МИНЕРАЛОГИЧЕСКИЙ МУЗЕЙ им. А. Е. ФЕРСМАНА

Труды, вып. 17

1966 г.

Редактор д-р геол.-мин. наук Г. П. Барсанов

м. д. дорфман, е. н. белова, н. и. забавникова

новые данные о рамзаите

При изучении минералогии пегматитовых тел рисчорритовой полосы Хибинского массива (М. Д. Дорфман) были обнаружены новые интересные тела с рамзаитом. Этот минерал типичен и характерен для Хибин и Ловозера, однако после сводной работы «Минералы Хибинских и Ловозерских тундр» (1937) новых сведений о нем в литературе почти не иоявлялось. Лишь в статье Е. И. Семенова и Т. П. Тихоненкова (1961) приведены результаты исследования главным образом вторичного рамзаита. При описании рамзаита мы сосредоточили внимание не только на новых минералогических наблюдениях, но и на дифрактограммах, ИК-спектрах, т. е. на новых сведениях, неизвестных ранее для этого минерала.

В процессе изучения рамзаита возникла необходимость в получении сравнительного материала. Для этой цели мы получили образцы рамзаитов из Средне-Татарского массива в Енисейском кряже (Е. В. Свешникова), из Инаглинского массива (А. Ф. Ефимов), из массива Бурпала (А. М. Портнов), из Хибинского массива (Е. И. Семенов и Б. Е. Боруцкий). Ловозерский материал был собран М. Д. Дорфманом при посещении этого массива.

Среди изучаемых пород Хибинского массива выделяются два генетических типа рамзаита: первичный и вторичный — продукт переработки титансодержащих минералов (ильменита, сфена, лампрофиллита). По времени образования оба типа относятся к низкотемпературному этапу минералообразования, но вторичный рамзаит более ранний, чем первичный.

Рамзант первичный

Рамзаит этого типа наиболее широко развит в пегматитах Цирконовой перемычки, где в результате интенсивных процессов замещения от слабо минерализованного полевошпат-нефелинового тела сохраняются лишь его периферические части или отдельные реликты.

Минерал образует удлиненнопризматические кристаллы размером до $5 \times 0.4 \times 0.2$ см. Главные формы кристаллов m(210), реже a(100) и e(221) (рис. 1). Грань s(111) видна лишь тогда, когда сохраняется головка. В направлении вытянутости кристалла грань призмы m обычно усложнена вецинальной штриховкой. Грань e развита слабо и не всегда четко выражена. Грань пинакоида a чаще всего образует узкую полоску,

но в параллельных сростках эта форма нередко развита так же сильно, как и грань m.

Иногда некоторые кристаллы обнаруживают следы деформации, выражающиеся в искривлении отдельных участков грани или всего кристалла. В отдельных случаях на грани *m* наблюдаются следы роста, напоминающие скелетные кристаллы.

Рамзант находится в тесной ассоциации с натролитом и темно-зеленым эгирином. Как правило, он приурочен к периферическим участкам крупнозернистых скоплений натролита или к округлым выделениям мелкозернистого натролита. Содержание рамзанта в направлении к внешним зо-

10

Рис. 1. Кристалл рамзаита (по В. И. Герасимовскому) нам натролитовых образований в интервале 2—5 см быстро увеличивается. Здесь в наиболее удаленных от периферии участках зерна рамзаита обычно неправильных очертаний. Хорошие кристаллы образуются лишь в пустотах. Часто можно наблюдать, как через два соседних «шарика» натролита проходит длинный кристалл рамзаита (рис. 2).

Сопровождающий рамзаит эгирин также длиниопризматического облика и примерно таких же, как рамзаит, размеров. По-видимому, оба минерала образовались в близких условиях, так как находятся в тесном срастании. Случаи, когда на несколько более крупных кристаллах пироксена нарастают кристаллы рамзаита, указывают, по-видимому, на то, что эгирин начал кристаллизоваться несколько раныше. Изредка на поверхности кристаллов рамзаита в свою очередь растут мелкие (до 1 мм) кристаллики ильменита.

Первичный рамзаит этого тица — минерал низкотемпературный, так как ассоциирует только с натролитом — типичным образованием низкотемпературных гидротермальных растворов.

Рамзаит вторичный

Рамзант, образовавшийся в результате изменения титансодержащих минералов, наблюдается лишь тогда, когда развиты вторичные постмагматические процессы. По утверждению Е. И. Семенова и И. П. Тихоненкова (1961), не было случая, когда бы в альбитизированной породе ильменит оставался свежим. Рамзаит замещает также лампрофиллит и сфен, однако этот процесс не всегда связан с альбитизацией.

Образование рамзаита по ильмениту

Наиболее широко этот процесс проявился в пегматитах горы Поачвумчорр. Здесь ильменит часто образует большие тонкие пластины, замещенные рамзаитом светло-розового или пепельно-серого цвета. В результате активного процесса замещения пегматит претерпевает сильное изменение, и от первичного комплекса сохраняются только реликты. Так, нефелин почти нацело переходит в гакманит и в канкринит, микроклин альбитизируется, а затем корродируется с образованием пустот выщелачивания до 30 см в поперечнике. В дальнейшем эти полости выполняются зеленым эгирином и натролитом. В зависимости от масштабов и степени развития процесса замещения вокруг пластии ильменита образуется рамзаитовая оторочка, мощность которой изменяется от 2—3 до 7 мм. Даже в пределах одного штуфа можно проследить все стадии изменения ильменита, начиная с тонкой пленки по периферии до силошных тонковолокнистых агрегатов плотного сложения, где в ядре от первичного минерала сохраняется лишь черная полоска.

Рис. 2. Призматические кристаллы рамзаита, прорастающие «шарики» натролита. Натур. вел.

Тонкие волокна рамзаита растут перпендикулярно к пластинчатости ильменита или под углом к той же пластине с образованием на некоторых участках складок типа плойчатости. В периферической части рамзаитового коронита в интервале до 0.1 мм иногда паблюдается светло-зеленый эгирин в параллельном срастании с волокнистым рамзантом. При пересечении или соприкосновении зон замещения вдоль крупных пластин ильменита на стыке их образуются мелкие пустоты, выполненные прозрачными короткопризматическими кристаллами рамзаита размером до 0,5—2 мм. Цвет их коричневый, блеск стеклянный. По-видимому, эта разновидность — продукт переотложения волокнистого рамзаита.

Образование рамзаита по лампрофиллиту

В одном из иегматитов того же типа с крупнопластинчатым ильменитом на горе Поачвумчорр встречаются, по наблюдениям Г. А. Аниенковой, и псевдоморфозы по лампрофиллиту. От последнего только иногда сохраняются мелкие (до 3 мм) реликты неправильной формы. Псевдоморфозы сиренево-розового цвета с реликтовой спайностью несколько напоминают мурманит, но отличаются высокой твердостью (равной 6) и шелковистым блеском. Размер псевдоморфоз до $3 \times 7 - 8$ см.

Рамзаит представляет собой агрегат тончайших волокон, вытянутых параллельно удлинению пластин измененного ламирофиллита или ориентированных косо к ограничениям кристалла. Судя по тому, что в пределах одной и той же псевдоморфозы наблюдаются оба вида ориентировки

Рис. 4. Замещение сфена волокнистым рамзаитом в полевошпат-нефелиновом пегматите

Шлиф. Увел. 15, при одном николе; 1 — сфен, 🍻 — рамзаит, 3 — пектолит, 4 — микроклин

Рис. 5. Псевдоморфозы пепельно-серого спутанно-волокнистого рамзаита по низкотемпературному сфену в пустотах или трещинах натролита

Увел. 1,5

Таблица 1

Химические анализы рамзаита (в вес. 0/0)

Окислы	1	2	3	4	5	6	7	8	9	10	11	12	13
$\begin{array}{c} {\rm SiO}_2\\ {\rm Al}_2{\rm O}_3\\ {\rm TiO}_2\\ {\rm ZrO}_2\\ {\rm Nb}_2{\rm O}_5\\ {\rm Ta}_2{\rm O}_5\\ {\rm Ta}_2{\rm O}_5\\ {\rm Fe}_2{\rm O}_3\\ {\rm FeO}\\ {\rm MgO}\\ {\rm MnO}\\ {\rm TR}\\ {\rm CaO}+{\rm SrO}\\ {\rm Na}_2{\rm O}\\ {\rm K}_2{\rm O}\\ {\rm H}_2{\rm O}^+\\ {\rm H}_2{\rm O}^-\\ {\rm F}\\ {\rm II.\ п.\ II.} \end{array}$	35,14 0,10 43,40 0,13 2,08 — 0,68 0,22 Не обн. Сл. Не обн. 0,05 17,51 0,19 0,51 Не обн.	$\begin{array}{c} 35,25\\ 1,15\\ 42,22\\\\ 2,67\\\\ 0,45\\\\ 0,82\\ 16,95\\\\\\\\\\\\\\\\\\\\ -$	$\begin{array}{c} 34,56\\ 1,72\\ 41,41\\\\ 2,98\\\\ 2,36\\\\ 0,15\\\\ 0,21\\ 16,55\\ 0,87\\\\\\\\\\\\\\\\\\\\ -$	$\begin{array}{c} 34,06\\ 0,90\\ 46,26\\\\\\\\ 1,03\\ C\pi.\\ 0,02\\ 0,32\\ 0,35\\ 16,20\\ 0,28\\\\\\ 0,28\\\\ 0,33\\ \end{array}$	34,64 0,21 45,02 0,11 2,14 Не обн. * 0,42 Сл. 0,02 0,07 0,09 16,79 Сл. 0,48 0,20 0,07 -	34,07 47,00 — 1,71 Сл. — 0,09 16,88 0,12 — — —	$\begin{array}{c} 33,94\\ 0,30\\ 42,05\\ 0,40\\ 3,07\\ \hline \\ 0,47\\ 1,19\\ 0,09\\ 0,07\\ \hline \\ 0,25\\ 16,61\\ 0,94\\ 0,37\\ 0,10\\ \hline \\ \\ -\\ \hline \end{array}$	$\left \begin{array}{c} 34,60\\ 1,06\\ 43,50\\ -\\ -\\ 0,30\\ 0,63\\ -\\ 0,39\\ -\\ -\\ 1,16\\ 16,55\\ 0,30\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	35,40 Не обн. 43,16 0,07 3,89 Не обн. ° 0,34 Не обн. Сл. 0,07 0,20 16,23 Не обн. 0,42 0,17 0,38 —	$\begin{array}{c} 35,72\\ 45,23\\ 0,91\\ 0,27\\ 0,49\\ \hline \\ 0,42\\ \hline \\ 0,26\\ 16,12\\ 0,49\\ \hline \\ 0,49\\ \hline \\ 0,41\\ \end{array}$	35,25 0,71 43,10 2,21 1,11 0,28 Сл. 0,19 16,70 0,69 — 0,19	$\begin{array}{c} 30,90\\ 0,87\\ 46,26\\ \hline \\ 0,14\\ -1,14\\ 0,32\\ 0,10\\ 0,01\\ 0,57\\ 17,40\\ 0,38\\ -\\ -\\ 0,50\\ \end{array}$	34,30 2,19 43,39 He обн. 1,10 0,36 0,72 He обн. 0,03 0,21 16,54 0,08 0,35 0,73
Сумма	100,01	100,80	100,81	99,75	100,23	99,87	99,85	99,99	100,17	100,32	100,41	99,59	100,00
Уд. вес	3,446	3,469	3,407	3,43			3,42	3,4	-	3,12	3,457	3,437	3,37

4*

051

Рамзайты первичные: 1 — Хибины, «Циркоповая перемычка». Материал М. Д. Дорфмана, аналитик Н. И. Забавникова, 1965 г. 2 — Хибины. Партомчорр. Материал Е. И. Семенова и И. П. Тихопенкова, апалитик Т. А. Канитонова, 1961 г. 3 — Хибины, Кукисвумчорр. Игольчатый рамзаит из натролита. Материал Е. И. Семенова и И. П. Тихоненкова, апалитик Т. А. Канитонова, 1961 г. 4 — Ловозеро, Таванок. Материал Е. Е. Костылевой, аналитик К. Ф. Белоглазов, 1937 г. 5 — Ловозеро. Аналитик Клоггіпд (Sahawa, 1947 г.). 6 — Ловозеро, Ангвундасчорр. Материал Е. Е. Костылевой, аналитик К. Ф. Белоглазов, 1937 г. 5 — Ловозеро. Аналитик Клоггіпд (Sahawa, 1947 г.). 6 — Ловозеро, Ангвундасчорр. Материал Е. Е. Костылевой, аналитик С. М. Курбатов, 1937 г. 7 — Ловозеро, Ангвундасчорр. Материал Е. Е. Костылевой, аналитик С. М. Курбатов, 1937 г. 7 — Ловозеро, рамзаит из фойянгов. Материал К. А. Власова и др., аналитик М. Е. Казакова, 1959 г. 8 — Икутяя, Инаглинский массив. Таблитчатый рамзаит. Материалы А. Е. Ефимова, С. М. Кравченко, Е. В. Власова, аналитик З. В. Бурова, 1963 г. 9 — Гренландия, Нарсарсук. Аналитик Кнорринг (Sahawa, 1947 г.). Рамзаи ты в тор и чны е: 10 — Хибины, Поачвумчорр. Рамзаит по ильмениту. Материал Е. И. Семенова и И. П. Тихоненкова, аналитик Е. И. Семенов, 1961 г. 11 — Хибины, Партомчорр. Переотложенный рамзаит. Материалы Е. И. Семенова, и И. П. Тихоненкова, аналитик Е. И. Семенов, Веб, Р. анально-дучистый рамзаит по ильмениту. Материалы Е. И. Семенова и И. П. Тихоненкова, аналитик А. Налонова, 1961 г. 12 — Ловозеро, Вавенбед, Радиально-дучистый рамзаит по ильмениту. Материал Е. И. Семенова и И. П. Тихоненкова, аналитик А. В. Быкова, 1961 г. 13 — Кондерский массив. Мстасоматический рамзаит. Материально-дучистый рамзаит по ильмениту. Материал Е. И. Семенова и И. П. Тихоненкова, аналитик А. В. Быкова, 1961 г. 13 — Кондерский массив. Мстасоматический рамзаит. Матер риал Г. В. Андреева, аналитик В. Худякова, 1961 г. При пересчете анализов по элементарной ячейке и удельному весу фактор пересчета определялся из формулы

$$X = \frac{V \cdot 0,006023 \cdot d}{Z}$$

при $X = 0.978 \cdot d$ (где d — удельный вес образца); V = abc = 649,4083 Å³ *; Z = 4.

Во всех пересчитанных этим способом анализах коэффициенты в формуле занижены. По-видимому, причина этого в том, что образование микрополостей при дроблении вследствие особенностей минерала (совершешная спайность, волокнистость) дает во всех случаях заниженное значение удельного веса.

Наиболее существенная примесь в рамзаите — ниобий, замещающий титан по схеме Ti₂->NbFe. На содержание ниобия были проанализированы рамзаиты различных месторождений и генетических типов (табл. 3). Изменение в содержании Nb₂O₅, по-видимому, отражает условия образования минерала. Как правило, первичные рамзаиты содержат его больше, чем вторичные, образованные по другим минералам. Исключением является лишь анализ 11 (табл. 1). Такое распределение ниобия в рамзаите закономерно и понятно, если учесть условия образования этого минерала. В случае замещения рамзаитом первичных титансодержащих минералов, в которых ниобий отсутствует или содержится в ограниченных количествах (пльменит, сфен, лампрофиллит), происходит главным образом перегруппировка элементов. В результате в рамзаите сосредоточиваются лишь те количества ниобия, которые были в первичном минерале.

В низкотемпературных гидротермальных условиях роль ниобия, как и других редких элементов в Хибинском массиве, заметно возрастает. Поэтому минералы, связанные с этим процессом, естественно, обогащены ниобием. Так, в первичном рамзаите содержание Nb₂O₅ достигает 2—4%. в ниоболопарите натролитового комплекса его даже 26% (Тихоненков, Казакова, 1957). В высокотемпературных рамзаитах, если таковые существуют, также можно ожидать больших содержаний ниобия.

Попытка определить Ti³⁺ с помощью измерения спектров поглощения шлифа рамзаита на спектрофотометре EPS-2 (Б. Н. Гречушников) показала, что в области 500 mµ наблюдаются слабо выраженные полосы поглощения, которые могут быть объяснены поглощением иона Ti³⁺ (Low, 1960; McClure, 1962). Количественное определение содержания Ti³⁺ из-за слабости полос затруднено. По-видимому, в соответствии с результатом химического анализа, Ti³⁺ в минерале присутствует в незначительном количестве.

Рентгеновское исследование

Структура рамзаита была опубликована Л. М. Беляевым и Н. В. Беловым в 1949 г. Они определили для него размеры ромбической элементарной ячейки: a = 14,26 Å, b = 8,57 Å, c = 5,09 Å. Эти параметры (особенно c) явно занижены. Е. Н. Белова для этого же материала установила параметры элементарной ячейки: a = 14,41 Å, b = 8,65 Å, c = 5,21 Å. Близкие размеры приведены в «Минералогических таблицах» Штрунца (1962). Нами были получены порошкограммы с ряда образцов рамзаита, результаты измерения которых и расчет дифрактограмм приведены в табл. 4. Съемка производилась на дифрактометре УРС 50-И на Си-излучении с Ni-фильтром. Дифрактограммы удалось проиндицировать с помощью приведенных выше параметров элементарной ячейки.

^{*} В основу расчета объема элементарной ячейки приняты параметры, полученные Е. Н. Беловой.

Валентность катионов О що валент- ности F	Mg Ca Ka SO	$\begin{array}{c} Ti\\ Zr\\ Nl\\ Ta\\ Fe^{3+}\\ Fa^{2+}\end{array}$	Sj Al		
	9 5650 40 189	5432 11 150 85 31	5848 20	Атомное количество (а)	
17,88 8,94	$\left.\begin{array}{c} & & \\ & &$	$\begin{array}{c c} 1,87\\ 0,05\\ 0,03\\ 0,04\\ 0,0$	2,01 0,01	Расчет 10 катионам (a : 2911)	Анализ 1
	86"	1,93	1.97	Расчет по элементарной ячейке (а · 3,37)	
		5789	5671 176	Атомное количество (a)	
18,12 9,06	$\left.\begin{array}{c} 0,01\\ 0,02\\ 1,82\\ 0,02\\ 0,04 \end{array}\right 1,91$	$\left.\begin{array}{c} 2,01\\ \\ \\ \\ \\ \\ \\ \\ 0,04 \end{array}\right\}$ 2.05	1,97 (1,06 } 2,03	Расчет 1 о катионам (и : 2878)	Анализ 4
	1,84	1,99	1,96	Расчет по элементарной ячейке (а · 3,35)	
37		5633 9 161 	5765 41	Атомное количество (а)	
$\left.\begin{array}{c} 18,10\\ 9,04\\ 0,01 \end{array}\right\} 9,05$	$\left. \begin{array}{c} 0,01\\ 1,90\\ 0,06 \end{array} \right \begin{array}{c} 1,97\\ 1,97 \end{array} \right $	$\begin{array}{c} 1,95\\ -\\ 0,05\\ -\\ -\\ 0,02 \end{array}$	$\left. \begin{array}{c} 2,00\\ 0,01 \end{array} \right\} \ 2,01$	Pacter 110 Hartwoham (c.: 2879)	Анализ 5
	22 9 5358 198 137	5263 32 224 58 166	5651 58	Атомное количество (а)	
9,00	$\left.\begin{array}{c}0,01\\-\\0,02\\1,86\\0,75\\0,75\end{array}\right\} (2,0)$	$\left \begin{array}{c} 1.83\\ 0.01\\ 0.10\\ -\\ 0.02\\ 0.05 \end{array} \right ^2$ 2.02	$\left(\begin{array}{c} 1.97 \\ 0.02 \end{array} \right) $ 1,99	Расчет по катнонам (a : 2870)	Анализ 7
	1,92	1.93	1,91	Расчет по элементарной ячейке (а · 3,34)	
	97 207 5340 111	5444 	5760 208	Атомное количество (а)	
18,01 	$\left.\begin{array}{c}0,03\\-\\0,07\\1,84\\0,02\\0,04\end{array}\right 1,97$	1,86 	$\left\{ \begin{array}{c} 1.97 \\ 0.07 \end{array} \right\}$ 2.00	Расчет по катионам (a : 292))	Анализ 8

Пересчет химпческих анализов

Таблица 2

53

.8.

Валентность катионов О по валент- ности F	$\begin{array}{c} \mathrm{Si}\\ \mathrm{Al}\\ \mathrm{Al}\\ \mathrm{Ti}\\ \mathrm{Fe}_{a}\\ \mathrm{Fe}_{a}\\ \mathrm{Fe}_{a}\\ \mathrm{Fe}_{a}\\ \mathrm{Fe}_{a}\\ \mathrm{Fe}_{a}\\ \mathrm{Mb}\\ \mathrm{Mb}\\ \mathrm{So}\\ \mathrm{TR}\\ \mathrm{Mb}\\ \mathrm{So}\\ \mathrm{Hs}\\ \mathrm{So}\\ \mathrm{Hs}\\ \mathrm{So}\\ \mathrm{Hs}\\ \mathrm{So}\\ \mathrm{Hs}\\ \mathrm{So}\\ \mathrm{Hs}\\ \mathrm{So}\\ \mathrm{So}\\ \mathrm{So}\\ \mathrm{Hs}\\ \mathrm{So}\\ \mathrm{So}\\ \mathrm{So}\\ \mathrm{Hs}\\ \mathrm{So}\\ \mathrm{So}\\$	
200	5891 5402 293 	Атомное коли- чество (а)
$\left. \begin{array}{c} 48,29\\ 9,41\\ 0,07 \end{array} \right\}$ 9,16	$\begin{array}{c c} 2,07 \\ \hline 1,89 \\ 0,10 \\ \hline - \\ 0,02 \\ \hline - \\ 0,01 \\ 1,84 \\ 1,84 \\ 1,90 \end{array}$	Анализ ⁹ Расчет по катионам (a : 2845)
	5944 5661 5661 5661 5661 5661 5661 5661 56	Атомное коли- чество (a)
18,20 9,10	$\begin{array}{c} 2,05 \\ 1,95 \\ 0,02 \\ 0,03 \\ - \\ 0,03 \\ 1,80 \\ 0,06 \\ 0,06 \\ 1,91 \\ 1,91 \end{array}$	Анализ 10 Расчет по катионам (a : 2892)
	1,81	Расчет по эле- ментарной ячейке (а · 3,05)
	5863 5394 139 5394 139 69 5389 139 5389 147 70	Атомное коли- чество (а)
17,97 8,99	$\left.\begin{array}{c} 2.02\\ 0.04\\ 1.86\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.02\\ 0.05\\ 1.88\\ 0.02\\ 1.88\\ 0.88\\ 1.88\\ 1.88\\ 1.88\\ 0.02\\ 1.88\\ 0.02\\ 1.88\\ 0.02\\ 1.88\\ 0.02\\ 0.0$	Анализ 11 Расчет по катионам (a : 29/12)
P	1,99	Расчет по элементарной ячейке (а · 3,38)
	$5142 \\ 5790 \\ -11 \\ 171 \\ 5790 \\ -14 \\ -14 \\ -15 \\ -162 $	Атомное коли- чество (а)
17,81 8,81	$\left. \begin{array}{c} 1,78\\ 0,06\\ 2,01\\ 2,01\\ 0,05\\ 0,01\\ 0,01\\\\\\ 0,03\\ 1,94\\ 0,06\\ 0,06\\ 1,94\\ 2,06\\ 0,06\\ \end{array} \right\} \ 2,06$	Анализ 12 Расчет по катионам (a : 2885)
	1,79 2,02	Расчет по элементарной ячейке (а · 3,36)
	5708 430 5568 430 5568 430 5568 430 430 430 45 45 40 45 45 40 270	Атомное коли- чество (а)
17,93 8,96	$\left.\begin{array}{c}1,95\\0,14\\1,91\\-\\-\\0,02\\0,03\\0,03\\1,83\\0,01\\1,83\\0,01\\1,83\\0,01\\1,94\end{array}\right\}2,03$	Анализ 13 Расчет По катионам (а : 2919)
	1,96	Расчет по элементарной ячейке (а · 3.30)

Таблица 2 (окончание)

18

₹£

Таблица З

Содержание Nb₂O₅ в рамзантах

Nb,O ₅ , %	Тип образца	Местонахожден и е	Коллекция	Аналитик
0,14	Радиально-лучистый по ильмениту	Ловозеро	Семенова.	Быкова
0,91	Вторичный по ильме- ниту	»	Тихоненкова	Семенов
1,00	Периферическая волок- нистая светло-бурая зона (по первичному рамзанту)		Дорфмана	
1,1	Вторичный метасомати- ческий	Кондер	Минералогиче- ского музея	_
1,38	Псевдоморфоза по иль- мелиту	Хибины	Семенова	Шулик
1,60	Коронит вокруг сфена	»	Дорфмана	
1,60	Темно-бурое ядро пер- вичного рамзаита	Ловозеро	»	
1,70	Первичный светло-бу- рый	Енисейский кряж	Свешниковой	
1,73	Крупные бурые кри- сталлы	Хибины	Боруцкого	Бурова
2,08	Первичный бурый при- зматический	»	Дорфмана	Шулик
2,14	Первичный	Ловозеро	Sahama	Knorring
2,21	Вторичный переотло- женный	Хибины	Семенова, Тихоненкова	Капитонова
2,5	Первичный игольчатый	Инаглинский массив	Ефимова	Шулик
2,67	Первичный	Ловозеро	Contono	
.2,98	Первичный, игольчатый из натролита	Хибины	Тихоненкова,	Капитонова
3,07	Первичный из фойяита Первичный	Ловозеро	Власова, Кузь- менко, Еськова	Казакова
9464	TOPSA JUNE	Гренландия	Sahama	Knorring

Оставлены только те индексы, которые соответствуют пространственной группе рамзаита $D_2^{14} = Pnca$. Из табл. 4 видно, что порошкограммы различных рамзаитов мало отличаются друг от друга; это указывает на постоянство структуры рамзаита, не зависящее от условий его образования.

Имеющиеся небольшие различия в величинах межплоскостных расстояний (а следовательно, и в параметрах элементарной ячейки рамзаита), как в интенсивностях, следует, очевидно, объяснить различиями в химическом составе. Можно полагать, что увеличение содержания Са (Sr) и закисного железа приводит к увеличению элементарной ячейки. Так, наибольшие межплоскостные расстояния (табл. 4) имеют инаглинский рамзаит, содержащий 4,16% СаО + SrO (табл. 1, анализ 8), и ловозерский рамзаит, содержащий 1,71% FeO (анализ 6). Это объясняется тем, что Са (Sr) в структуре рамзаита замещает Na, а Fe — титан. Ионные радиусы Nad,98, Ca²,04, Sr²,20, Fe³,80, Ti⁴,64.

Ниобий, атомный радиус которого близок к атомному радиусу титана (Nb 0,69), по-видимому, не оказывает влияния на изменения размера

×.,

hhi	1		2		3		4		5		6		7		8	
	dα	I	da	I	dα	I	d_{α}	Ι	da	I	da	I	da	1	dα	1
$\begin{array}{c} 240\\ 011\\ 020; 111\\ 211\\ 220\\ 400\\ 121; 410; 311\\ 221\\ 411\\ 230; 321; 420\\ 002\\ 102; 031\\ 131\\ 421; 202\\ 511\\ 600\\ 231; 212\\ 302; 610\\ 430\\ 331; 022\\ 122; 312\\ 521\\ 402; 040\\ 220\\ 240\\ 412; 431; 322\\ 141; 620\\ 621\\ 502\\ 422; 132\\ 240\\ 412; 431; 322\\ 141; 620\\ 621\\ 502\\ 422; 132\\ 232; 531\\ 440; 630\\ 800\\ 810\\ 631\\ 113; 013; 432\\ 820\\ \end{array}$	$\begin{array}{c} \textbf{5,53} \\ \textbf{4,432} \\ \textbf{3,84} \\ \textbf{3,62} \\ \textbf{3,325} \\ 3,325$	$\begin{array}{c} 50\\ 10\\ 30\\ 8\\ 8\\ 6\\ 100\\ 6\\ 16\\ 3m\\ -\\ 6\\ 10\\ 5\\ 6\\ 8\\ 12\\ 16\\ 10\\ 12\\ 4\\ 4m\\ 12\\ 6\\ 6m\\ 6\\ 12\\ 6m\\ 6\\ 12\\ 6m\\ 6\\ 12\\ 6m\\ 6\\ 12\\ 6m\\ 6\\ 6m\\ 20\\ 8m\\ 12\\ 25\\ 6m\\ 6\\ m\\ 20\\ 8\\ 12\\ 25\\ 6m\\ 10\\ 8\\ 12\\ 25\\ 6m\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	$\begin{array}{c} 5,53\\ 4,45\\ 4,31\\ 3,83\\ 3,72\\ 3,61\\ 3,94\\ 3,03\\ 2,91\\ 2,75\\ 2,58\\ 2,58\\ 2,58\\ 2,58\\ 2,58\\ 2,58\\ 2,58\\ 2,46\\ 2,431\\ 2,388\\ 2,317\\ 2,257\\ 2,181\\ 2,467\\ 1,986\\ 1,957\\ 1,986\\ 1,957\\ 1,986\\ 1,957\\ 1,986\\ 1,957\\ 1,986\\ 1,957\\ 1,986\\ 1,957\\ 1,986\\ 1,974\\ 1,748\\ 1,690\\ 1,671\\$	$\begin{array}{c} 40\\ 40\\ 14\\ 60\\ 20\\ 8\\ 6\\ 100\\ 6\\ 12\\ 4\\ 40\\ 6\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	4,32 3,71 3,33 3,01 2,74 2,74 2,45 2,254 2,254 1,901 1,807 1,761 1,740 1,684	12 8 60 4 15 - 4 8 - 4 4 4 3 8	$\begin{array}{c} 5,54\\ 4,33\\ 3,71\\ 3,61\\ 3,34\\ \\ \\ 2,89\\ 2,77\\ 2,77\\ 2,77\\ 2,74\\ \\ \\ \\ \\ 2,405\\ 2,254\\ 2,254\\ 2,247\\ \\ \\ 2,254\\ 2,254\\ 2,217\\ \\ \\ \\ 2,073\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5,53 4,32 3,72 3,54 3,33 3,24 3,02 2,93 2,77 2,74 2,58 2,49 2,49 2,44 2,311 2,254 	90 8 100 5 8 6 12 6 12 6 12 6 8 6 12 8 26 12 8 26 12 8 26 12 8 26 12 8 26 10 10 10 10 10 10 10 10 10 10	5,61 4.33 3,73 3,38 3,06 2,76 2,58 2,47 2,47 2,312 2,226 2,078 1,990 1,944 1,883 1,784 1,750 1,693	4 5 5 10 9 102 1 6 2 1264	5,57 3,69 3,34 3,02 2,74 2,46 2,46 1,940 1,778 1,940 1,778 1,745 1,690	6 3 10 7 10 4 3 4 1 4 3	5,8 4,53 3,46 3,46 2,81 2,64 	7 8 1 1 10 5 10 9 11 22 11 11 3 11 11 3 11 11 11 11 11

Результаты рентгенографического исследования рамзаитов

Таблица 4 (окончание)

hhl	1		2		3		4		5		6		7		8	
	dα	I	dα	I	dα	Ι	da	Ι	ďα	I	ďα	I	d_{α}	I	d_{α}	I
$\begin{array}{c} 142;\ 042;\ 213\\ 242;\ 640\\ 313\\ 341\\ 223;\ 450\\ 830\\ 323\\ 033\\ 313;\ 423\\ 060;\ 10.00\\ 10.1,0\\ 260\\ 650\\ 650\\ 650\\ 650\\ 840\\ 433\\ 10.2,0\\ 143\\ 243\\ 004;\ 104\\ 204;\ 103.0\\ 214\\ 304\\ 314;\ 024;\ 124\\ 850\\ 660\\ 12.2,00;\ 324\\ 234\\ 334\\ 860\\ 10.5.0\\ 0.80\\ 14.0.0\\ \end{array}$	$\begin{array}{c} 1,654\\ 1,614\\ 1,601\\ 1,589\\ 1,568\\ 1,535\\ 1,516\\ 1,492\\ 1,473\\ 1,448\\ 1,428\\ 1,409\\ \hline \\ 1,385\\ 1,373\\ 1,355\\ 1,342\\ 1,328\\ 1,205\\ 1,289\\ 1,261\\ 1,269\\ 1,261\\ 1,269\\ 1,260\\ 1,175\\ 1,163\\ 1,150\\ 1,175\\ 1,163\\ 1,150\\ 1,175\\ 1,163\\ 1,138\\ 1,130\\ 1,121\\ 1,109\\ 1,098\\ 1,079\\ 1,064\\ 1,055\\ 1,041\\ \end{array}$	$ \begin{array}{c} 4\\ 30\\ 18\\ 10\\ 16\\ 3\\ 4\\ 6\\ 6\\ 11\\ 25\\ 14\\ 4\\ 10\\ 4\\ 10\\ 10\\ 5\\ 8\\ 6\\ 10\\ 4\\ 4\\ 10\\ 5\\ 16\\ 5\\ 16\\ 5\\ 16\\ 4\\ 4\\ 2\\ 4\\ 4\\ 4\\ 2\\ 8\\ 4\\ 12\\ 8\\ 4\\ 12\\ 8\\ 4\\ 12\\ 8\\ 4\\ 6\\ 11\\ 16\\ 5\\ 16\\ 6\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	$\begin{array}{c} 1,664\\ 1,614\\ 1,603\\ 1,589\\ 1,558\\\\\\\\\\\\\\\\\\\\ $	$\begin{array}{c} 4\\ 30\\ 18\\ 4\\ 14\\ -\\ 6\\ 10\\ 10\\ 4\\ 2\\ 10\\ 3\\ 10\\ 4\\ 10\\ 6\\ 5\\ 4\\ 10\\ 6\\ 10\\ -\\ 10\\ -\\ 10\\ -\\ 10\\ -\\ 10\\ -\\ 10\\ -\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -\\ 2\\ 4\\ 10\\ 10\\ -$	1,610 1,600 1,564 		1,649 1,613 1,598 1,565 1,565 1,445 1,445 1,425 1,425 1,339 1,725 1,204 1,204 1,204 1,204 1,204	4 10 7 6 15 15 15 15 15 15 15 15 15 15 15 15	1,611 1,599 1,565 1,565 1,446 1,445 1,425 1,384 1,355 1,387 1,325 1,288 1,257 1,204 1,204	288 17 12 26 10m 7 18 4 7 6 6 18 6 18 18 18 19 10 10 19 10 10 10 10	$\begin{array}{c}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,616 1,601 1,495 1,474 1,448 1,383 1,383 1,383 1,383 1,383 1,383 1,383 1,383 1,383 1,327 1,265 1,248 1,266 1,266 1,266 1,266 1,266 1,266 1,266 1,266 1,266 1,266 1,266 1,267 1,278	3 3 1 3 1 3 1 4 3 2 1 1 3 1 4 3 2 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	1,629	9947041741441411411111111111111111111111

 А хибины «Цирконовая перемычка» (анализ 1, табл. 1); 2 — Ловозеро; рамзаит из пегматита горы Пункаруайв; 3 — Ловозеро; рамзаит из пегматитов горы Тулбньюнуай; 3 — Хибины, гора Поачвумчорр (анализ 10); 5 — Сибирь, Бурпала; 6 — Ловозеро, Ангвупласчорр (анализ 6); 7 — Сибирь, Кондерский массив (анализ 13); 8 — Якутия, Инаглипский массив (анализ 8). С образдов 1—5 (табл. 4) авторами получены и рассчитаны дифрактограммы, интенсивности оценены по 100-бальной шкале; для образдов 6—8 результаты расчеты только основных линий.

элементарной ячейки, хотя содержание Nb_2O_5 достигает 2,5—4% вместо обычных 1-1,5%.

Вызвали недоумение приведенные у Штрунца параметры элементарной ячейки лоренценита, содержащего 12% ZrO₂, сходные с обычным рамзаитом. Как известно, аналитик Кнорринг (Sahama, 1947) повторил анализ лоренценита, установил, что цирконий в нем почти полностью отсутствует (табл. 1, анализ 9) и тем самым доказал идентичность лоренценита с рамзаитом.

ИК-спектры

В ИК-спектрах рамзаита имеются полосы поглощения в области валентных колебаний (максимумы 1110, 1050, 1000, 950, 920 см⁻¹) и деформационных колебаний SiO₄ (максимумы 660, 550, 495, 430 см⁻¹) (рис. 6). Кроме того, имеется слабое поглощение в области 700-800 см⁻¹. В области 400-600 см⁻¹ могут проявляться колебания связи Ме-О (Na-O, Ti-O). В ИК-спектре отсутствуют полосы поглощения воды или

Рис. 6. Инфракрасные спектры рамзаита

ОН-группы, что находится в соответствии с малым количеством воды в минерале. ИК-спектры исследованных образцов рамзаита одинаковы. Причиной большего числа полос поглощения в области валентных колебаний SiO₄-группы в ИК-спектре рамзаита, чем, например, в ИК-спектрах энстатита или диопсида (Sakcena, 1961, Moenke, 1960), могут быть, во-первых, неодинаковые расстояния Si—O в пределах одной SiO₄группы, во-вторых, наличие изгиба в цепочках между двумя соседними SiO₄-группами, которого нет в цепочках обычных (классических) пироксенов.

Заключение

Исследование хибинского рамзаита и анализ литературных данных показали, что минерал образуется в относительно низкотемпературных условиях — в стадию альбитизации и особенно натролитизации (цеолитизации). Наблюдаются два типа рамзаита: более ранний, вторичный, образующийся под влиянием щелочного натрового метасоматоза при замещении титансодержащих минералов — сфена, лампрофиллита и ильменита, и более поздний, первичный, кристаллизующийся непосредственно из низкотемпературных растворов.

Несмотря на кажущуюся стабильность химического состава рамзаита, в нем отмечаются изоморфные замещения Na \rightarrow Ca, Sr, K; Ti \rightarrow Fe, Zr, Nb, Mg. Эти элементы-примеси присутствуют в минерале в небольших количествах, однако некоторые из них (Ca, Sr, Fe²⁺) вызывают изменение параметров элементарной ячейки. Содержание Nb₂O₅ колеблется в более заметных пределах — от 0,1 почти до 4%, но замена Ti на Nb вследствие близости их понных радиусов на размерах элементарной ячейки не отражается.

a

Наличие в решетке рамзаита оксония, изоморфно замещающего натрий, кажется возможным, однако ИК-спектрами из-за малых количеств воды в минерале не подтверждено.

При развитии рамзаита по титаносиликатам с образованием псевдоморфоз или коронита в последних содержание Nb₂O₅ не превышает 1,5-2%. При кристаллизации непосредственно из растворов содержание Nb₂O₅ в рамзаите увеличивается и достигает 3-4%. Это следствие условий образования минерала.

Авторы выражают благодарность М. В. Ахмановой за ИК-спектроскопию, О. К. Мельникову и Т. Н. Танакиной за получение дифрактограмм.

ЛИТЕРАТУРА

Андреев Г. В. Рамзант из щелочных пегматитов Кондерского массива. — Сб. «Геология месторождений редких элементов», вып. 9. Госгеолтехиздат, 1961, стр. 91—98.

Белов Н. В., Беляев Л. М. Кристаллическая структура рамзаита Na₂Ti₂Si₂O₉. — Докл. АН СССР, 1949, 69, № 6. Власов К. А., Кузьменко М. В., Еськова Е. М. Ловозерский щелочной

- массив. 1959.
- Ефимов А. Ф., Кравченко С. М., Власова Е. В. К минералогии щелочных негматитов Инаглинского массива. Труды ИМГРЭ, вып. 16, 1963.
- Костылева Е. Е. Рамзаит. Сб. «Минералы Хибинских и Ловозерских тундр». Изд-во АН СССР, 1937.
- Семенов Е. И., Тихоненков И. П. О низкотемпературном рамзаите. Сб. «Вопросы минералогии и геохимии редких элементов». Труды ИМГРЭ, вып. 7, 1961.

Тихоненков И. П., Казакова М. Е. Ниоболопарит — новый минерал из группы перовскита. — Записки Всес. мин. об-ва, 1957, ч. 86, № 6. Штрунц Х. Минералогические таблицы. 1962.

Low W. Solid state physics. N. Y. Acad. Press, Inc., 1960, Suppl. 2.

McClure D. S. Optical spectra of transition-metal ions in corundum. — J. Chem. Phys., 1962. 36, N 10.

Moenke H. Ultrarotspectralphotometer als Hilfsmittel bei der Prospektion auf Erzlagerstätten. Jena, 1960, Jahrb. II.

Sahama Th. G. Analysis of ramsayite and lorenzenite. — Amer. Mineralogist, 1947, 32, N 1, 2. Saksena B. D. Infrared absorption studies of some silicate structures. — Trans.

Faraday Soc., 1961, 57 (2).