АКАДЕМИЯ НАУК СССР

Вып. 24

Труды минералогического музея им. А. Е. Ферсмана

1975

Ответственный редактор д-р геол.-мин. наук Г. П. Барсанов

3. В. ВРУБЛЕВСКАЯ, И. С. ДЕЛИЦИН, Б. Б. ЗВЯГИН, С. В. СОБОЛЕВА

СТРУКТУРНО СОВЕРШЕННЫЙ КУКЕИТ, ОБРАЗОВАВШИЙСЯ ПРИ ИЗМЕНЕНИИ БОКСИТОВ

В отличие от широко распространенных в природе триоктаэдрических хлоритов, диоктаэдрические и дитриоктаэдрические хлориты являются сравнительно редкими слоистыми силикатами, в связи с чем они представляют значительный кристаллохимический и генетический интерес. В этом отношении особенно примечателен дитриоктаэдрический Li-хлорит,— кукеит, обнаруженный в бокситах Джалаирского месторождения. Он оказался уникальным по степени совершенства своей кристаллической структуры, что позволило раскрыть его политипное своеобразие, и приурочен к завершающей стадии интересного процесса трансформации вещества в бокситовой породе.

Боксит Джалаирского месторождения залегает в зоне континентального перерыва между нижним и средним карбоном. Известняки, подстилающие боксит, подверглись некоторому закарстованию. Образовавшиеся при этом небольшие карстовые полости впоследствии были выполнены бокситовым материалом, образующим пластоподобные тела с утолщениями в местах карстовых полостей и с полным выклиниванием в местах выступов нерастворенного известняка. После образования бокситовая толща была прикрыта более молодым среднекарбоновым известняком.

Вся толща впоследствии подверглась значительному метаморфизму. В результате известняк мраморовался, а боксит частично перешел в наждак. В настоящее время бокситовый пласт образует ряд разобщенных участков мощностью до 3 м. На одном из этих участков, около нижнего контакта (в зоне мощностью до 40 см) боксит оказался раздробленным на блоки размером до 10 см.

Трещины и стыки между этими блоками выполнены пирофиллитом. В частных случаях развитие пирофиллита идет столь интенсивно, что блоки боксита, частично превращенного в наждак, оказываются заключенными в ячейках пирофиллитовой сетки.

В образцах этого участка (боксит бурый, плотный, бобовой структуры), любезно представленных для исследования А. П. Гапеевым, ИГЕМ АН СССР, агрегат чешуек бледно-зеленого пирофиллита имеет четкую ориентировку — чешуйки пирофиллита длиной до 4 мм, обычно ориентированные перпендикулярно зальбандам трещин. Согласно электронограммам от текстур, этот пирофиллит относится к распространенной в природе модификации 2М (Звягин и др., 1969). В образцах обнаружились четко выраженные маломощные поверхности скольжения, развитые в пирофиллитовом материале. Направление их развития обычнобыло кососекущим по отношению к закономерной ориентировке длинных осей агрегатов пирофиллитовых чешуек. Слагающий эти зоны материал достаточно резко отличается от пирофиллита как цветом (белый — голубовато-серый), так и текстурой (от мелкозернистой до макроскопически скрытокристаллической). При электронографическом изучении этого материала из локальных зон скольжения были получены чрезвычайно четкие и богатые рефлексами электронограммы от текстур, расшифровка которых и показала, что данное вещество представляет собой дитриоктаэдрический хлорит с упорядоченной структурой, свойственной определенной политипной модификации этого минерала.

В связи с тем, что в структурах хлоритов чередуются слои двух разных типов (трехэтажные и одноэтажные, условно обозначаемые 2:1 и 0:1), которые могут по-разному смещаться относительно друг друга и иметь разные относительные ориентировки, для этих минералов, в принципе, возможно исключительное разнообразие политипных модификаций. Их подразделяют на шесть групп. В пределах каждой структуры могут различаться смещениями слоев и сеток в направлении оси b, кратными b/3, и каждая группа характеризуется определенной проекцией на плоскость ас. Если смещения по оси b в них распределены беспорядочно, то такие политипные модификации называются полубеспорядочными (Bailey, Brown, 1962). В действительности, наблюдались, как правило, именно такие модификации, причем из шести возможных чаще всего только одна — из пакетов о (пакет определяется комбинацией пары смежных слоев 2:1 и 0:1 и задается смещениями двумерных сеток многогранников σ_i, τ_k, относительной ориентировкой слоев пакета и характером наложения их катионов (Звягин, 1964). Некоторые полубеспорядочные политипные модификации (из пакетов σ', σ' |, |σ' |) встречаются значительно реже, а политипные модификации из пакетов | σ |, σ | не наблюдаются вовсе (в пакетах σ' октаэдры слоев 2:1 и 0:1 имеют одинаковые, а в пакетах о — противоположные ориентировки; вертикальная черта обозначает такое смещение слоев 2:1 и 0:1 в пакетах, при котором смежные октаэдрические и тетраэдрические катионы находятся на одной вертикали).

Упорядоченные политипные модификации встречаются весьма редко, причем обычно они представлены в монокристаллах и более вероятны для диоктаэдрических и ди-триоктаэдрических хлоритов. В табл. 1 перечислены упорядоченные политипные модификации хлоритов, описанные в литературе, а также и для исследованного в данной работе кукеита.

В практике электронографической лаборатории ИГЕМ АН СССР изучались образцы диоктаэдрических и ди-триоктаэдрических хлоритов из разных месторождений Советского Союза и других стран. Согласно распределению интенсивностей рефлексов с k=3n, в большинстве случаев они состояли из пакетов $|\sigma'|$, реже из пакетов σ . Рефлексы с $k \neq 3n$, указывающие на упорядоченность структуры, были видны с различной степенью четкости, однако недостаточной для идентификации политипных модификаций. Образец хлорита, обнаруженный в бокситах Джалаирского месторождения, в этом отношении существенно отличается. Он обладает значительно более упорядоченной кристаллической структурой, и его электронограммы предоставили благоприятную возможность точного анализа геометрии решетки и надежного определения политипной модификации.

На первый взгляд казалось, что геометрия электронограмм (рис. 1) удовлетворяет «моноклинному» закону расположения рефлексов, согласно которому их высоты (расстояния от малых осей эллипсов) D = hp + lq ($p \sim a^* \cos\beta^*$, $q \sim c^*$), причем $p/q \neq \frac{1}{3}$. В связи с последним об-

Электронограмма от текстуры кукеита при угле наклона $\phi = 60^\circ$

стоятельством, на первом эллипсе рефлексы 021, 111 располагаются не-

равномерно, а на втором эллипсе рефлексы 201, 131 сгруппированы в тесные четверки (Звягин и др., 1972). При анализе значений D выяснилось, однако, что отношения p/q, найденные по рефлексам первого и второго эллипсов, имеют разные значения, первое из которых (0,305) меньше, а второе (0,375) больше, чем 1/3. Из них получаются два разных значения β, противоположным образом отклоняющиеся от идеального значения β , при котором p/q = 1/3; $c \cos \beta/a = -1/3$. Это парадоксальное положение было разрешено следующим образом. По значениям р, q, полученным из высот D рефлексов первого эллипса, были вычислены высоты D для рефлексов второго эллипса и сопоставлены с их экспериментальными значениями. Выяснилось, что по степени согласия этих величин существенно различаются внутренние и внешние рефлексы упомянутых четверок. Принимая во внимание, что рефлексы второго эллипса могут иметь индексы hk, равные 20 или 13 (с переменой знаков), можно придти к заключению, что такой характер расхождения вычисленных и измеренных значений D вызван небольшой триклинностью ячейки, при которой не только p, но и $s \sim b^* \cos \alpha \neq 0$ и D = hp + ks + lq. Триклинность ячейки не сказывается на позициях рефлексов с k=0 и влияет на позиции рефлексов с $k\neq 0$ тем сильнее, чем больше индекс k. Расщепление рефлексов при $k \neq 0$ должно привести к увеличению их числа в интервале $\Delta D = q$. Однако если *s* мало, оно может и не проявиться. Если при этом $|F_{hhl}| \ll |F_{h\bar{h}l}|$, то неравенство $s \neq 0$ может сказаться лишь в некотором смещении рефлекса относительно теоретического положения для моноклинной решетки. В силу этих причин, анализ высот D рефлексов первого эллипса (k=1,2) дал грубые, но приблизительно достоверные (по характеру отношения p/q) значения p, q. Так как отношение p/q < 1/3, то в «моноклинных» четверках второго эллипса внешние рефлексы должны иметь индексы 13l, I.3.l+1, а внутренние — 2.0.l+1, 20l. При $s \neq 0$ каждый из рефлексов 13l расщепляется на два рефлекса с противоположными по знаку индексами k,

З Новые данные, вып. 24

Символическая запись	Ди—три	Число сло- ев на пери- од	Симметрия	Обозначение образцов	Источник
OsTeOs	три	1	C2/m	Хлорит В	Brindley et. al., 1950.
-0-0-0	три	1	C2	Хлорит	Steiniink, 1958
$\sigma'_{3} \tau_{+} \tau_{-} \sigma'_{3}$	ди	1	C2	Донбассит	Дриц, Александрова, 1968
	три	1	CĪ	Хлорит	Звягин, 1963,
$\sigma_4 \tau_2 \sigma_4$	три	1	C1	Хлорит	Brindley et. al., 1950
	три	1	C1	Хлорит А	Steinfink, 1958
$\sigma_5 \tau_{-} \sigma_5$	три	1	CĪ	Cr-хлорит	Bown, Bailey, 1967
$\left \sigma_{5}^{'}\right \tau_{+}\tau_{+}\left \sigma_{5}^{'}\right $	ди-три	1	CĪ	Кукеит	Данная работа
14214113	три	2	C2/c	Кукеит 2	Lister, Bailey, 1967
$\left \mathcal{O}_{6} \right ^{\tau} - \left \mathcal{O}_{6} \right ^{\tau} + \left \mathcal{O}_{6} \right $	три	2	C2/c	Вермикулит s	Shirozu, Bailey, 1966
$\sigma_3 \tau_1 \sigma_3 \tau_5 \sigma_3$	ди-три	2	C2/c	Донбассит	Дриц, Лазаренко, 1967
$\sigma'_{4}\tau_{+}\tau_{+}\sigma'_{2}\tau_{-}\tau_{-}\sigma'_{4}$	ди	2	C2/c	Донбассит	Дриц, Лазаренко, 1967
$\left \sigma_{1}^{'}\right \tau_{-}\left \sigma_{5}^{'}\right \tau_{+}\left \sigma_{1}^{'}\right $	три	2	Cı	Вермикулит	Mathieson, Walker, 1954
$\sigma'_4 \tau_+ \sigma'_6 \tau_+ \sigma'_4$	ди-три	2	C1	Кукеит 1	Lister, Bailey, 1967
$\sigma_{e} \tau_{2} \sigma_{5} \tau_{3} \sigma_{e}$	три	2	C1	Сг-хлорит	Lister, Bailey, 1967
$\sigma_3 \tau_5 \sigma_5 \tau_5 \sigma_3$	три	2	C1	Хлорит С	Brindley et. al., 1950
$\sigma_3 \tau_3 \sigma_1 \tau_5 \sigma_1 \tau_3 \sigma_3$	три	3	C1	Хлорит D	Brindley et. al., 1950

Таблица 1 Экспериментально идентифицированные политипные модификации хлоридов

причем от исходного положения один из них отдаляется, а другой приближается на величину $\Delta D = 3s$ по отношению к рефлексам 20l.

В итоге в каждой группе должно образоваться 6 рефлексов, но чтобы их различить, необходимо достаточное разрешение рефлексов 20*l* и приблизившихся к ним внутренних рефлексов 13*l*. В противном случае,

приолизившихся к ним внутренних рефлексов 13*г*. В противном случае, по-прежнему наблюдаются четверки рефлексов, создавая впечатление о моноклинности решетки. Нетрудно убедиться, что при $p = q/3 + \delta$ и $s = \pm \delta$ имеет место полное совпадение указанных рефлексов 20*l* и 13*l*. Из высот рефлексов второго эллипса получается достоверное значение *q* и кажущееся значение $p' = q/3 \pm \delta'$, где $\delta' = 2\delta$. Как по положениям, так и интенсивностям одиночные рефлексов 13*l* кажутся рефлексами 20,

а совпадающие рефлексы — рефлексами 13/.

Поскольку на основании наблюдаемости четверок на втором эллипсе еще нельзя быть уверенным в точном совпадении рефлексов 20*l* и части рефлексов 13*l*, за основу дальнейшего расчета электронограмм можно было принять то достоверное обстоятельство, что внешние рефлексы «четверок» являются одиночными, их позиции не искажены, и они имеют индексы 13*l*, 1.3.*l*+1. По высотам этих рефлексов можно было найти более точные значения *q*, например, согласно равенству $q = (D_{13l} + D_{1.3l+1})/(2l+1)$. После этого, в результате измерения расщепления рефлексов *okl*, прилегающих к уровням D = lq (наиболее четко оно выражено рефлексами третьего эллипса 04l), было найдено значение

T	a	б.	J. I	41	19	2
---	---	----	------	----	----	---

Особе нности рефлексов второго эллипса для хлоритов из пакетов σ' , триоктаэдрических и дитриоктаэдрических, при $p=q/3$ и $p=q/3-\delta$, S=+0,016q

hkl	D/q (p/q=1/3)	Σ F² три	ΣF ² ди-три	$\begin{array}{c} D/q\\ (p/q\neq 1/3; s\neq 0)\end{array}$	d	F ³	I
130 130 201	1/3	68	129	$0,25 \\ 0,35 \\ 0,40$	$2,568 \\ 2,566 \\ 2,564$	27 27 75	20 100
$200 \overline{131} \overline{131}$	2/3	158	152	0,60 0,65 0,75	$2,556 \\ 2,552 \\ 2,546$	80 36 36	100 30
$1\overline{3}1$ 131 $\overline{2}02$	4/3	135	185	1,25 1,35 1,40	2,506 2,496 2,491	75 75 35	90 100
$ \begin{array}{r} 201 \\ \overline{132} \\ \overline{132} \end{array} $	5/3	113	142	1,60 1,65 1,75	2,461 2,459 2,448	30 56 56	30 30
132 732 203	7/3	1	15	2,25 2,35 2,40	2,378 2,361 1,351	3 3 9	5 7
$202 \\ \overline{133} \\ \overline{133}$	8/3	855	855	2,60 2,65 2,75	2,323 2,312 2,258	315 270 270	90 40
133 133 204	10/3	23	33	3,25 3,35 3,40	2 210 2,193 2,181	9 9 15	3
$ \begin{array}{r} 203 \\ \overline{134} \\ \overline{134} \end{array} $	11/3	11	13	3,60 3,65 3,75	2,147 2,138 2,120	7 3 3	1
134 134 205	13/3	56	33	4,25 4,35 4,40	2,029 2,013 2,002	8 8 17	10 15
$204 \\ \overline{135} \\ \overline{135}$	14/3	332	364	$4,60 \\ 4,65 \\ 4,75$	1,969 1,956 1,941	78 93 93	40 30
135 135 206	16/3	3	10	5,2 5 5,35 5,40	1,855 1,839 1,828	3 3 4	8
$ \begin{array}{r} 205 \\ \overline{136} \\ \overline{136} \end{array} $	17/3	9	8	5,60 5,65 5,75	1,797 1,788 1,772	0,2 4 4	5
136 136 207	19/3	34	63	6,25 6,35 6,40	1,693 1,679 1,670	26 26 11	20 20
206 137 137	20/3	640	504	$6,60 \\ 6,65 \\ 6,75$	1,642 1,632 1,619	136 184 184	40 30
137 137 208	22/3	146	125	7,25 7,35 7,40	1,548 1,536 1,527	50 50 25	30 35

3*

Таблица 2 (окончание)

ø

hkl	$ \begin{array}{c} D/q \\ (p/q=1/3) \end{array} $	ΣF ² три	Σ <i>F</i> ² _{ди-три}	$\begin{array}{c} D/q\\ (p/q\neq 1/3; S\neq 0)\end{array}$	d	F ²	I
207 138 138	23/3	17	21	7,60 7,65 7,75	1,503 1,495 1,482	15 4	5
138 138 138 209	25/3	51	44	8,25 8,35 8,40	1,432 1,421 1,410 1,403	4 10 10 24	5 15 15
208 139 139	26/3	17	8	8,60 8,65 8,75	1,381 1,373 1,363	2 3 3	10
$1\overline{39}$ 139 $\overline{2}.0.10$	28/3	495	364	9,25 9,35 9,40	1,303 1,299 1,293	130 130) 104{	20 30
$\begin{array}{c} 209\\ \overline{1}.\overline{3}.10\\ \overline{1}.3.10 \end{array}$	29/3	73	67	9,60 9,65 9,75	1,273 1,263 1,258	17) 25) 25	15 5
$\begin{array}{c} 1.\overline{3}.10\\ 1.3.10\\ \overline{2}.0.11 \end{array}$	31/3		3	10,25 10,35 10,40	1,211 1,203 1,196	1 1 1	10 5
$\begin{array}{c} 2.0.10\\ \overline{1}.\overline{3}.11\\ 1.3.11 \end{array}$	32/3		15	10,60 10,65 10,75	1,180 1,174 1,166	7 4 4	7 5

 $s = (D_{okl} - D_{o\bar{k}l})/2k$. После определения величин q, s не составило труда вычислить p, воспользовавшись достоверно несовпадающими рефлексами второго эллипса. Так разность высот крайних рефлексов каждой четверки составляет $\Delta = q + \sigma_s - 2p$ и $p = (q + 6s - \Delta)/2$.

В итоге были установлены следующие соотношения: p=0,297q, $\delta=0,036 q$, s=+0,016 q, $s=-0,45 \delta$, которым соответствует элементарная ячейка: a=5,14, b=8,90, c=14,15 Å, $\alpha=90^{\circ}35'$, $\beta=96^{\circ}12'$, $\gamma=90^{\circ}$. Малые для слоистых силикатов значения a, b и, кроме того, соотношения интенсивностей рефлексов шестого и седьмого эллипсов, указывают на то, что данный однопакетный и триклинный хлорит может быть ди- и дитриоктаэдрическим. И в действительности, при пересчете данных химического анализа (приведенных ниже) для него была получена структурная формула почти дитриоктаэдрического хлоритя (Li_{0,7} Al_{2,1})_{2,8} (Al_{1,86} Fe³⁺_{0,09} l_{1,99} [Si_{3,38} Al_{0,62}]_{4,0} O_{10,35} (OH)_{7,65}, состоящего из диоктаэдрического трехэтажного слоя (степень заселения октаэдров 1,99) и почти триоктаэдрического одноэтажного слоя (степень заселения октаэдров 2,8).

Данные	химического анализа	Джалаирского	кукента	
SiO ₂	38,26%	FeO	0,48	
Al_2O_3	44,28	Li ₂ O	2	
Fe ₂ O ₃	1,31	H_2O^+	$\frac{13}{99,35}$	
Аналитик	Р. Л. Телешова.			

В соответствии с распределением интенсивностей рефлексов второго эллипса, исследованный кукеит относится к хлоритам из пакетов | σ' |. В табл. 2 даны приближенные интенсивности, оцененные

и Дифракционные признаки трех политипных модификаций дитриоктаэдрического хлорита из пакетов |σ'|

	ΣΙ	72	-			Ι	
hkl	C2/m	C2	F ^s Cl	D/p	d		
020 020	580	380	$^{0,2}_{0,2}$	$-0,032 \\ 0,032$	4, 450 4, 450	50	
110 110	112	42	0,2 130	0,28 0,31	4,433 4,428	90	
111 111	166	72	170 25	0,69 0,72	4,349 4,340	90	
021 021	40	127	70 80	0,97 1,03	$4,256 \\ 4,231$	85	
111 111	15	86	220 19	1,28 1,31	$\begin{array}{c} 4,124\\ 4,109 \end{array}$	90 5	
112 112	240	420	16,0 12,2	$\substack{1,69\\1,72}$	3,926 3,910	20	
022 022	14	68	18,2 18,5	$\substack{1,97\\2,03}$	3,778 3,744	90 5	
112 112	32	106	45 58	2,28 2,31	3,609 3,591	40	
113 113	84	34	12,2 104	2,69 2,72	3,391 3,374	40	
023 023	52	18	$\begin{array}{c} 0, 2 \\ 64 \end{array}$	2,97 3,03	3,245 3,198	30	
113 113	248	152	0,0 0,6	3,28 3,31	3,088 3,071		
114 114	50	18	0,4 43,4	$3,69 \\ 3,72$	2,897 2,882	20	
$\begin{array}{c} 0\overline{24} \\ 024 \end{array}$	74	34	6,3 53,3	3,97 4,03	$\begin{array}{c}2,774\\2,746\end{array}$	2 25	
114 114	6	36	$\begin{array}{c} 23,0\\ 24,0 \end{array}$	4,28 4,31	2,645 2,631	25	
115 115	1	18	$\begin{array}{c} 66,5\\ 3,6 \end{array}$	$\begin{array}{c}4,69\\4,72\end{array}$	2,489 2,476	20	
$\begin{array}{c} 025\\ 025\\ \end{array}$	56	104	$\substack{1,5\\6,0}$	$4,97 \\ 5,03$	2,390 2,368	2	
115 115	3	21	9 42	5,28 5,31	2,285 2,275	8	
116 116	12	32	6 13	$5,69 \\ 5,72$	2,161 2,152	5	
026 026	16	4,8	29 1	5,97 6,03	2,033 2,066	6	
116 116	(7,	2,0	13 0,5	6,28 6,31	2,001 1,993	2	

37

визуально по 100-балльной шкале. Они представляют собой более детальную дифракционную характеристику хлоритов из пакетов $|\sigma'|$, так как в большинстве других случаев решетка близка к моноклинной с $\pm \pm \mp$

p/q = 1/3, и рефлексы с индексами hk 13 и 20 не разрешаются.

С периодом в один пакет возможны лишь 3 политипные модификации из пакетов $|\sigma'|$ ди- и дитриоктаэдрического хлорита, удовлетворяющие требованию однородности: $|\sigma'_{33}|\tau_0\tau_0|\sigma'_{33}|$, $|\sigma'_{33}|\tau_+\tau_-|\sigma'_{33}|$ или энантиоморфная ей $|\sigma'_{55}|\tau_+\tau_+|\sigma'_{55}|$, соответственно с симметрией C2/m, C2, C1, из которых ранее встречалась только одна с симметрией C2 (Дриц, Александрова, 1968: см. также табл. 1). Для этих структур были подсчитаны значения F^2 для рефлексов IIl, O2l (таблица 3). и выяснилось, что с наблюдаемым распределением интенсивностей хорошо согласуется триклинная (C1) структура.

Обе энантиоморфные структуры симметрии *C*1, естественно, дают одну и ту же дифракционную картину. Для них справедливо соотношение $F_{hkl} = F_{hkl}^3$, и для энантиоморфной структуры рефлексы имеют противоположный знак индекса *k*. Это означает, что если для одной структуры s > 0, то для энантиоморфной s < 0. Численные значения F^2 показали, что s > 0 и $\alpha > \pi/2$ относятся к структуре $|\sigma'_{55}|\tau_{+}\tau_{+}|\sigma'_{55}|$. Для энантиоморфной структуры $|\sigma'_{11}|\tau_{-}\tau_{-}|\sigma'_{11}|$ следовало бы выбрать правую ячейку с $\alpha = 89^{\circ}25'$.

После идентификации политипной модификации Джалаирского кукеита черты его структуры оказалось возможным узнать и в электронограммах ряда других образцов, хотя и более низкого качества. Это обстоятельство можно расценивать как признак распространенности в природе, кристаллохимического и генетического значения данной политипной модификации дитриоктаэдрического хлорита.

Что касается исследованного кукеита, то его формирование является результатом одного из заключительных этапов переработки боксита, происходившей в бокситовой толще после ее метаморфизма.

Под влиянием более позднего тектонического воздействия в сформировавшейся бокситовой толще возникали локальные зоны интенсивной мелкой трещиноватости. К ним была приурочена циркуляция растворов, обогащенных кремнеземом. Взаимодействием этих растворов с глиноземом бокситов можно объяснить образование пирофиллита по трещинам.

Образование пирофиллита может указывать, во-первых, на достаточно высокие параметры р, Т-условий происходившего минералообразования и, во-вторых, на отсутствие в растворах щелочных катионов.

Образование структурно совершенного дитриоктаэдрического хлорита — кукеита происходило в зонах поздних тектонических подвижек среди пирофиллита, в результате взаимодействия с пирофиллитом новых порций растворов, обогащенных литием.

В заключение отметим, что образование пирофиллита наблюдалось не только по макротрещинам, но и непосредственно в самом бокситовом материале по микроослабленным зонам. На последнее указывает наличие кукеита с примесью пирофиллита в боксите (в последнем случае кукеит не столь структурно совершенен, как в тектонически ослабленных зонах). В боксите, согласно петрографическому исследованию и рентгеновским данным, содержится значительное количество гематита и немного корунда. На этом основании можно заключить, что железо, практически, не участвовало в процессах, тем самым было соблюдено закономерное, для пирофиллита и кукеита, отсутствие сколько нибудь заметных изоморфных замещений Al на Fe в их структурах.

Авторы благодарны В. П. Петрову за обсуждение данной статьи.

- Дриц В. А., Александрова В. А. Структура минерала из группы донбасситов диоктаздрического хлорита с Новой Земли.— Минерал. сб. Львовск. ун-та, № 22, вып. 2, 1968. Дриц В. А., Лазаренко Е. К. Структурно-
- минералогическая характеристика донбасситов. Минерал. сб. Львовск. ун-та, № 21, вып. 1, 1967. Звягин Б. Б. К теории полиморфизма хло-
- ритов. Кристаллография, 8, № 1, 1963.
- Звягин Б. Б. Электронография и структурная кристаллография глинистых ми-
- нералов. Изд-во «Наука», 1964. Звягин Б. Б., Мищенко К. С., Соболева С. В. Структуры пирофиллита и талька в свете политипии слюдоподобных минералов.— Кристаллография, 13, № 4, 1968
- Звягин Б. Б., Федотов А. Ф., Соболева С. В., Мищенко К. С. Об отображении в электронограммах от текстур угла моноклинности слоистых силикатов.— Кристаллография, 17, № 4, 1972. Bailey S. W., Brown B. E. Chlorite poly-

typism: I. Regular and semirandom onelayer structures .- Amer. Mineralogist.

- 47, 1962. Brindley G. W., Oughton B. M., Robin-son K. Polymorphism of the chlorites.— Acta crystallogr., 3, a 3, 1950.
- Brown B. E., Bailey S. W. Chlorite poly-typism: II. Crystal structure of a onelayer Cr.-chlorite.— Amer. Mineralogist, 48, N 1—2, 1963.
- Lister J. S., Bailey S. W. Chlorite polyty-pism: IV. Regular two-layer structu-res.— Amer. Mineralogist, 52, N 7--8, 1967.
- Mathieson A. L., Walker G. F. Crystal structure of magnesium vermiculite.— Amer. Mineralogist, **39**, N 3—4, 1954.
- Shirozu H., Bailey S. W. Chlorite polyty-pism: III. Crystal structure of orthohe-xagonal iron chlorite.— Amer. Mineralo-gist, 50, N 7-8, 1965. Steinfink H. The crystal structure of chlo-
- rite. I. A monoclinic polymorph. II. A tri-clinic polymorph.— Acta crystallogr., 11, N 3, 1958.