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 УДК 549.753.61

Паракокимбит Fe3+
4[SO4]6(H2O)12·6H2O из рудника Алькапарроса близ поселка Сьерра-Горда, провинция 

Антофагаста, пустыня Атакама, Чили, изучен методами порошковой рентгенографии, электронно-зон-
дового микроанализа, термогравиметрии, ИК-, КР- и мёссбауэровской спектроскопии. Определены па-
раметры тригональной элементарной ячейки: a = 10.9345(4) Å, c = 51.3120(3) Å, V = 5312.7(9) Å3; изме-
рены показатели преломления no = 1.541(2), ne = 1.547(2). Методом высокотемпературной расплавной 
калориметрии растворения на микрокалориметре Кальве определена энтальпия образования из эле-
ментов паракокимбита (–10664 ± 34 кДж/моль). Оценено значение его стандартной энтропии и рассчи-
тана величина энергии Гиббса образования (1298 Дж/(моль·K) и −8976 ± 34 кДж/моль соответственно).

Ключевые слова: паракокимбит, ИК-спектроскопия, КР-спектроскопия, мёссбауэровская спектроскопия, 
термогравиметрия, микрокалориметрия Кальве, энтальпия образования, энтропия, энергия Гиббса.
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Введение
Паракокимбит Fe3+

4[SO4]6(H2O)12·6H2O (IMA 
list of minerals, 2024) наряду с кокимбитом 
AlFe3+

3[SO4]6(H2O)12·6H2O весьма распространен-
ные вторичные минералы, повсеместно встречаю-
щиеся в зоне окисления сульфидных месторожде-
ний, содержащих пирит, марказит или пирротин, 
где они ассоциируют с многочисленными другими 
сульфатами железа, алюминия, магния (рёмери-
том, ромбоклазом, ферринатритом, ссомольно-
китом, минералами групп копиапита, вольтаита 
и др. Они известны в Южной (Перу, Чили, Ар-
гентина) и Северной Америке (штаты Калифор-
ния и Юта в США), в Австралии, в Азии (Китай, 
Монголия, Иран), а также в Европе (Италия, Пор-

тугалия, Греция, Испания, Германия) и Южной 
Африке и др. Паракокимбит обнаружен также в 
районах вулканической активности (полуостров 
Камчатка, Россия; остров Вулкано, Италия). Об-
разование их происходит в среде с весьма низким 
pH. В силу их высокой растворимости и чувстви-
тельности к влажности воздуха они лучше сохра-
няются в районах с аридным климатом.

Паракокимбит кристаллизуется в тригональ-
ной сингонии, пространственная группа R ͞3, 
Z=12; авторами работ [Robinson, Fang, 1971; Fang, 
Robinson, 1974] он рассматривается как политип 
кокимбита AlFe3+

3[SO4]6(H2O)12·6H2O. В структуре 
паракокимбита выделяют структурные группы: 
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кластеры, состоящие из трех Fe-центрированных 
октаэдров и шести S-центрированных тетраэ-
дров, изолированные Fe-центрированные октаэ-
дры и группы, состоящие из шести молекул воды, 
образующих неправильные октаэдры без цен-
трального катиона. Все эти структурные элемен-
ты связаны между собой водородными связями 
и образуют слой. В целом структура паракоким-
бита может быть описана как пакет, состоящий 
из шести слоев, с периодом повторения пакета 
вдоль оси c равным 8.5 Å. В паракокимбите кати-
оны железа занимают по данным [Robinson, Fang, 
1971; Yang, Giester, 2018] пять неэквивалентных 
кристаллографических позиций в отличие от ко-
кимбита, в котором по данным [Mauro et al., 2020] 
катионы алюминия и железа находятся в трех 
различных позициях. Следует отметить, что ав-
торам работы [Giester, Miletich,1995] удалось син-
тезировать фазу состава Fe3+

4[SO4]6(H2O)12·6H2O 
со структурой кокимбита. Ими было предложено 
назвать природный аналог, если он будет найден, 
«феррикокимбитом». Паракокимбит замечателен 
своей густо-фиолетовой окраской. Для некоторых 
образцов отмечается александритовый эффект, 
проявляющийся в появлении коричневатых от-
тенков при освещении лампой накаливания. Од-
нако механизм окраски паракокимбита еще не-
достаточно изучен и, без сомнения, заслуживает 
проведения самостоятельных исследований. 

Изучению структуры и определению параме-
тров элементарной ячейки паракокимбита посвя-
щены также работы [Fang, Robinson, 1970; Majzlan 
et al., 2010; Mauro et al., 2020]. В работах [Ling, 
Wang, 2010; Hide et al., 2011] изложены результаты 
ИК- и КР-спектроскопических исследований син-
тетического аналога паракокимбита. Поведение 
минерала при нагревании изучено в [Ackermann 
et al., 2009]. 

В работе [Hemingway et al., 2002] представ-
лены оценочные значения термодинамических 
констант минерала состава Fe3+

2[SO4]3∙9H2O, рас-
сматриваемого этими авторами как кокимбит. Ак-
керманном с соавторами [Ackermann et al., 2009] 
проведено определение энтальпии образования 
синтетического аналога паракокимбита методом 
кислотной калориметрии растворения и оценена 
величина его стандартной энтропии.

Целью настоящей работы является комплекс-
ное физико-химическое исследование чилийско-
го паракокимбита и определение его термоди-
намических свойств. Настоящее исследование 
является продолжением предшествующей работы 
авторского коллектива [Гриценко и др., 2023], в 
которой было выполнено термохимическое опре-
деление энтальпии образования кокимбита и рас-
считаны термодинамические константы кокимби-
та AlFe3+

3[SO4]6(H2O)12·6H2O и алюминококимбита 

Al2Fe3+
2[SO4]6(H2O)12·6H2O.

Описание изученного образца и мето-
дов исследования

Изученный образец отобран во время поле-
вых работ сотрудниками Минмузея РАН (Агаха-
нов А.А., Белаковский Д.И., Гекимянц В.М.) и со-
трудником ИГЕМ РАН (Чаплыгин И.В.) в ноябре 
2023 г. на заброшенном руднике Алькапарроса 
(Alcaparrosa) близ поселка Сьерра-Горда (Sierra-
Gorda), провинция Антофагаста, в пустыне Ата-
кама, Чили (22°37’58’’ S, 69°11’7’’ W), и записан в 
систематическую коллекцию основного фонда 
Минералогического музея им. А.Е. Ферсмана РАН 
под номером 98526. При препарировании образца 
перед записью в основной фонд от него были от-
делены фрагменты, записанные в научно-исследо-
вательский фонд Музея под номером FN1456.

Рудник Алькапарроса расположен на северной 
стороне горы Сьерро-Алькапарроса, примерно в 3 
км к северо-западу от железнодорожной станции 
Серритос-Байос. Окисление пирита и образова-
ние сульфатных ассоциаций на месторождении 
происходило в чрезвычайно засушливых услови-
ях. Уровень грунтовых вод очень глубокий, а до-
жди случаются редко (по разным сообщениям, 
раз в 40–100 лет). По данным наблюдения метео-
станций среднее значение атмосферных осадков 
в этом районе составляет 3–5 мм в год. Под воз-
действием атмосферных осадков часть сульфатов 
растворяется и переотлагается, вновь образован-
ные минеральные ассоциации кристаллизуются в 
условиях чрезвычайно кислой среды. 

Изученный образец представлен сиренево-си-
ним агрегатом субидиоморфных и идиоморфных 
зерен размером до 3–7 см с отдельными кристал-
лами до 3 см, со снежно-белыми радиальными 
сростками ферринатрита Na3Fe3+[SO4]3·3H2O ди-
аметром до 0.5 см и мелкими желтыми кристал-
лами железистого минерала группы копиапита 
(Fe,Al,Mg,Ca)Fe3+

4(SO4)6(OH)2·20H2O. 
Исследование паракокимбита было проведено 

методами порошковой рентгеновской дифрак-
тометрии, иммерсионным методом, ИК-, КР- и 
мёссбауэровской спектроскопии, электронно-зон-
дового и термогравиметрического анализов, ми-
крокалориметрии Кальве. 

Рентгенографическое изучение образца выпол-
нено на порошковом дифрактометре STOE-STADI 
MP (Германия) с изогнутым Ge(III) монохромато-
ром, обеспечивающим строго монохроматическое 
Cu-Kα-излучение (λ = 1.540598 Å). Сбор данных 
осуществлялся в режиме поэтапного перекрыва-
ния областей сканирования с помощью позицион-
но-чувствительного линейного детектора с углом 
захвата 5о по углу 2Θ с шириной канала 0.02о.

Оптические свойства изучались в проходящем 
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свете с использованием поляризационного ми-
кроскопа МИН-8, в иммерсионных препаратах в 
специально приготовленных маслах, показатели 
преломления которых проверялись на рефракто-
метре RL-3 каждый раз до и после измерения по-
казателей преломления.

ИК-спектроскопическое исследование прове-
дено на Фурье-спектрометре ФСМ-1201 (Россия) 
с точностью определения волновых чисел ±1 см−1, 
спектр был получен при накоплении по 50 скани-
рованиям в режиме пропускания при комнатной 
температуре на воздухе на образцах, приготов-
ленных в виде суспензии в вазелиновом масле, на-
несенной на пластинку KBr.

КР-спектроскопическое исследование выпол-
нено на неориентированном образце на раманов-
ском микроскопе EnSpectr R532 (Россия). Длина 
волны лазерного излучения составляла 532 нм, 
мощность луча на выходе из лазерного источ-
ника составляла 15–17 мВт, голографическая 
дифракционная решетка имела 1800 штр./мм со 
спектральным разрешением около 6 см−1, спектр 
регистрировался в интервале от 100 до 4000 см−1.

Гамма-резонансное исследование было вы-
полнено на мёссбауэровском спектрометре MS-
1104Em (Южный федеральный университет, 
Ростов-на-Дону) при комнатной температуре с 
использованием источника 57Co/Rh активностью 
около 1 мКи. Моделирование спектра проводи-
лось при помощи российской компьютерной про-
граммы HappySloth (www.happysloth.ru). Изомер-
ный сдвиг представлен относительно α-Fe. 

Термогравиметрическое изучение при нагре-
вании от комнатной температуры до T = 1100 oC 
было выполнено на термоанализаторе Mettler 
Toledo TGA 2 (Швейцария). Калибровка измери-
тельной системы проведена по стандартной ме-
тодике ASTM E 1582 с использованием эталон-
ных ферримагнитных материалов с известными 
температурами фазового перехода (точки Кюри). 
Корректность работы прибора была подтвержде-
на изучением стандартного образца карбоната 
кальция CaCO3. Среднее из трех эксперименталь-
ных значений потери массы CaCO3 составило 
43.98 ± 0.3 мас.% (теор. 43.97 мас.%). Все экспе-
рименты проводили в стандартных корундовых 
тиглях в потоке (20 мл/мин) осушенного воздуха 
(99.99 об.%). Печь прибора нагревали по задан-
ной температурной программе со скоростью 10 
°С/мин от 25 до 1100 °С. Перед опытами фрагмен-
ты кристаллов без предварительного истирания 
были взвешены на электронных аналитических 
весах с точностью ± 0.01 мг. Масса образца состав-
ляла 18.97 мг.

Электронно-зондовый анализ минерала вы-
полнен с помощью сканирующего электронно-
го микроскопа JSM-6480LV (JEOL Ltd., Япония) 

с вольфрамовым термоэмиссионным катодом с 
энергодисперсионным спектрометром X-Max-50 
(Oxford Instruments Ltd., GB) при ускоряющем на-
пряжении 20 кВ и силе тока 10.05 ± 0.05 нА. 

Термохимическое исследование проведено на 
микрокалориметре Тиана-Кальве Setaram (Фран-
ция). Энтальпия образования изученного мине-
рала определялась методом высокотемператур-
ной калориметрии растворения при T = 973 K в 
расплаве состава 2PbO·B2O3 методом «сброса» 
на основании термохимического цикла, вклю-
чающего растворение изучаемого минерала и 
составляющих его компонентов. Измеряемая 
в ходе экспериментов по растворению величи-
на теплового эффекта ΔH состоит из прираще-
ния энтальпии при нагревании вещества от ком-
натной температуры до температуры T = 973 K 
[(H0(973 K)−H0(298.15 K)] и энтальпии его раство-
рения ΔраствH

0(973 K) при этой температуре. Ка-
либровку микрокалориметра проводили методом 
«сброса» эталонного вещества – платины в рас-
плав в условиях экспериментов по растворению, 
при этом измерялось только приращение энталь-
пии платины [(H0(973 K)−H0(298.15 K)], необхо-
димые справочные данные заимствовались из 
[Robie, Hemingway, 1995]. 

Термоанализатор Mettler Toledo TGA 2 (Швей-
цария) находится в совместном университете 
МГУ–ППИ (Московский государственный уни-
верситет им. М.В.  Ломоносова – Пекинский по-
литехнический институт) в г. Шэньчжэнь, КНР. 
Мёссбауэровский спектрометр установлен в 
НИТУ МИСИС. Остальное использованное обо-
рудование установлено на геологическом факуль-
тете МГУ им. М.В. Ломоносова.

Результаты исследований и их обсуж-
дение

Паракокимбит оптически одноосный отрица-
тельный. Показатели преломления: no = 1.541(2), 
ne = 1.547(2) (λ = 589 нм).

Порошковая дифрактограмма изученного об-
разца соответствует паракокимбиту согласно 
базе данных ICDD (The International Centre for 
Diffraction Data, 2013; карточка № 01-071-2408). 
В табл. 1 приведены полученные в настоящей ра-
боте данные в сравнении с результатами работы 
[Robinson, Fang, 1971], приведенными в базе дан-
ных ICCD. Рассчитанные параметры элементар-
ной ячейки паракокимбита: a = 10.9345(4) Å, c = 
51.3120(3) Å, V = 5312.7(9) Å3 − согласуются с дан-
ными ICCD (№ 01-071-2408 ): a = 10.9260 Å и с = 
51.3000 Å [Robinson, Fang, 1971]. 

Спектр инфракрасного поглощения изученно-
го образца паракокимбита (рис. 1а) мало отлича-
ется от спектра кокимбита [Mauro et al., 2020] и 
хорошо согласуется со спектром синтетического 
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Рис. 1. ИК-спектры изученного паракокимбита − а и 
продукта его термического разложения − б. * * – область 
поглощения вазелинового масла.

Таблица 1. Данные порошковой дифрактометрии 
паракокимбита

Изученный образец
Паракокимбит 

ICDD № 01-071-2408  
[Robinson, Fang, 1971]

2Θ d, Å I d, Å I h k l
9.97 8.86 10.0 8.88 10.0 0 1 2

10.37 8.52 0.9 8.55 2.1 0 0 6
11.63 7.60 4.1 7.61 4.0 1 0 4
16.21 5.46 5.4 5.46 3.0 1 1 0
18.81 4.71 2.7 4.71 1.6 0 2 1
19.25 4.61 5.0 4.60 2.9 1 1 ͞6
20.69 4.29 0.2 4.28 0.2 0 0 12
23.35 3.807 0.6 3.807 0.4 2 0 8
24.95 3.566 1.6 3.568 0.7 2 1 1

      3.542 0.2 2 1 ͞2
25.57 3.481 1.0 3.478 0.6 0 2 10
25.85 3.444 1.0 3.445 0.5 1 2 ͞4
26.45 3.367 4.1 3.367 3.4 1 1 ͞1͞2
26.81 3.323 1.0 3.321 0.7 2 0 11
27.75 3.212 0.2 3.214 0.1 1 2 ͞7
28.27 3.154 0.3 3.154 0.1 3 0 0
28.53 3.126 2.1 3.123 0.9 2 1 ͞8
28.73 3.105 2.5 3.102 0.7 0 3 3
29.43 3.033 0.6 3.030 0.4 1 0 16

      3.030 0.4 0 2 13
30.13 2.964 0.7 2.959 0.2 0 3 6
30.43 2.935 1.1 2.934 0.6 1 2 ͞1͞0
30.79 2.902 0.4 2.897 0.2 1 1 ͞1͞5

      2.897 0.2 2 0 14
32.37 2.764 4.4 2.760 1.5 3 0 9

      2.654 0.2 0 2 16
33.73 2.655 0.4 2.654 0.2 2 1 13
34.23 2.618 0.2 2.621 0.1 3 1 ͞1
34.41 2.604 0.2 2.602 0.1 2 2 ͞6
34.85 2.572 0.2 2.571 0.1 3 1 ͞4
35.01 2.561 0.3 2.559 0.2 2 1 ͞1͞4
35.27 2.543 2.2 2.538 0.8 3 0 12
35.43 2.532 0.2 2.527 0.4 1 1 ͞1͞8
36.91 2.433 0.7 2.429 0.2 1 3 ͞8
38.01 2.365 0.3 2.363 0.1 4 0 1
38.45 2.339 0.5 2.336 0.2 3 1 ͞1͞0
38.75 2.322 0.4 2.326 0.1 4 0 4
39.03 2.306 2.2 2.302 0.6 0 4 5

      2.302 0.6 2 2 ͞1͞2
39.31 2.290 0.2 2.287 0.1 1 3 ͞1͞1
39.99 2.253 0.2 2.251 0.1 4 0 7
41.23 2.188 0.1 2.219 0.1 0 4 8
41.65 2.167 0.2 2.163 0.1 2 3 2
42.23 2.138 0.2 2.140 0.1 3 2 4
42.23 2.138 0.2 2.140 0.1 0 0 24
43.29 2.088 0.1 2.092 0.1 0 2 22
43.75 2.068 0.8 2.065 0.2 1 4 0
44.07 2.053 0.2 2.050 0.1 1 4 ͞3
45.45 1.9940 0.2 1.9992 0.1 3 2 10
45.73 1.9824 0.1 1.9906 0.1 1 1 ͞2͞4
45.73 1.9824 0.1 1.9906 0.1 0 4 14
45.93 1.9743 0.8 1.9802 0.1 1 3 ͞1͞7

      1.9720 0.3 2 2 ͞1͞8
      1.9680 0.2 3 2 ͞1͞1

46.67 1.9447 0.9 1.9414 0.2 1 4 9
47.67 1.9062 0.1 1.9035 0.1 4 0 16
47.67 1.9062 0.1 1.9035 0.1 3 2 13
48.25 1.8846 0.2 1.8926 0.1 0 5 1
48.25 1.8846 0.2 1.8873 0.1 5 0 2
48.63 1.8708 0.1 1.8677 0.1 3 2 ͞1͞4
48.89 1.8614 1.9 1.8593 0.5 1 4 ͞1͞2
49.59 1.8368 0.2 1.8344 0.1 1 3 ͞2͞0
49.99 1.8230 0.8 1.8210 0.2 3 3 0
49.99 1.8230 0.8 1.8210 0.2 2 2 ͞2͞1
49.99 1.8230 0.8 1.8151 0.1 5 0 8
51.19 1.7831 1.0 1.7811 0.3 3 3 ͞6
51.19 1.7831 1.0 1.7811 0.3 1 2 ͞2͞5
51.19 1.7831 1.0 1.7755 0.2 0 5 10

Изученный образец
Паракокимбит 

ICDD № 01-071-2408  
[Robinson, Fang, 1971]

2Θ d, Å I d, Å I h k l
51.57 1.7708 1.2 1.7695 0.3 3 0 24
51.57 1.7708 1.2 1.7695 0.3 1 4 15

      1.7622 0.2 3 2 ͞1͞7
      1.7622 0.2 2 4 ͞͞5

52.53 1.7407 0.2 1.7431 0.1 3 1 ͞2͞2
52.53 1.7407 0.2 1.7389 0.1 0 4 20
54.05 1.6953 0.1 1.7064 0.1 0 2 28
54.05 1.6953 0.1 1.7064 0.1 0 5 13
54.39 1.6855 0.9 1.6834 0.4 2 2 ͞2͞4
54.59 1.6798 0.3 1.6721 0.2 4 1 ͞1͞8
55.35 1.6585 0.3 1.6570 0.1 3 2 ͞2͞0
55.35 1.6585 0.3 1.6570 0.1 1 5 ͞7
55.85 1.6448 0.2 1.6428 0.1 1 5 8

Таблица 1. Продолжение

аналога паракокимбита, представленным в работе 
[Ling and Wang, 2010]. На присутствие в структу-
ре минерала большого количества молекул воды 
указывает зарегистрированная в спектральной 
области 2400–3500 см−1 широкая и интенсивная 
полоса поглощения с максимумами при 3440, 3217 
и 2434 см−1, соответствующая валентным колеба-
ниям ОН-групп, и полоса средней интенсивности 
при 1678 см−1, относящаяся к деформационной 
колебательной моде молекул. Широкий спек-
тральный диапазон, занимаемый этой полосой 
поглощения, указывает на наличие водородных 
связей различной силы. Многокомпонентная по-
лоса с максимумами поглощения при 1170, 1109, 
1070 и 1014 см−1 относится к валентным колеба-
ниям SO4-тетраэдров, а наличие нескольких ком-
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понент связано с понижением позиционной сим-
метрии тетраэдров в структуре минерала. Полосы 
при 902 и 831 см−1 приписываются либрационным 
колебаниям молекул воды, а полосы при 669, 596 
и 488 см−1 связываются с деформационными коле-
бательными модами SO4-тетраэдров. 

КР-спектроскопия. Спектр комбинационного 
рассеяния изученного образца (рис. 2а) хорошо 
согласуется со спектрами образцов паракокимби-
та из электронной базы данных RRUFF (rruff.info. 
Database of Raman spectroscopy, X-ray diffraction 
and chemistry of minerals) R140266 (провинция 
Ляонин, Китай) и R050351 (Кипр) и с данными, 
представленными в [Mauro et al., 2020]. В спек-
тральной области 3000–3600 см−1 зарегистриро-
вана широкая линия рассеяния с максимумами 
при 3214, 3421 и 3596 см−1, соответствующая ва-
лентным колебаниям OH-групп. Присутствие в 
составе вещества воды в молекулярной форме 
подтверждается наличием в спектре слабоинтен-
сивной линии при 1657 см−1, приписываемой де-
формационным колебаниям молекул воды. Узкие 
полосы при 1113, 1185плечо и 1202 см−1 относятся 
к трижды вырожденному валентному колебанию 
SO4-тетраэдров, расщепленному на несколько 
компонентов из-за более низкой, чем у тетраэдра, 
позиционной симметрии в структуре. Узкая ин-
тенсивная линия с максимумом 1025 см−1 относит-
ся к полносимметричному валентному колебанию 
тетраэдров. Линии с максимумами при 456плечо, 
502, 603 и 643плечо см−1 приписываются расще-
пленным вырожденным деформационным модам 
SO4-тетраэдров. В спектральной области ниже 
300 см−1 зарегистрированы линии рассеяния, со-
ответствующие трансляциям катионов и реше-
точным модам.

Полученный мёссбауэровский спектр 
(рис. 3) аналогичен спектру изученного нами 
ранее кокимбита [Гриценко и др., 2023] и мо-
жет быть удовлетворительно описан одиночной 
уширенной лоренцевой линией с параметрами: 
RTISα-Fe = 0.45(1) мм·с–1, FWHM = 0.63(2) мм·с–1,  
χ2 = 1.2. В структуре паракокимбита железо нахо-
дится в пяти кристаллографически неэквивалент-
ных позициях [Robinson, Fang, 1971; Yang, Giester, 
2018]; однако, среднее межатомное расстояние 
Fe–O для каждой из них составляет около 1.98 Å, 
что позволяет объяснить присутствие в спектре 
лишь одной линии [Dedushenko, Perfiliev, 2022]. 
Измеренный изомерный сдвиг соответствует ин-
тервалу значений, обычно наблюдаемых для ок-
таэдрических кислородных полиэдров трехва-
лентного железа [Fe3+O6]

9−.
Полученные термогравиметрические кривые 

приведены на рис. 4. Образец не содержал фи-
зически адсорбированной воды, так как вплоть 

Рис. 2. КР-спектры изученного образца: а – спектр 
паракокимбита (диаметр лазерного пятна 20 мкм 
при 10-кратном увеличении, накопление сигнала 2 с, 
усреднение по 20 экспозициям), б – спектр продукта 
нагревания до 1430 оС (диаметр лазерного пятна 20 мкм 
при 40-кратном увеличении, накопление сигнала 3 с, 
усреднение по 100 экспозициям).

Рис. 3. Мёссбауэровский спектр при комнатной темпе-
ратуре изученного паракокимбита.

до 120 оС не была зафиксирована потеря массы. 
При повышении температуры кривая ТГА де-
монстрирует три этапа потери массы изучаемым 
минералом. Первые два неразделимых этапа в 
интервале температур от 120 до 450 оС с максиму-
мами на кривой ДТГ при t = 157.5 и 251.0 оС от-
носятся к процессу дегидратации паракокимбита 
(29.10 %), третья ступень в диапазоне температур 
550–1100 оС соответствует десульфатизации ми-
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нерала (42.49 %). В работе [Abdulina et al., 2025] 
при изучении термического поведения кокимбита 
было установлено образование промежуточной 
микасаитподобной фазы  состава Fe2(SO4)3, кото-
рая стабильна до 575 °C с последующими десуль-
фатизацией и образованием гематита. 

Приведенный на рис. 1б ИК-спектр продук-
та разложения образца, прогретого до 1430 оС, 
демонстрирует полные дегидратацию и десуль-
фатизацию паракокимбита и образование новой 
фазы – гематита. КР-спектр образца, нагретого 
до 1430 оС (рис. 2б), аналогичен спектру гематита 
с характерной для него интенсивной широкой ли-
нией рассеяния с максимумом при 1307 см−1, соот-
ветствующей двухмагнонной моде.

По результатам электронно-зондовых измере-
ний в трех точках изученный паракокимбит имеет 
следующие средние значения содержания основ-
ных компонентов, мас.%: 28.04 Fe2O3, 0.11 Al2O3, 
42.81 SO3, ∑ = 70.96. Значение содержания триок-
сида серы близко к значению, полученному мето-
дом термогравиметрического анализа (42.49 %). 
Расчет химической формулы проведен на ∑(4Fe + 
+ 6S) = 10, при этом содержание воды получено из 
данных термогравиметрии. Химическая формула 
изученного паракокимбита (Fe3.98Al0.02)∑4.00(SO4)6.00· 
·18.1H2O близка к идеализированной формуле 
паракокимбита Fe4(SO4)6(H2O)12·6H2O, рекомен-
дованной Международной минералогической 
aссоциацией (IMA, list of minerals, 2024). Расчет 
термодинамических констант был выполнен на 
идеализированную формулу.

На основании восьми проведенных на ми-
крокалориметре Кальве экспериментов по 
растворению природного образца было рас-
считано среднее значение величины [H0(973 K)– 
– H0(298.15 K) + ΔраствH

0(973 K)] для паракокимби-

та состава Fe4[SO4]6(H2O)12·6H2O, которое соста-
вило 1282.0 ± 10.0 Дж/г = 1441.0 ± 11.2 кДж/моль 
(М = 1124.04 г/моль); погрешности определены с 
вероятностью 95 %.

С использованием полученных калориме-
трических данных по реакции (1) и уравнени-
ям (2) и (3) было рассчитано значение энталь-
пии образования из элементов паракокимбита 
Fe3+

4(SO4)6(H2O)12·6H2O.
2 Fe2O3 + 6 CaSO4 + 12 Al(OH)3 = 6 CaO + 

+ 6 Al2O3 + Fe3+
4(SO4)6(H2O)12·6H2O,      (1)

∆р-ции(1)H
0(298.15 K) = 2 ΔHFe2O3+ 6 ΔHCaSO4 + 

+ 12 ΔHAl(OH)3 – 6 ΔHCaO – 6  ΔHAl2O3 –  
– ΔH Fe3+

4(SO4)6(H2O)12·6H2O,                 (2)
∆fH

0(298.15 K)паракокимбита = ∆р-ции(1)H
0(298.15 K)  +  

+ 2 ∆fH
0(298.15 K)Fe2O3 + 6 ∆fH

0(298.15 K) CaSO4 +  
+ 12 ∆fH

0(298.15 K)Al(OH)3 – 6 ∆fH
0(298.15 K)CaO – 

– 6 ∆fH
0(298.15 K)Al2O3,                           (3)

где ΔH = [H0(973 K)−H0(298.15 K) + ΔраствH
0(973 K)] − 

термохимические данные для изученного минера-
ла, оксида железа, оксида и гидроксида алюминия, 
оксида и сульфата кальция и ∆fH

0(298.15 K) – эн-
тальпии образования компонентов реакции (1) 
(табл. 2). Рассчитанное по экспериментальным 
результатам микрокалориметрии Кальве значение 
∆fH

0(298.15 K) паракокимбита, равное –10664 ± 34 
кДж/моль, отличается с учетом погрешностей на 
≈31 кДж/моль (≈ 0.3%) от величины, полученной 
в [Ackermann et al., 2009] методом кислотной ка-
лориметрии для синтезированного водного суль-
фата железа Fe4(SO4)6·18H2O (–10590.8 ± 8.4 кДж/
моль), и от оценки этой величины (−10576.4 кДж/
моль), полученной в [Hemingway et al., 2002]. Ре-
зультаты упомянутых работ также не согласуются 
друг с другом.

Оценка значения стандартной энтропии па-
ракокимбита (табл. 3), необходимого для расчета 
энергии Гиббса образования, была проведена по 

Рис. 4. Кривые ТГА (сплошная линия) и ДТГ (пунктирная линия) изученного паракокимбита.
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уравнению (4) с использованием вклада кристал-
логидратной воды в энтропию водных сульфатов. 

2Fe2(SO4)3 + 18 H2O = Fe4(SO4)6(H2O)12·6H2O    (4)
Для этого были рассчитаны значения энтро-

пийных вкладов воды в стандартную энтропию 
минералов S0(298.15 K) с учетом значений эн-
тропий водосодержащих сульфатов и их без-
водных форм: CaSO4·2H2O – 43.2 Дж/(моль∙K), 
CuSO4·5H2O – 38.3 Дж/(моль∙K), NiSO4·6H2O – 
38.9 Дж/(моль∙K), NiSO4·7H2O – 39.6 Дж/(моль∙K), 
MgSO4·7H2O – 40.1 Дж/(моль∙K), Na2SO4·10H2O 
– 44.2 Дж/(моль∙K). Требуемые для проведенно-
го расчета данные по энтропии перечисленных 
водосодержащих сульфатов, их безводных форм, 
как и сульфата железа Fe2(SO4)3, были заимствова-
ны из [Robie, Hemingway, 1995]. С учетом среднего 
значения, равного 40.7 Дж/(K·моль), для парако-

Таблица 2. Термохимические данные (кДж/моль), 
использованные в расчетах энтальпии образования 
паракокимбита

Компонент
H0(973 K)– 

– H0(298.15 K) +
 + ΔраствH

0(973 K)
– ΔfH

0(298.15 K)а

CaO(к.) −21.78 ± 0.29б 635.1 ± 0.9
Fe2O3(гематит) 171.6 ± 1.9в 826.2 ± 1.3

Al2O3(корунд) 107.38 ± 0.59г 1675.7 ± 1.3

Al(OH)3(гиббсит) 172.6 ± 1.9д 1293.1 ± 1.2
CaSO4(ангидрит) 131.3 ± 1.6е 1434.5 ± 1.5

Примечания. 

а Справочные данные [Robie, Hemingway, 1995].
б–г,е Рассчитано с использованием справочных данных 
по [H0(973 K)−H0(298.15)] [Robie, Hemingway, 1995] и 
экспериментальных данных по ΔраствH

0(973 К): CaO 
[Киселева и др., 1979], Fe2O3

 [Киселева, 1976], Al2O3 
[Ogorodova et al., 2003], CaSO4.[Котельников и др., 2000]. 
д По данным [Огородова и др., 2011]. 

Таблица 3. Термодинамические свойства паракокимбита, 
полученные в настоящей работеа

−ΔfH
0 

(298.15 K)б, 
кДж/моль

S0 

(298.15 K)в,  
Дж/(моль·K)

−ΔfS
0 

(298.15 K)г,  
Дж/(моль·K)

−ΔfG
0 

(298.15 K)д,  
кДж/моль

10664 ±34 1298 5663 8976 ± 34

Примечания. 
а Погрешности всех термодинамических величин рас-
считаны методом накопления ошибок. 
б Получено в настоящей работе методом калориметрии 
растворения. 
в Оценено в настоящей работе.
г Рассчитано с использованием данных по 
S0(298.15 K) элементов, входящих в состав минерала 
[Robie, Hemingway, 1995]. 
д Рассчитано по формуле ∆fG

0 = ∆fH
0 − T∙∆fS

0.

кимбита было получено значение стандартной эн-
тропии S0(298.15 K) = 1298.2 Дж/(K·моль). 

Заключение
Физико-химическое исследование водных 

сульфатов железа имеет практическую значи-
мость в связи с их существенной ролью в про-
цессе выветривания горных пород, содержащих 
значительное количество сульфидных минералов 
(пирита, марказита или пирротина). При взаимо-
действии сульфидов железа с водой и кислородом 
воздуха происходит образование водораствори-
мых сульфатов и серной кислоты [Jerz, Rimstidt, 
2003; Gerding et al., 2021], оказывающей разруша-
ющее воздействие на окружающие горные поро-
ды, при этом происходит вынос металлов (в том 
числе и токсичных) кислыми дренажными рас-
творами (кислотный дренаж пород, рудников, от-
валов и шахт) и загрязнение почвы и водоемов, 
что представляет собой экологическую опасность 
при хозяйственном использовании этих террито-
рий [Buzatu et al., 2016; Nieva et al., 2021].

Термодинамическое моделирование процес-
сов в системе вода – порода может способство-
вать решению проблем, связанных с загрязнением 
окружающей среды в процессе кислотного дрена-
жа пород. В работе [Hemingway et al., 2002] была 
проведена оценка термодинамических свойств 
ряда растворимых водных сульфатов железа в 
степени окисления 2+ и 3+ с целью возможного 
использования этих данных для моделирования 
процессов природного кислотного дренажа. В на-
стоящей и в более ранней [Гриценко и др., 2023] 
наших работах на основании экспериментальных 
термохимических исследований были получены 
термодинамические данные для кокимбита, алю-
минококимбита и паракокимбита, которые могут 
быть использованы для моделирования процес-
сов, происходящих в зоне окисления сульфидных 
месторождений, и тем самым способствовать ре-
шению экологических задач по рациональному 
природопользованию.
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