#### Литература

- I. Станкевич Л.О. Кальциевый родохрозит Керченского месторождения // Докл. АН СССР. 1955. Т. 105, № 6. С. 1328-1331.
- 2. Станкевич Л.О., Гендриховская Г.Ч. О кальциевом родохрозите Камыш-Бурунской мульды // Минерал. сб. 1962. № 16. С. 435-441.
- Корнетова В.А. и др. Кальциевый родохрозит, близкий к кутнагориту в керченских лимонитовых бобовых рудах // Новые данные о минералах. М., 1987. Вып. 34. С. 82-86.
- 4. Юрк Ю.Ю., Шнюков Е.Ф. и др. Минералогия железорудной формации Керченского бассейна. Симферополь: Крымиздат, 1960. 450 с.
- 5. Годовиков А.А., Рипинен О.И., Моторин С.Г. Агаты. М.: Недра, 1987. 368 с.

## УДК 549.747(470.22)

# С.Н.Бритвин, Б.Е.Бураков, С.А.Никитин, А.Н.Богданова МОЛИБДОМЕНИТ PbSeO<sub>3</sub> ИЗ СЕЛЕНИДНОГО ПРОЯВЛЕНИЯ В ЮЖНОЙ КАРЕЛИИ

Кислородные соединения свинца и селена в природе представлены двумя минералами: олзахеритом  $Pb_2(SO_4)(SeO_4)$  и молибдоменитом  $PbSeO_3$ . Олзахерит очень редок и известен в настоящее время лишь в месторождениях Пакахаке (Боливия)  $\int 8_J$  и Серро-де-Качеута (Аргентина)  $\int 7_J$ . Молибдоменит более распространен  $\int 3-5$ , 7-9 J и является обычным продуктом гипергенного изменения клаусталита. Тем не менее долгое время этот минерал оставался малоизученным — неясна была его химическая формула и структурные характеристики. Окончательные ответы на эти вопросы даны в работах Дж. Мандарино  $\int 9_J$  и Р.Фишера  $\int 6_J$ .

На территории СССР кислородные соединения Pb и Se описаны П.В.Бабкиным [ I, 2 ] среди продуктов гипергенного изменения платинита PbBi<sub>2</sub>(Se,S) из месторождения в Магаданской области. Нами молибдоменит найден в 1987 году в составе селенидной минерализации, проявленной в метасоматических породах Южной Карелии.

Проявление селенидов находится в северо-западной части Онежского протоорогенного прогиба. Оно приурочено к слюдисто-карбонатным метасоматитам, развитым на контакте известняков и вулканитов основного состава. Главные минералы метасоматитов - доломит и кальцит. Кроме того, для этих пород характерна ассоциация, представленная роскоэлитом, кварцем и гематитом, выделения которых приурочены к интерстициям зерен доломита и кальцита.

Селениды развиты в метасоматитах в виде редкой вкрапленности; их выделения имеют изометричную форму и размеры, обычно не превышающие первых миллиметров. Среди селенидов в настоящее время установлены умангит, клокманнит и клаусталит. Клаусталит, по данным электронно-зондового микроанализа, не содержит примесей S и Te и отвечает теоретическому составу PbSe.

Молибдоменит, как правило, развивается по трещинам спайности в клаусталите, иногда полностью замещая его зерна. На рис. I показана псевдоморфоза молибдоменита по клаусталиту (белое поле в обратнорассеянных электро-



Рис. I. Псевдоморфоза молибдоменита по клаусталиту, в агрегате умангита Участок полированного аншлифа. Растровые картины в обратнорассеянных электронах (e<sup>-</sup>) и характеристическом изучении указанных элементов

нах) в агрегате умангита. Выделения молибдоменита имеют размер до I-2 мм и представляют собой микрокристаллический агрегат, сложенный индивидами до I-2 мкм. Цвет минерала в агрегате белый, блеск матовый. В катодных лучах молибдоменит люминесцирует светло-голубым цветом.

В мелких (0,I-0,2 мм) пустотах среди клаусталита минерал образует налеты, состоящие из отдельных удлиненно-пластинчатых кристаллов размером до I0 мкм (рис. 2). В тесной ассоциации с молибдоменитом отмечается це-

## Рис. 2. Кристаллы молибденита

а - в виде "лепестков" (в центре) в ассоциации с церусситом (крупные кристаллы по краям снимка); б - пластинчатые кристаллы молибдоменита в ассоциации со сферолитами неизвестного минерала. РЭМ, увел. I200 (а), 3000 (б)



#### Таблица І

Химический (в мас.%) состав молибдоменита

| Компоненты | I     | 2     | 3     | 4    | Teop.  |
|------------|-------|-------|-------|------|--------|
| РЬО        | 67,8  | 68,5  | 68,5  | 66,9 | 66,79  |
| Se02       | 33,0  | 31,6  | 31,9  | 32,4 | 33,21  |
| Сумма      | 100,8 | 100,1 | 100,4 | 99,4 | 100,00 |

Примечание. Анализы выполнены на электронном микроанализаторе MS-46 "Cameca"; ускоряющее напряжение 20 кВ, ток зонда 30 нА. Эталон - синтетический PbSe. Пересчет интенсивностей произведен по программе ZAF.

руссит (кристаллы до 0,2 мм) и ближе неопределенный минерал в виде сферолитов диаметром 0,3-0,4 мкм.

Химический состав молибдоменита определялся методом электронно-зондового микроанализа. Другие элементы с атомным номером больше II, кроме Pb и Se, в составе минерала не обнаружены. В табл. I приведены результаты анализов по 4 различным зернам молибдоменита. Анализы пересчитаны (при

#### Таблица 2

Результаты расчета рентгенограмм молибдоменитов

| Южная Карелия |            |           | Серро-/    | це-Качеута<br>9_] | Рануик Майн,Онтарио<br>[ 9 ] |          |     |  |
|---------------|------------|-----------|------------|-------------------|------------------------------|----------|-----|--|
| I             |            |           |            |                   | 2                            | 3        |     |  |
| hkl           | d<br>рассч | d<br>พริพ | I          | d<br>изм          | I                            | d<br>изм | I   |  |
| 100           | 6,343      | 6,35      | 0,5        | 6,37              | 0,5                          | 6,29     | 0,5 |  |
| IOI           | 4,334      | 4,34      | I          | 4,35              | I                            | 4,31     | 0,5 |  |
| 00I<br>110    | 4,1831     | 4,16      | 5          | 4,15              | 6                            | 4,13     | 6   |  |
| ĪII           | 3.409      | 3,406     | 4          | 3.43              | 7                            | 3,40     | 7   |  |
| OII           | 3,334      | 3,325     | 6          | 3,32              | 9                            | 3,31     | 9   |  |
| 201<br>200    | 3,178      | 3,178     | 6          | 3,17              | 7                            | 3,16     | 8   |  |
| 10I<br>020    | 3,005      | 3,006     | 4ω         | 2,99              | 3                            | 2,98     | 3   |  |
| 211<br>210    | 2,754      | 2,754     | 10         | 2,756             | 10                           | 2,741    | 10  |  |
| III           | 2.639      | 2.637     | 2          | 2,636             | 2                            | 2,618    | 2   |  |
| Ī02           | 2,259      | 2,258     | 4          | 2,264             | 5                            | 2,248    | 4   |  |
| 311           | 2,097      | 2,103     |            |                   |                              | 2,093    | 2   |  |
| 221<br>220    | 2,084      | 2,082     | 4 <b>ш</b> | 2,090             | бш                           | 2,071    | 5   |  |

| Южная Карелия |                |          |    | Серро-де-Качеута |     | Рануик Майн,Онтарио |     |  |  |
|---------------|----------------|----------|----|------------------|-----|---------------------|-----|--|--|
|               |                |          |    | [9               |     | 4                   | [9] |  |  |
| I             |                |          |    | 2                | 2   | 3                   |     |  |  |
| hk1           | d<br>рассч     | d<br>изм | I  | d<br>изм         | I   | d<br>ИЗМ            | I   |  |  |
| I             |                |          | I  | г                |     | 1                   | 1   |  |  |
| I2I           | 2,032          | 2,030    | 2  | 2,023            | 5   | 2,013               | 3   |  |  |
| 211           | 2,013          | 2,012    | I  | -                | -   | I,998               | 3   |  |  |
| 310           | I,974          | I,977    | I  | I,965            | 2   | I,962               | I   |  |  |
| 012           | I,956          | I,952    | I  | -                | -   | I,943               | I   |  |  |
| 302           | I,89I          | I,897    | 2  | I,892            | 3   | I,888               | 2   |  |  |
| 102<br>312    | I,793<br>I,789 | 1,788    | 2  | I,79I            | 4   | I,783               | 2 * |  |  |
| Ī22           | I,748          | -        | -  | -                | -   | I.738               | 2   |  |  |
| 40I           | I,716          | I.724    | I  | -                | -   | I.7I4               | T   |  |  |
| II2           | I,706          | 1        |    |                  |     | -,,                 | -   |  |  |
| 222           | I,704          | I,705    | I  | I,695            | 2шр | I.69I               | 2   |  |  |
| 22I           | I,702          | 1        |    |                  |     | -,                  | -   |  |  |
| 031           | I,684          | 1        |    |                  |     |                     |     |  |  |
| 320           | 1,678          | 1,681    | 10 | -                | -   | 1,672               | I   |  |  |
| 301           | I,650          | I,652    | Ιw | I,647            | I   | I.640               | 2   |  |  |
|               |                | 1,591    | 2ພ | I,588            | 2   | I,582               | 2   |  |  |
|               |                | I,560    | 2w | I,563            | 2   | 1,554               | 2   |  |  |
|               |                | 1,527    | 2  | I,526            | 2   | 1,519               | 3   |  |  |
|               |                | -        | -  | I,497            | 0,5 | I,49I               | 0.5 |  |  |
|               |                | I,457    | Iw | I,457            | 3   | I,450               | 2   |  |  |
|               |                | I,435    | Ιw | I,435            | 2   | I,426               | I   |  |  |
|               |                | I,417    | Ιw | -                | -   | I,407               | I   |  |  |
|               |                | I,399    | Iw | I,40I            | I   | 1,394               | I   |  |  |
|               |                | 1,378    | Ιш | I,375            | 0,5 | I,370               | I   |  |  |
|               |                | I,352    | Ιw | I,35I            | 0,5 | I,343               | 0.5 |  |  |
|               |                | I,32I    | Iw | I,316            | I   | I,3I4               | 0.5 |  |  |
|               |                | I,30I    | Ĭω | I,299            | 2   | 1,294               | I   |  |  |
|               |                | I,282    | Ιw | I,284            | I   | I,276               | I   |  |  |
|               |                | I,263    | Ιw | I,264            | I   | I,262               | 0,5 |  |  |
|               |                | -        | -  | I,24I            | 0,5 | I,236               | 0,5 |  |  |
|               |                | I.232    | T  | I.230            | T   | T. 224              | T   |  |  |

Таблица 2 (окончание)

Примечание. Условия съемки: I – диаметр камеры II4,6 мм, Сг-излучение; 2 – диаметр камеры 57,3 мм, Cu/Ni-излучение; 3 – диаметр камеры II4,6 мм, Cu/Ni-излучение; ш – широкая линия, р – расплывчатая.

кислородном коэффициенте 3) на формулы, близкие к идеализированной PbSeO

- 1) Pb<sub>1,01</sub>Se<sub>0,99</sub>0<sub>3</sub>; 3) Pb<sub>1,04</sub>Se<sub>0,98</sub>0<sub>3</sub>;
- <sup>2) Pb</sup>1,05<sup>Se</sup>0,97<sup>0</sup>3; 4) Pb<sub>1,02</sub><sup>Se</sup>0,99<sup>0</sup>3.

Рентгенограмма порошка молибдоменита из Южной Карелии (табл. 2) аналогична приведенной в работе Дж. Мандарино [9]. Уточнение параметров элементарной ячейки проведено в рамках пространственной группы P21/m: a = 6,863(4), b = 5,519(4), c = 4,526(1) Å; β = II2,44(5)°; V = I57,7 Å. При Z = 2 рентгеновская плотность D = 7,035 г/см<sup>3</sup> (для идеализированной формулы).

На ИК-спектре, впервые полученном для природного молибдоменита, проявлены полосы поглощения, соответствующие валентным (1200, 1050, 790, 730, 685 см<sup>-1</sup>) и деформационным (460 см<sup>-1</sup>) колебаниям анионов  $SeD_3^{2-}$  (рис. 3).



Рис. 3. ИК-спектр молибдоменита

Образование молибдоменита связано с процессами гилергенного окисления клаусталита. Характерно присутствие большого количества церуссита в ассоциации с молибдоменитом. Это говорит о том, что при окислении PbSe лишь часть селена остается в зоне реакции в форме  $PbSeO_3$ , другая часть мигрирует в виде  $SeO_3^2$  - ионов. Интересным фактом является и то, что кальцит, окружающий выделения измененного клаусталита, интенсивно растворен и представлен округлыми кавернозными зернами. Исходя из этих данных можно сделать вывод о том, что одна из основных форм миграции селена в поверхностных растворах данного района - селенит кальция  $CaSeO_3$ .

Авторы выражают признательность В.В.Павшукову (Всесоюзный геологический институт, Ленинград) и Я.А.Пахомовскому (Геологический институт КНЦ АН СССР, Апатиты) за консультации в процессе работы.

#### Литература

- I. Бабкин П.В. 2. 0 некоторых селеновых и селенсодержащих минералах. 2. Кобальтистый смитсонит // Материалы по геологии и полезным ископаемым Северо-Востока СССР. Магадан, 1958. № 13. С. 122-129.
- 2. Синдеева Н.Д. Минералогия, типы месторождений и основные черты геохимии селена и теллура. М.: Изд-во АН СССР, 1959. 257 с.
- Agrinier H., Geffroy J. Les minéraux sélénies du point uranifère de Liauzun-en-Olloix (Puy-de-Dome): clausthalite, sélénium natif, sélénite de plomb et chalcomenite // Bull. Soc. fr. miner. et cristallogr. 1967. T. 90. P. 383-386.
- 4. Ahlfeld F., Reyes J.M. Las especies minérales de Bolivia. 3rd ed. La Paz: Banco Minero de Bolivia, 1955.
- 5. Bertrand E. Sur la molybdoménite (sélénite de plomb), la cobaltoménite (sélénite de cobalt) et l'acide sélénieux de Cacheuta (La Plata) // Bull. Soc. miner. France. Vol. 5, N 3. P. 90-92.
- 6. Fischer R. Kristallstruktur von Molybdomenit. PbSeO, // Tschermaks miner. und petrogr. Mitt. 1972. Bd. 17, H. 3. S. 196-207.
- Goni J., Guillemin C. Données nouvelles sur les séléonites et séléniates naturels // Bull. Soc fr. miner. et Cristallogr. 1953. T. 76. P. 422-429.

- Hurlbut C.S., Aristarain L.F. Olsacherite, Pb<sub>2</sub>(SO<sub>4</sub>)(SeO<sub>4</sub>), a new mineral from Bolivia // Amer. Miner. 1969. Vol. 54, N 11/12. P. 1519-1527.
- Mandarino J.A. Molybdomenite from the Ranwick Uranium Mine, Montreal River Area, Ontario // Canad. Miner. 1965. Vol. 8. P. 149-158.

### УДК 549.73+552.322.2(574.4)

### А.В.Волошин, Я.А.Пахомовский, А.Ю.Бахчисарайцев

## О КАРИБИБИТЕ И ШНАЙДЕРХЁНИТЕ ИЗ ПЕГМАТИТОВ ВОСТОЧНОГО КАЗАХСТАНА (первые находки в СССР)

Карибибит - сложный оксид железа и мышьяка - описан 0.Кноррингом в 1973 г. как новый минерал, который был обнаружен им в виде коричневатожелтых волокнистых агрегатов в краевой части массивных обособлений леллингита в образцах из пегматитов Карибиб, Намибия <u>/</u> 4 <u>/</u>. Ранее, в 1971 г. <u>/</u> 3 <u>/</u>, этот минерал характеризовался им как арсенат железа. При описании карибибита 0.Кнорринг со ссылкой на устное сообщение А.Като упоминает о находке подобного минерала в пегматитах Японии, Киура Майн, описанного как "арсенит железа" <u>/</u> 4 <u>/</u>.

В 1973 г. были приведены данные по другому сложному оксиду железа и мышьяка, шнайдерхёниту, найденному в образцах из глубоких горизонтов зоны окисления известного полиметаллического месторождения Цумеб, Намибия ( 6 ).

Позднее карибибит в ассоциации со шнайдерхёнитом и другими вторичными арсенатами железа и кальция (скородитом и арсеносидеритом) был обнаружен в зонах изменения леллингита месторождения Бу-Аззер, Марокко <u>/</u>7. Та же тесная ассоциация карибибита и шнайдерхёнита характерна и для находок этих минералов в пегматитах Бразилии, Минас-Жерайс, Урукум <u>/</u> I.J.

Нами карибибит и шнайдерхёнит обнаружены в виде поздних образований по леллингиту в полевошпат-мусковитовой зоне гранитных пегматитов Восточного Казахстана. Леллингит образует обособления неправильной формы размером в несколько сантиметров среди кварца и полевого шпата. Краевая зона таких выделений сложена плотным шнайдерхёнитом черного или буровато-черного цвета, в котором леллингит сохраняется частично в виде реликтов. Макроскопически кристаллическое строение этого черного минерала не видно, но в растровом электронном микроскопе отчетливо проявляется пластинчатое строение индивидов шнайдерхёнита (рис. I).

Карибибит образует оранжево-желтые корочки волокнистого строения и тонкие прожилки в краевой части шнайдерхёнита, являясь, по всей видимости, самым поздним минералом. Морфология его агрегатов показана на рис. I,б. Сравнение наших наблюдений с приведенными растровыми микроскопическими снимками в ранних работах по карибибиту и шнайдерхёниту позволяет сделать вывод об однотипности морфологии этих минералов из гранитных пегматитов разных регионов мира.

Химический состав карибибита и шнайдерхёнита из Восточного Казахстана, выполненный методом локального рентгеноспектрального анализа на микроанализаторе MC-46 "Cameca", представлен в табл. I, где для сравнения приве-