А.А. ПОТЕРЯЙКИНА, В.Г. КРУГЛОВА, Г.А. СИДОРЕНКО, Н.Н. КУЗНЕЦОВА, А.С. АВДОНИН. Е.Г. РЯБЕВА

УРАНИНИТ ИЗ НОВОЙ ПАРАГЕНЕТИЧЕСКОЙ АССОЦИАЦИИ МИНЕРАЛОВ

Уранинит обнаружен в кварц-полевошпатовых метасоматитах, развитых в метаморфических породах нижнего протерозоя и приуроченных к области пересечения тектонических зон субширотного и меридионального простирания. Метаморфические породы представлены биотитовыми гнейсами и мигматитами с частыми линзами и прослоями амфиболитов, кварцитов и графитовых сланцев. Широким развитием пользуются гранитоидные породы и пегматиты. Преимущественно развиты биотитовые гнейсы, повсеместно и неравномерно мигматизированные.

В результате сложных тектонических процессов породы, слагающие участок, интенсивно деформированы и раздроблены. Относительно более пластичные амфиболиты рассланцованы, гранитоидные породы катаклазированы и испытали будинаж. Интенсивность проявления метасоматических процессов находится в прямой зависимости от степени тектонической активности в данном районе.

Начальный этап процесса изменения пород связан с дислокационным метаморфизмом и происходит без существенного привноса вещества, выражаясь в дроблении и перекристаллизации исходных пород. Дальнейшее преобразование пород происходит под воздействием кремне-щелочных растворов с образованием отличающихся по составу от вмещающих пород парагенетических ассоциаций минералов. В результате этого процесса образовались кварц-полевошпатовые метасоматиты.

В метасоматитах обнаружена необычная парагенетическая ассоциация минералов, отличительной особенностью которой является сонахождение двух первичных минералов молибдена — сульфида и окисла (молибденита и тугариновита). В этой ассоциации широко распространены также циркон, графит, мусковит, галенит. Среди рудных минералов резко преобладает молибденит. Каждый минерал ассоциации имеет свои четкие типоморфные особенности. Ниже приводится характеристика уранинита и основных наиболее интересных минералов ассоциации.

Оптические свойства минералов определялись в полированных шлифах. Спектры отражения снимались на двухлучевом микроскопе—спектрофотометре МСФП-1 с автоматической регистрацией на участках размером 5 мкм с точностью 1,5 отн.%. Настройка прибора проверялась по эталону (W, Ti) С. Микротвердость определялась на тарированном по каменной соли приборе ПМТ-3 при нагрузках 50 и 100 г и экспозиции 15 с. Плотность определялась М.А. Пановой методом М.М. Василевского в барометрической трубке диаметром 1,735 мм из навески 8 мг. Магнитная восприимчивость определена Н.В. Добровольской методом Фарадея из навески 10 мг. Состав минералов определялся локальным рентгено-спектральным методом на приборе Сатевах и микрохимическим методом. Рентгенометрический анализ проводился в камере РКУ-114 на железном нефильтрованном излучении при напряжении 35 кВ, силе тока порядка 14 мА. Промер пленок проводился на компараторе ИЗА-2А.

Уранинит образует хорошо ограненные кристаллы в форме куба, вершины которого осложнены гранями октаэдра (рис. 1, 2). Размеры кристаллов 0,2-1,0 мм. Цвет черный густой, блеск сильный, излом раковистый, черта черная, плотность 9,32 г/см³, магнитная восприимчивость $8.5\cdot10^9$ м³/кг. Микротвердость 975 кг/мм² (среднее из 10 измерений), относительная твердость 6,9. Параметр элементарной

Рис. 1. Кристаллы уранинита. Увел. 35

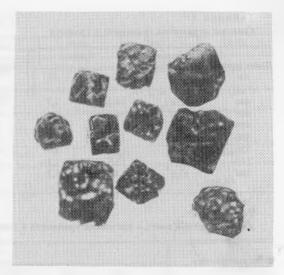
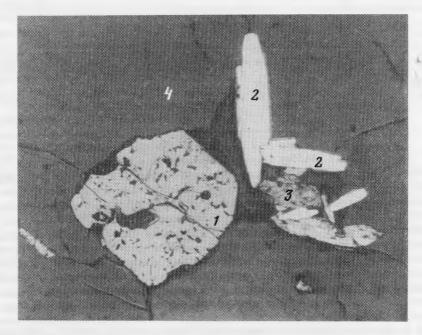



Рис. 2. Кристаллы уранинита (1), молибденита (2), графита (3) и кварца (4). Отраженный свет с одним николем, увел. 90

ячейки a_0 = 5,476 \pm 0,007 Å близок к параметру элементарной ячейки уранового окисла идеального состава.

В отраженном свете уранинит светло-серого цвета, однородный, внутренних рефлексов нет даже в порошке с иммерсией, полируется хорошо. Спектр отражения приводится в табл. 1, характеристики цвета и цветности — в табл. 2.

Состав уранинита определен для двух образцов, взятых из шурфов на глубине 0,3 м от поверхности (обр. 1) и 1,0 м (обр. 2). Состав обр. 1 исследован микрохимическим методом, обр. 2 — на рентгеновском микроанализаторе. Данные анализов приведены в таблицах 3 и 4. В связи с тем, что чистую мономинеральную фракцию уранинита для микрохимического анализа отобрать не удалось, исследованный материал оказался загрязненным включениями кварца и гетита, а

Таблица 1 Спектры отражения уранинита и графита

Длина волны, нм	Уранинит Графит R R ₁ R ₂		Длина волны,	Уранинит	Графит		
			R ₂	нм	R	R_1	R ₂
440	15,4	14,3	7,7	580	13,6	13,9	5,2
460	15,0	14,0	6,6	600	13,3	14,2	5,3
480	14,8	13,8	6,2	620	13,1	14,5	5,4
500	14,6	13,7	5,8	640	13,0	14,8	5,5
520	14,4	13,6	5,6	660	13,0	15,1	5,6
540	14,1	13,6	5,3	680	13,0	15,5	5,7
560	13,8	13,7	5,2	700	13,3	16,0	5,9

Таблица 2 Характеристики цвета и цветности уранинита и графита

V	Источники							
Характеристика	A	В	С	E				
	-	Уранинит		1				
$\frac{\overline{X}}{\overline{Y}}$	14,7407	13,4950	13,4645	13,628				
$\overline{\mathbf{Y}}$	13,7006	13,8290	13,8791	13,849				
Z	5,2896	12,7028	18,5292	14,709				
m	33,7309	40,0268	45,8728	42,709				
X	0,437	0,337	0,294	0,323				
у	0,406	0,346	0,302	0,328				
		Графит, R1						
$\overline{\mathbf{x}}$	15,6441	14,0164	13,8294	14,103				
$\frac{\overline{X}}{\overline{Y}}$	13,9667	13,8908	13,8667	13,889				
\overline{z}	4,9288	11,8224	17,2516	13,684				
m	34,5396	39,7296	44,9477	41,676				
x	0,453	0,353	0,308	0,338				
у	0,404	0,350	0,308	0,333				
		Γ рафит, R_2						
$\frac{\overline{X}}{\overline{Y}}$	5,9348	5,4638	5,4863	5,540				
$\overline{\overline{\mathbf{Y}}}$	5,3538	5,3874	5,4068	5,398				
\overline{z}	2,3103	5,6067	8,1588	6,523				
m	13,5989	16,4579	19,0319	17,411				
х	0,436	0,332	0,288	0,318				
у	0,394	0,327	0,284	0,307				

также вторичных урановых минералов. Присутствие вторичных минералов урана привело к завышению содержания UO₃ в анализе первого образца.

Микрохимический анализ обр. 1 показывает, что в исследованном уранините четырехвалентный уран значительно преобладает над шестивалентным, кислородный коэффициент равен 2,22. Эта величина несколько завышена за счет загрязнения пробы вторичными минералами урана. Уранинит характеризуется повышенными содержаниями тория $ThO_2 = 5,57\%$ и редкоземельных элементов $TR_2O_3 = 3,35\%$.

Анализ обр. 2 проводился на рентгеновском микроанализаторе JXA-3A и Самевах для 4 кристаллов в 5—8 точках в каждом. При определении катионов рабочее напряжение 20 кВ, ток зонда порядка 10 нА, аналитические линии: Um_{β} , Pbm_{α} , TiK_{α} , Yz_{α} . В качестве стандартных образцов состава для урана и кислорода применялся синтезированный окисел теоретического состава UO_2 , для

Таблица 3 Результаты микрохимического анализа обр. 1

	UO ₂	UO ₃	РьО	ThO ₂	TR ₂ O ₃
Содержание, %	66,52	20,05	2,10	5,57	3,35
Примеси Пересчет на 100%	68,16	20,54	2,16	5,70	3,44

Таблица 3 (окончание)

	SiO ₂	Fe ₂ O ₃	±H ₂ O	Сумма
Содержание, %	0,62	1,41	0,73	100,35
Примеси Пересчет на 100%	0,62	1,41*	0,73*	100,00

^{* —} кварц, * — гидроокислы железа.

Таблица 4 Результаты микрорентгено-спектрального анализа обр. 2

0	U	Pb	Th	Ti	Y	O ₂	Сумма
Содержание, %	80,6	1,8	3,9	0,07	0,9	12,4	99,67
Атомные количества	0,339	0,009	0,017	_	0,01	0,775	
	UO ₂	UO_3	PbO	ThO ₂	TiO ₂	Y_2O_3	Сумма
Содержание*, %	82,3	9,7	1,9	4,4	0,1	1,3	99,7

^{*} Ca < 0.01; La, Ce < 0.06; Fe < 0.05; Si < 0.05.

свинца — галенит, для тория — природный минерал состава Th = 74,4%, Pb = 6,9%, Ca = 3,6%, O_2 = 15,1%; для иттрия — синтезированное соединение Y_2SiO_5 , для титана — металлический титан. Определение кислорода проводилось при рабочем напряжении 10 кВ и силе тока зонда порядка 100 нА по аналитической линии K_α . Расчет концентраций элементов проводился с введением поправок на поглощение по Дж. Филиберу [4] и атомный номер по П. Данкамбу — С.Риду [I]. Поскольку в качестве стандарта при определении кислорода использовался синтезированный окисел UO_2 , очень близкий по составу к исследуемому ураниниту, то погрешность анализа определяется в основном не способами расчета поправок, а экспериментальными измерениями относительной интенсивности. Условия анализа кислорода, состояние анализируемой поверхности образца и его гомогенность позволили обеспечить воспроизводимость измерений интенсивности рентгеновского излучения с погрешностью 3—5 отн.% с порогом обнаружения 0,3—0,4%.

В результате исследования уранинита на рентгеновском микроанализаторе установлено, что уранинит химически однороден, все компоненты (U, Th, Y, Pb) распределены равномерно во всех точках кристаллов, за исключением одной точки в одном кристалле, где обнаружено более высокое содержание иттрия (вдвое больше, чем в других точках). Вероятно, кроме иттрия, входящего изоморфно, в уранините имеются иногда мельчайшие включения других минералов, содержащих больше иттрия. Кристаллы уранинита, исследованные на микроанализаторе, лишены вторичных минералов, имеют те же особенности состава, что и кристаллы первого образца, анализированные микрохимическим методом, так как принадлежат к одной и той же генерации, также характеризуются повышенными содержаниями тория и редких земель, высоким содержанием четырехвалентного урана.

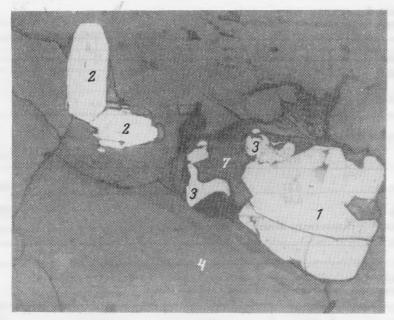


Рис. 3. Взаимоотношения молибденита (2), графита (3) и уранинита (1). Уранинит частично замещен казолитом (7). Отраженный свет с одним николем, увел. 90



Рис. 4. Взаимоотношения тугариновита (5) и галенита (6). Уранинит псевдоморфно замещен казолитом (7). Отраженный свет с одним николем, увел. 400

Установлено, что исследуемый уранинит отличается от редкоземельных уранинитов из других месторождений составом редких земель. В нем содержится только иттрий, не обнаружены церий и лантан (порог чувствительности 0,06%), характерные для других уранинитов. По результатам определения катионов и кислорода рассчитан кислородный коэффициент, который равен 2,10. Расчет проводился следующим образом: по валентности Рb, Y, Th и Ti находится содержа-

Таблица 5 Результаты микрорентгено-спектрального анализа циркона

Содержание	ZrO ₂	SiO ₂	UO ₂	Y ₂ O ₃	HfO₂	Сумма
Содержание в Циркон-1	65,7	32,3	0,2	0,06	1,20	99,46
в Циркон-2	65,8	31,8	0,8	0,32	1,20	99,92

ние кислорода, связанное с указанными элементами. Для данного состава оно равно 1,03%. Из общего содержания кислорода вычитается кислород, приходящийся на эти элементы, и находится кислород урана 12,4 — 1,03 = 11,37. Зная содержание урана и кислорода, находят их атомные количества $U=0,3386, O_2=0,7106$. Их отношение дает кислородный коэффициент урана — 2,10. Отношение $U^{6+}:U^{4+}$, исходя из полученного кислородного коэффициента, равно 1:9, т.е. одна девятая часть общего содержания урана приходится на шестивалентный уран: $U^{6+}=8,06, U^{4+}=72,54$ или $UO_3=9,7$ и $UO_2=82,3\%$.

В зоне окисления исследованный уранинит псевдоморфно замещается кюритом и казолитом (рис. 3, 4), часть урана при этом переходит в раствор и переносится на небольшое расстояние, где отлагается в мелких трещинках, входя в состав вторичных минералов, представленных в основном уранофаном, реже — соддиитом.

Широко распространен в метасоматитах графит, наблюдающийся в тесной ассоциации с уранинитом и молибденитом. Он образует тонкочешуйчатые агрегаты или параллельные сростки с молибденитом, часто нарастает на кристаллы молибденита. Графит характеризуется низким до среднего отражением, сильным двуотражением (табл. 1) и существенным плеохроизмом отражения с изменением цвета от темно-серого до светло-серого, что прослеживается в изменении координат цветности (табл. 2).

Как известно [4], некоторые изоморфные примеси существенно влияют на свойства уранинита. Так Робинсон и Сабина [6] показали на образцах канадских уранинитов, что с повышением содержания тория увеличивается размер элементарной ячейки. С повышением содержания редких земель в уранините размер элементарной ячейки уменьшается [4].

Из приведенных выше данных микрохимического и микрозондового анализа следует, что в исследованном уранините содержатся в близких количествах и торий и редкоземельные элементы, в результате чего компенсируется влияние этих элементов на размер элементарной ячейки уранинита. Размер элементарной ячейки остается характерным для уранинитов, не содержащих примесей тория и редкоземельных элементов. Некоторые изоморфные примеси оказывают влияние и на другие свойства уранинита. Например, содержание тория увеличивает стойкость уранинита к процессам гипергенного окисления, понижает интенсивность отражения и увеличивает твердость.

Циркон образует длиннопризматические хорошо ограненные кристаллы. Они полупрозрачны, размер варьирует от 0,4 до 1,6 мм, цвет меняется от светложелтого до светло-коричневого, блеск жирный.

Встречаются сростки циркона с тугариновитом. Циркон тетрагональной сингонии, $a_0=9,348\pm0,003$, $c_0=5,970\pm0,002$ Å. Под микроскопом обнаруживается сложное микронеоднородное строение кристаллов циркона. Они состоят из двух, отличающихся по оптическим свойствам фаз, и образовались, вероятно, в два этапа. Ранее образованные кристаллы подверглись частичному растворению, а затем при благоприятных условиях произошла их регенерация. В кристаллах участки, представленные цирконом первой фазы — ксенолиты, распределены неравномерно. Наибольшее их количество приурочено к центральной части кристал-

ла. Периферические участки сложены цирконом второй фазы. Ранний циркон ксенолитов — циркон-1 отличается повышенным отражением 12,4% от позднего циркона-2, отражение которого не превышает 10,7%. Микротвердость циркона-1 значительно выше — 824 кг/мм², чем циркона-2 — 470 кг/мм², соответственно относительная твердость 6,6 и 5,5. При изучении кристаллов циркона под люминесцентным микроскопом ЛЮСАМ Р-1 с фильтром УФС-2 установлено, что циркон-1 обладает голубой, а циркон-2 — желтой люминесценцией. Данные локального микрорентгеноспектрального анализа обеих генераций циркона представлены в табл. 5. Циркон-2 содержит в 4 раза больше урана и в 5—6 раз больше иттрия, чем циркон-1. Поскольку циркон-1 отличается от циркона 2 более высокими отражением и твердостью, можно предположить, что вхождение в структуру в повышенных количествах урана и иттрия приводит к некоторому нарушению решетки минерала, вследствие чего изменяются его оптические свойства.

Молибденит данной ассоциации гексагональный $a_0=3,167\pm0,004$, $c_0=12,58\pm0,01$ Å. Он обычно образует таблитчатые кристаллы, реже чешуйчатые, иногда бочонковидные кристаллы. Характерно для данной ассоциации образование ступенчатых параллельных сростков по грани $\{0001\}$. Встречаются также сростки таблитчатых кристаллов под различными углами — от тупых до острых, что ранее не наблюдалось [3].

Тугариновит моноклинной сингонии, $a_0 = 5,59 \pm 0,01$, $b_0 = 4,82 \pm 0,001$, $c_0 = 5,51 \pm 0,01$ А, $\beta = 119^{\circ}32$. Кристаллы тугариновита имеют призматический или толстотаблитчатый габитус, темный лиловато-коричневый цвет, сильный от жирного до металлического блеск. Черта зеленовато-серая. Кристаллы обычно удлиненные, часто с вертикальной штриховкой. Погасание косое, под углом 5—7°. Внутренних рефлексов нет. Твердость 300 кг/мм², относительная твердость по шкале Мооса 4,6. Вычисленная рентгеновская плотность 6,58. Отражение среднее по интенсивности, характерно сильное двуотражение (26,7—60,3%) с цветным эффектом и сильная анизотропия [2].

выводы

- 1. Уранинит установлен в неизвестной ранее ассоциации минералов совместно с окислом и сульфидом молибдена, графитом, цирконом и галенитом.
- 2. Исследованный уранинит является редко встречающейся разновидностью с высоким содержанием четырехвалентного урана, тория и редких земель, высокой плотностью и твердостью. В отличие от широкораспространенных уранинитов с повышенным содержанием цериевых редких земель, для исследованного образца характерно высокое содержание иттрия и отсутствие редких земель цериевой группы.
- 3. Повышенное содержание тория и редких земель в уранините позволяет предположить, что кварц-полевошпатовые метасоматиты образовались при высоких температурах.

ЛИТЕРАТУРА

- 1. Данкамб П., Рид С. Физические основы рентгеноспектрального локального анализа. М.: Наука, 1973
- 2. Круглова В.Г., Потеряйкина А.А., Сидоренко Г.А. и др. Тугариновит МоО₂ — новый гипогенный молибденовый минерал. — Зап. Всес. минер. об-ва, 1980, N 4.
- 3. Круглова В.Г., Рябева Е.Г., Дубакина Л.С., Потеряйкина А.А. Молибденит из кварц-полевошпатовых метасоматитов. В кн.: Мине-
- ралогия рудных месторождений. М.: Наука, 1982.
- 4. Сидоренко Г.А. Кристаллохимия минералов урана. Атомиздат, 1978.
- Philibert I. Proceedings of the Simposium on X-ray optics and X-ray microanalysis (Stanford, 1962). New-York and London, 1963.
- Robinson S.C., Sabina A.P. Uraninite and thorianite from Ontario and Quebec. Amer. Mineral., 1955, vol. 40, N 7—8.