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Crystal chemistry of REEXO, compounds (X =P, As, V).
I1. Review of REEXO, compounds and their stability fields
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Abstract: A comprehensive critical review of the phase fields, metastable modifications, solid solution ranges and phase transitions
of monazite- and zircon-type RE®, (X = P, As, V) compounds is given. Monazite-type REER@mpounds are stable for REE =

La to Gd and metastable for Tb to Ho; zircon-type members exist for REE = Gd to Lu, and Y, Sc. REEgxaounds with
monazite-type structure exist for REE = La to Nd, while zircon-type compounds are known for REE = Pm to Lu, and Y, Sc; no
metastable arsenate members are known. The only stable monazite-type REE®®@O,, but metastable members are known for

REE = Ce to Nd. Zircon-type REEV&xompounds are stable for REE = Ce to Lu, and Y, Sc, and metastable for REE = La. Solid
solution series are complete only if minor size differences exist betweed"RER>* cations in respective end-members. Phase
transitions occur under pressure (zireen(monazite—) scheelite) and at very low temperatures. The evaluation of the metastable
phase fields and of naturally occurring members suggests that metastable modification@f,RBEpounds can occur in nature

under certain conditions (formation at temperatures < ~200-300°C; formation via hydrated precursor phases; stabilisation by various
impurity cations).
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Introduction REEPQ materials have been proposed as important candi-
dates for host materials suitable for the stabilisation and dis-
The present article is the second part of studies of the crysgaisal of high-level nuclear wasted., Boatneret al., 1980;
chemistry of REXO, compoundsX =P, As, V). Inthefirst McCarthyet al., 1980; Pepiret al., 1981; Volkov, 1999;
part (the accompanying paper by Kolitsgtal., 2004), we Meldrumet al., 2000; Ewing, 2001; Ewing & Wang, 2002).
present data on the paragenesis and crystal structure dfwthermore, REEP{rompounds show intense blue pho-
phosphatian gasparite-(Ce) [ideally CeAf®om Kese- toluminescenceegg., Aia, 1967), and they are promising
bol, Sweden. Apart from the important role of phosphatecintillators, especially if doped with Ce, Eu or Sex,
members in the geosciences, all REE;, compounds are Lempickietal., 1993, Wojtowiczt al., 1995; Mosest al.,
also of increasing importance in several related fields df998). GdPQis an excellent candidate for a chemically
science. The physico-chemical properties of monazite-tystable, water-insoluble neutron absorber for inclusion in
synthetic REEPQcompounds have been studied in somspent nuclear fuel canisters (Lessing & Erickson, 2003). In-
depth in the last two decades. These phosphates are ntarestingly, both REEPOphases and their arsenate and
toxic, and LaPQ-Al ,O; composite ceramics with excellentvanadate analogues were found to be ferroelectrics for most
high-temperature properties, and high damage tolerand®:E membersgg., Ismailzadeet al., 1980, 1981; Kurba-
machinability and oxidation resistance have been charactev et al., 1982; Huret al., 1990). Nd-doped YVQis one
rised €.g., Daviset al., 1998, 2000; Marsha#t al., 1999, of the mostinteresting laser hosts for micro and diode-pum-
and references therein). Similarly good high-temperatugged solid state lasers.§., Guillot-Noel et al., 2000). Re-
properties are known for the zircon-type REERBIikichi  cently, REEVQ materials were reported to be efficient for
et al., 1998). Freezing points for some REEPRhases the catalytic treatment of propared., Au & Zhang, 1997)
range between 1896°C (REE = Er) and 2072°C (REE = Land hydrogen sulphide (Li & Chi, 2001).
(Hikichi et al., 1979, 1987; Hikichi & Nomura, 1987).  The present article provides a comprehensive review of
Melting points of members along the series REEAsCthe monazite- and zircon-type phase fields (stable and meta-
(REE = La-Lu) are also very high and increase fronstable), as well as solid solution ranges and phase transitions
1830°C to 2000°C (Angapova & Serebrennikov, 1973)f REEXO, (X= P, As, V) compounds. Furthermore, impor-
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tant implications for the observation of metastable REE members containing larger REE have the monazite struc-
modifications in nature are pointed out. ture, whereas those members with smaller REE (including
Y and Sc) crystallise with the zircon-type structure. Al-
though the boundary between the structure types is usually
Review of REEXO, compounds and their assumed to lie between Gd and Tb, an assumption based on
stability fields avery early review (Carroet al., 1958, and references cited
therein), this is not generally true because the structure type
Although a large amount of literature exists on REE,  observed depends strongly on the conditions of formation
compounds (both natural asgnthetic), no up-to-date and (mainly preparation temperature and properties of the pre-
complete review is available. Furthermore, the published reursor material). This was first realised by Ivanov & Sin’ko-
ports are scattered in very different journals, and authow& (1967) who synthesised Gd-, Th-, Dy- and Ho-phos-
were often unaware of previous work, partially resulting irphates with both monazitend zircon-type structures, and
duplicate results. The present review restricts itself tooncluded thatthe main factors controlling the preference of
REEXO, compounds where REE = rare-earth elements (irthe structure type were the temperature of preparation and
cluding Y and Sc) an&X = P, As, V. Here are excluded the the pH of the solution from which the phosphates precipitat-
monazite-type compounds with the general formA¥O, ed. This dimorphismwas confirmed by later work on TQPO
whereA =divalent metal an =S, Cr, orwheré =tetrava- (Baran, 1978; Nekrasowi al., 1988) and REEP where
lent metal anX = Si, Ge €.g., huttonite, ThSiQ), and mon- REE = Gd, Tb and/or Dy (Bondat al., 1976; Kizilyalli &
azite-type YbBe[(Kdhler, 1999). Our discussion focussesiNelch, 1976; Jonasson & Yae, 1986; Hikichi, 1988; Hiki-
on the monazite-type (sometimes also referred to as huttoghi et al., 1988, 1993; Inouet al., 1993; Ushakowt al.,
te-type) and zircon-type structures (sometimes also referrd01). Earlier work by Schwarz 963a) demonstrates that
to as xenotime-type), and does not include fergusonite- antbnazite-type ThPPabove 1000°C slowlyransforms into
scheelite-typeA®*B>*O, compounds€.g., Loskutovet al.,  the zircon-type structur&ircon-type GdPQcan form upon
1977; Aldred, 1984a). Moreover, those references contaidehydration of synthetic, churchite-type GdpPZH,0 (As-
ing spectroscopic data or reportingagnetic and thermody- saaoudiet al., 2000) and has also been prepared hydrother-
namic properties are not included, except when useful fanally at 400°C (Celebi & Kolis, 2002). Flux growth of GARO
the discussion. The present review first provides a concisesulted in both monazite- and zircon-type crystals (Ushakov
summary of the stability fields among the three series @t al., 2001), and annealing of monazite-type samples in air at
REEXO, compounds, including a discussion of metastabl&600°C for 7 h did not result in a complete transformation to
phases. This review is followed laycompilation and criti- the zircon-type modificatiorHowever, according to Bondar
cal discussion of the observed solid solutions, and phastal. (1967) monazite-type GdR@ansforms into its zircon-
transitions at high pressures and very low temperatures. Bpe dimorph at ~1700°C. Hging of synthetic GAPO1H,0
nally, important implications for occurrences of REB, inflowing air to temperaturebetween 800 and 1400°C yield-
compounds in natural emenments are discussed. ed only monazite-type GdRQalthough differential thermal
analysis showed small peaks in th200-1250°C range, that
could possibly indicate a reversible, very rapid monagzite
REEPO,, REEASO, and REEVO, compounds zircon phase change (Lessing &iékson, 2003). Thus, the
data on GdP@Qare inconclusive.
The crystal chemistry dREEPO, compounds was investi-  Nonetheless, a general observation of the authors of the
gated by a multitude of authors (Mooney, 1948, 1956; Cacited articles was that the “metastable” monazite-type modi-
ronetal., 1958; Schwarz, 1963a; Feigelson, 1964; Wedpel fications always transformed to the stable zircon-type modi-
al., 1965a and b; Ivano& Sin’kova, 1967; Patscheletal., fications after heating between approximately 300 and
1968; Hintzmann & Miuller-Vogt, 1969; Kuznetsat al., 1100°C. No thermodynamically corroborated transition
1969; Repkeet al., 1971; Jaulmes, 1972; Wanklyn, 1972;temperatures are known yet. However, recent accurate mea-
Lohmilleret al., 1973; Ropp & Carroll, 1973; Hikichi & surements of the enthalpies of formation for all REEPO
Hukuo, 1975; Bondaet al., 1976; Kizilyalli & Welch, compounds (Ushakost al., 2001) show that the enthalpy
1976; Baran, 1978; Hikichét al., 1978; Orlovskiiet al., values become more negative with increasing REdnic
1978; Yurchenkeet al., 1978; Beallet al., 1981; Pepin & radius; from these results, the authors concluded that the
Vance, 1981; Milligaret al., 1982, 1983a, b and c; Aldred, monazite structure is thermodynamically metastable for
1984a, b andc; Mullicatal., 1984, 1985a and b; NekrasovaTbPQ, and DyPQ, and that the change of structure from zir-
et al., 1985; Jonasson & Vance, 1986; Kurbaneival., con-type to monazite-type doest significantly affect the
1986; Mullicaet al., 1986b; Hikichi, 1988; Hikichet al., energetic trend. The latter observation is explained by the
1988; Jonassoet al., 1988; Nekrasovet al., 1988; Ruden- close relation between the monazite and zircon structures
koetal., 1988; Montekt al., 1989; Hikichi, 1991; Hikichet  (for details see Nét al., 1995; Boatner, 2002).
al., 1990, 1991, 1993; Inoust al., 1993; Rasmusseat al ., There exists a much smaller number of previous studies
1993; Niet al., 1995; Rosenblum & Fleischer, 1995; Hiki- onREEASO, compounds. These studies all agree that only
chi, 1996; Hikichiet al., 1997; Bernhardt al., 1998; Hiki- the members with La, Ce, Pr and Nd have the monazite
chi, 2001; Ushakowt al., 2001; Boatner, 2002; Celebi & structure, whereas the remaining members (REE = Pm-Lu,
Kolis, 2002; M&loet al., 2002; Donovaret al., 2003; Les- Y, Sc) crystallise in the zircon-type structure (Durif & For-
sing & Erickson, 2003). There is general agreement that that, 1957; Carroet al., 1958; Schwarz, 1963a and b; Weigel
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& Scherer, 1967; Feigelson, 1967; Hintzmann & Miiller-
Vogt, 1969; Lohmilleet al., 1973; Ropp & Carroll, 1973,;
Angapova & Serebrennikov, 1973; Escobar & Baran, Monazite-type Zircon-type
1978a; Smithet al., 1978; Gabisoniya & Nanobashvili, x=p { ——————mouuueo - - - -
1980; Botto & Baran, 1982; Wanklet al., 1984; Mullicaet
al., 1986b; Choudhary, 1991; Choudhary & Yadav, 1992,
Brahimet al., 2002). Specifically, for NdAs@no evidence y - pq |
for a (high-temperature) zircon-type modification was
found even when REEAs@nembers were precipitated at
low-temperatures, or prepared by dehydration of REE arse-
nate hydrates (Durif & Forrat, 1957; Schwarz, 1963b; AnX=V | mz=====-
gapova & Serebrennikov, 1973; Escobar & Baran, 1978a).
Because these low-temperature techniques of preparation
usually lead to metastable modifications (compare the LM S S s s e s e e e e
above data on REEP@nd below on REEV(), Escobar & Z 57 58 59 60 €1 62 63 64 65 66 67 68 69 70 7
Baran (1978a) pointed out that the behaviour of the REE- La Ce PrNd PmSmEu Gd Tb Dy Ho Er TmYb Lu
AsQ, compounds is surprisingly different from those of the Y
REEPQ compounds. Consequently, it has been predictedy. 1. Stability fields of the monazite and zircon structure types
that only PmAsQ exhibits dimorphism (Escobar & Baran, among REKXO, (X = P, As, V) compounds (dotted lines = metasta-
1978a; Ropp & Carroll, 1973), although so far only a zirconble regions). Note that Y (Z = 39) is grouped with Ho becaude Y
type modification of PmAs©has been reported (Weigel & and H&"* ions have nearly identical radii. Sc (Z = 21) is not shown
Scherer, 1967). because it yields only zircon-type compounds. Data on the stable
REEVO, compounds have been studied by a large nunfrgh-temperature modification of GdR@re inconclusive (see text).
ber of authors (Milligaret al., 1949; Milligan & Vernon, PmAsQisassumed to be dimorphous but at present only the zircon-
1952; Milliganet al., 1953; Durif, 1956; Carrogt al., 1958; type modification is known (see text).
Naumov, 1962; Gambino & Guare, 1963; Schwarz, 1963a;
Brixner & Abramson, 1965; Baglio & Gashurov, 1968; Fei-
gelson, 1968; Patschekeal., 1968; Hintzmann & Miller- type (Okaet al., 2000). Ongoing work on a new mineral
Vogt, 1969; Yoshimura & Sata, 1969; Sato & Utsunomiyawith a near-end-member La\j@omposition (La-analogue
1970; Baglio & Sovers, 1971; Baran & Aymonino, 1971;of wakefieldite-(Ce); work by Witzke, Kolitsch and co-
Brussegtal., 1971; Fuess & Kallel, 1972; Glazyrin & Bori- workers) showed that it has the zircon structure type. Very
senko, 1972; Lohmiilleat al., 1973; Ropp & Carroll, 1973; recently, Varmaet al. (2002) synthesised mixed orthovana-
Bazuevet al., 1974; Smithet al., 1974; Rice & Robinson, dates La,CeVO, by solid-state reaction at 600°C, and
1976; Bazueet al., 1978; Escobar & Baran, 1978b; Rykovademonstrated that a monazite-type LaVjghase was re-
etal., 1979; Udalov & Appen, 1982; Aldred, 1984b, c; Dab-tained for the samples with x 0.2, while the zircon-type
kowskiet al., 1985; Baudracco-Gritst al., 1987; Chakou- CeVOQ, was stabilised for x- 0.5. In the intermediate range
makoset al., 1994; Howardkt al., 1995; Osawat al., 1996; 0.2<x<0.5, both LaV@and (zircon-type) Lg-Cg, VO, co-
Mullica et al., 1996b; Damoret al., 2002; Schmidgt al.,, existed.
2002; Varmeet al., 2002). There is general agreement that On the basis of available data on REE, (X =P, As, V)
LaVO, prepared by high-temperature solid-state synthesidmpounds, it is possible tmnstruct a schematic diagram
or flux growth, is the only REEVQcompound crystallising showing (meta-)stability fields of the monazite and zircon
in the monazite-type structure, whereas all other REE merstructure types (Fig. 1), thallews the following important
bers (Ce-Lu, Y, Sc) exhibit the zircon-type structure. Howeonclusions: (i) within a single series of REE phosphates,
ever, monazite-type REEVAREE = Ce, Pr, Nd) could be arsenates or vanadates, the monazite structure type is stable
obtained by the atmospheric oxidation of the correspondirfgr the large(r) REE* cations, whereas the small(er) REE
REEVQO,; compounds at 350-400°C (Bazuetval., 1974). cations form the zircon structure; (i) the stability field of the
Similarly, metastald monazite-type CeVfwas observed monazite structure type in RE®, (X = P, As, V) com-
by Yoshimura & Sata (1969) as an oxidation product of Cegounds narrows with increasing size of %K®, group (Fig.
VO,. It was also reported that the structure of LaMd®- 1). This structural influence of th¥O, group is in agree-
pends on the mode of preparation (Ropp & Carroll, 1973nent with earlier conclusions of Losuteval. (1977) that
Bazuewt al., 1974; Escobar & Baran, 1978b); for examplean increase of the ionic radius of téeatom inAXO, com-
Ropp & Carroll (1973) observed that Lay@recipitated pounds ultimately leads to the structure types of scheelite
from solution has the zircon-type structure, but after heatirgnd, for very largeX atoms, of wolframite; (iii) metastable
above ca. 300°C converts into the monazite-type form. Dghase fields are evident for the areas left and right of the
mon et al. (2002) even observed that the pH of solutionsnonazite-zircon structure-type ‘boundary’ (Fig. 1). These
from which LaVQ, is precipitated, has an influence on themetastable regions are largest for the phosphates and absent
structure of the precipitate: single-phase monazite-type L&or the arsenates. Ropp & Carroll (1973) found, in an early
VO, only crystallised at pH =9, whereas at pH = 5-8 a mixeomparison of the (then known) dimorphic forms of REE
ture of both monazite-type and zircon-type LayMas ob- XO, compoundsi(e., TbPQ, and LaVQ), a linear correla-
tained. Hydrothermally synthesised Lay®as the zircon- tion between the REE radius and thex* radius of the
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(XO,)* tetrahedral oxyanion rather than with tkeO bond system (Ce,Y)PQ(Gratz & Heinrich, 1997) reported a tem-
length or the tetrahedral volume of the oxyanion. The obseperature-dependent miscibility gap; as expected, the solu-
vation of Ropp & Carroll (1973) was based on the assumbility of YPO, in CePQ was considerably higher tharce-
tion that PmAsQis also dimorphic. However, the existenceversa. The REE partitioning in hydrothermally synthesised
of monazite-type PmAsghas not been demonstrated yet. (Y,REE)PQ solid-solution phases (monazite-xenotime
No reliable thermodynamic data for the REEAs@  pairs) was investigated by Andre & Heinrich (1998) who
REEVQ, series have been reported yet, although calculatedted a pronounced influence of REHonic radius and
values for standard thermodynamic functions for the arseemperature. The occurrence of both monazite- and zircon-
nate members are given by Kasenov & Sharipova (1991gpe phases in mixed orthovanadates_jGe VO, (Varma
and b, 1994). etal., 2002) has already been noted above. The three papers
The known mineral species representative of the REjHst mentioned represent rare examples of more comprehen-
phosphate, arsenate and vanadate series are the five maiee studies of the accurate solid solubility limits in REE
zite-type minerals monazite-(La), -(Ce), -(Nd), -(Sm) (MaXO, solid solutions. The available data demonstrate that, in
sauet al., 2001, 2002) and gasparite-(Ce), and the six ziigeneral, the larger the difference in radii of the two REE
con-type species xenotime-(Y), -(Yb), pretulite [SGRO ionsinagiven (REE,REEXO, system, the lower the extent
chernovite-(Y) [YAsQ], and the very rare vanadate mem-of mutual REE substitution. A higher level of both HREE
bers wakefieldite-(Y) and -(Ce). substitution in monazite phases and LREE substitution in
xenotime phases was found in synthetic samples heated to
1500°C (Van Emdermt al., 1998). Interestingly, synthetic
Solid solutionsin the systems REEXO, (X = P, As, V) xenotime phases containing Y in combination with smaller
LREE, which were heated at 1500°C, show some evidence
Synthetic solid solutions in the systems REE, (X=P, As, of REE cationic ordering, but this behaviour has not yet
V) have been studied by a relatively small number of auseen well characterised (Van Emdatal., 1998). No anion-
thors, based on samples prepared by different methods.ordering has been described so far for synthetic REE-
These studies predominantly involved material in which ei0Q,,VO,) solid-solution members (seeg., the detailed
ther one specific REE oX atom was replaced by another.study of Aldred, 1984c).
Feigelson (1967) prepared (REE,REE)As@nd REE- Natural occurrences representative of the solid solution
(As,P)Q, compositions by the flux method. He observederies between xenotime-(Y) [YROand chernovite-(Y)
that a zircon-type modification of NdAsQnot stable if [YAsO,] are known from the famous Binn Valley, Valais,
chemically pure, see previous section) can be stabilisedSiwitzerland €.g., Graeseet al., 1973; Graeser, 1995; Grae-
Smiis allowed to substitute for Nd, as testified by the growteer & Albertini, 1995). In our accompanying paper (Ko-
of zircon-type N gSm, 3sASO, crystals. Flux-grown zir- litschet al., 2004) we have shown that a gasparite-(Ce) [ide-
con-type Dy(AsV,.,)0, crystals were characterised by Ta-ally CeAsQ] from Kesebol, Sweden has more than 10 % of
ylor et al. (1990) who noted highly homogeneous chemicats As substituted by P. Apparently, no comprehensive or
compositions. Tananaeat al. (1971) synthesised various systematic studies of the quantitative influence of g-PO
mixed (LREE,HREE) phosphate members also by the fluksO, substitution on the resultingtructure type for REE-
method, and observed a limited substitution of Nd int¢As,P)Q, solid solutions have been conducted yet.
YPO,, synthetic xenotime-(Y). A study of the system
YVO,-YPO, revealed a complete solid-solution range and
strict adherence to Vegard's law (Ropp & Carroll, 1975). IlReported phase transitions
a series of papers, Mullica and co-workers synthesised vari-
ous mixed (REE,REE")POmembers with fixed stoichiom- At elevated pressures REE phosphates show no change in
etries (REE:REE’=1:1 or 3:1) (Mullicet al., 1986a, 1990, structure type, whereas the majority of the investigated REE
1992, 1996a). arsenates and vanadates undergo a reconstructive transfor-
In all these cases, the symmetry of the solid-solutiomation from the zircon-type structure (space grodpamd)
members was that expected from the known solid solutidn a scheelite-type structure (space grbdpa) (REEASQ,
ranges for the monazite and zircon types and the averagewdiere REE = Sm-Lu, and REE\;@vhere REE = Pr-Lu, Y;
dius of the atoms on the REE site. When several REE weBtubican & Roy, 1963a and b; Jayarametnal., 1987;
allowed to simultaneously substitute for Ce in CgR@eal Range & Meister, 1990). A monazite scheelite transfor-
solid-solution behaviour and adherence to Vegard’s lamation has been observed for PrAsiid NdAsQ (Stubi-
were observed (Nekrasov & Novikov, 1991). Similar obserean & Roy, 1963a), whereas a zircenmonazite— schee-
vations were also made for the complete isostructural soliife transformation has been reported for CeMRangeet
solution series Ngvb, VO, (x=0-1) (Glazyrin & Borisen- al., 1990). Interestingly, scheelite-type NdAsBas also
ko, 1972), the system REE(W,_)O, (Aldred, 1984c), the been prepared from componentoxides at 550°C in an evacu-
zircon-type Dy(AsV,.,)O, crystals (Tayloet al., 1990), as ated silica ampoule (Mazheneval., 1988).
well as the series G&d, PO, (Gratz & Heinrich, 1998). Several zircon-type REEAsQand -VOQ, compounds
When the end-members are not isostructural, restrictstiow phase transitions below 20 K and interesting magnetic
solubility ranges are observed. For the systerproperties; low-temperature studies on SmAIQYAsQO,,
REE(V,P,.)O, these ranges and their systematic changebAsQO,, TbVO, and DyVQ, and their cooperative Jahn-
were characterised by Aldred (1984c). A recent study of thEeller phase transitions were reported by a number of au-
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thors such as, for instanc&orsyth & Sampson (1971), possible presence of commonly observed impurity elements
Klein et al. (1971), Schafer & Will (1971), Willet al. such as Ca, U, Th, Si, etc. in natural samples (see, for in-
(1971), Gobel & Will (1972a and b), Wilet al. (1972), stance, Demartirt al., 1991a and b, the compilations by
Berkhahnet al. (1973), Harleyet al. (1974), Wappler Rosenblum & Fleischer, 1995, and Boatner, 2002, and refer-
(1974), Long & Stager (1977), Domann & Kasten (1979)ences therein). The natural occurrence of an Y-dominant,
Schéafer & Will (1979), Paget al. (1979), Domanret al. monazite-type (Y,REE)PQmineral might be possible, be-
(1980), Kasten (1980), Nagedeal. (1980) and Pagetal. cause metastable monazite-type compounds such as syn-
(1984) (see also Bowden, 1998, Chakrabeirtl., 1999, thetic DyPQ and HoPQhave been reported (see above and
Kirschbaumet al., 1999, Bleaney, 2000, and referencesig. 1), and because®Yand HG* (and Dy?*) ions have near-
therein). These studies show that the low-temperature modji-identical ionic radii.
fication of DyAsQ, crystallises in space groupnma, and The obvious third implication ithat the substitution of
that of TbAsQ in Fddd. A Jahn-Teller induced phase transi-one or morex®* cation for a differently size®* cation
tion of TbVO, at 33 K toFddd has recently been reported bycould result in similar stabilisation effects. Again, the influ-
Kirschbaumet al. (1999). ence of additional impurity elements on tKesite €.g., Si

and S) has to be taken into account.
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