруг которой выделяется зона вторичного изменения, шириной около 1 см, окрашенная в тёмнокоричневый, почти чёрный цвет. По поверхности образца развито ожелезнение.

Из фрагментов FN1071 изготовлен прозрачно-полированный шлиф (номер в шлифотеке Музея - 1793).

Рис. 2. Фотография участка шлифа (обр. FN1071) при одном николе (слева) и в скрещенных николях (справа).

Рис. 3. Фотография участка шлифа (обр. FN1071) при одном николе (слева) и в скрещенных николях (справа).

В образце FN1071 был определен химический состав минералов с помощью EDS анализа (электронный микроскоп JEOL JXA-733, МинМузей РАН), результаты анализов представлены в таблице 1.

Основную часть шлифа заполняет кальцит. Он образует крупные зёрна неправильной формы и более мелкие, заполняющие трещины (рис.3); хорошо заметны скелетные кристаллы (рис. 2) размером до 500 мкм в поперечном сечении. При исследовании с помощью электронного микроскопа видна ритмичная зональность каждого такого кристалла (рис. 4).

Рис. 4. BSE изображение; цифрами отмечены точки анализов кальцита.

Кальцит подтвержден во всех морфологических разностях спектрами комбинационного рассеяния (рис.5).

Рис. 5. Сравнение спектра кальцита в изученном образце (красная линия) с эталонным спектром кальцита R040170 из базы спектров RRUFF (https://rruff.info/R040170).

Составы кальцита представлены в таблице 1. Кальцит содержит (в мас.%): от 53.23 до 57.24 CaO, до 1.67 MnO, и до 0.91 MgO, до 0.21 SrO и до 0.12 BaO.

Фаза 2 встречается в виде мелких, ярких на BSE изображениях, выделений (рис. 6). Количественный анализ из-за малого размера выделений провести не удалось и полученные составы, по-видимому, отражают смесь этой фазы с окружающим кальцитом. Эти составы имеют от 8.62 до 26.19 мас.% СаО, 26.16 – 48.95 мас.% МпО, 0.35 – 0.7 мас.% МдО, 0.61 – 1.45 мас.% FeO, 0.57 - 3.65 мас.% Al₂O₃, 0.32 - 0.59 мас.% Na₂O, содержание SrO от 0.11 до 0.28 мас.% и ВаО от 7.17 до 13.02 мас.%.

Таблица 1. Результаты измерений химического анализа кальцита.

#	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	SrO	BaO
1	0.04	-	0.78	0.91	54.14	-	0.02	0.10
2	0.04	0.03	0.09	0.28	54.58	0.07	0.07	0.06
3	0.09	0.06	0.17	0.22	54.75	-	0.08	-
4	-	0.17	1.07	0.68	53.23	0.24	0.07	-
5	0.04	-	0.05	0.60	54.60	-	0.18	-
6	-	-	0.83	0.85	54.93	0.04	-	-
7	-	-	0.19	0.18	54.19	0.05	0.11	-
8	-	-	0.08	0.60	55.0	-	-	0.12
9	-	-	-	0.03	55.54	0.08	0.07	0.06
10	0.30	-	1.67	0.17	54.22	-	0.21	-
12	0.11	-	0.72	-	57.24	0.96	-	-

На спектре комбинационного рассеяния этой фазы в основном присутствуют линии карбоната, что может свидетельствовать о том, что это карбонат марганца и бария, но может оказаться смешанным спектром кальцита и неопознанного минерала.

Рис. 6. BSE изображение участка шлифа; цифрами отмечены точки анализов: 1,2,3- фаза 2.

Фаза 3 представлена вторичным агрегатом, развивающимся вдоль трещины с более мелкими кристаллами кальцита (рис. 3).

Summary

Рассмотренный образец не содержит силикатной составляющей, а отношение Sr/Ba составляет 1.17, что является слишком низким для пород карбонатитового генезиса [Соколов, 2021]. Установленное содержание стронция в кальците попадает в диапазон седиментационного кальцита [Carpenter, Lohmann, 1992]. При этом, измеренное содержание бария является слишком высоким для кальцита осадочного происхождения [Bowen, 1956]. Повышенное содержание бария и наличие акцессорного богатого барием минерала может свидетельствовать косвенной 0 связи генезиса изучаемой породы с карбонатитами. С другой стороны, высокое содержание бария может быть связано с недиагностированным присутствием барита. точного Для более определения происхождения данного образца требуется проведение изотопного анализа стронция или другие более детальные исследования.

13 июня 2024 г.

References

Соколов, С. В. Карбонатиты и псевдокарбонатиты / С. В. Соколов // Записки Российского минералогического общества. – $2021. - T. 150, N \ge 3. - C. 154-161.$ Carpenter S.J., Lohmann K.C., Sr/Mg ratios of modern marine calcite: Empirical indicators of ocean chemistry and precipitation rate / Geochimica at Cosmochimica – 1992. – Acta Vol. 56, pp 1837-1849

Bowen H. J. M. Strontium and barium in sea water and marine organisms / J. mar. biol. Ass. U. K. (1956) 35, 451-460.