АКАДЕМИЯ НАУК СССР

Вып. 24

Труды минералогического музея им. А. Е. Ферсмана

Ответственный редактор д-р геол.-мин. наук Г. П. Барсанов

Г. Н. НЕЧЕЛЮСТОВ, Е. Б. ХАЛЕЗОВА, А. С. АВДОНИН, Н. Г. ШУМКОВА

новые данные о линдстремите

Линдстремит редкий и недостаточно изученный сульфид меди, свинца и висмута впервые был выделен в качестве минерального вида К. Юханссоном (Johansson, 1924) на месторождении Гладхаммар (Швеция). Позднее минерал аналогичного состава был обнаружен Ю. С. Бородаевым и др. (1970) на месторождении Северный Коунрад.

Описываемый минерал долгое время рассматривался в качестве промежуточного члена изоморфного ряда висмутин-айкинит (Padera, 1956; Чухров и др., 1961; Рамдор, 1962). Однако Е. Велин (Welin, 1966) проведя монокристальные исследования образцов, отвечающих составу гладита, хаммарита, а также минералу состава — Cu₃Pb₃Bi₇S₁₅, обнаружил, что они при близких параметрах b_0 и c_0 существенным образом отличаются между собой по параметру a_0 , кратному величине ~ 11,1 Å. Отличались также и пространственные группы. Так, два исследованных минерала имели пространственную группу Pbum, а третий — Pbmm. На основании полученных результатов Е. Велин пришел к выводу об отсутствии непрерывного ряда твердых растворов в рассматриваемой группе.

При изучении Северо-Коунрадского молибден-вольфрамового месторождения одним из авторов (Г. Н. Нечелюстовым) был обнаружен сложный сульфид меди, свинца и висмута, детальные исследования которого показали идентичность его с линдстремитом. В рудах этого месторождения линдстремит встречается довольно часто и, по-видимому, является одним из самых распространенных висмутовых минералов. Он образует крупные (до 3--5 см) удлиненно-призматические кристаллы, располагающиеся совместно с вольфрамитом или пиритом в призальбандовых частях кварцевых жил.

Макроскопически линдстремит, как большинство сульфидов висмута, имеет свинцово-серый цвет и сильный металлический блеск. Нередко отмечается желтовато-зеленая побежалость. Параллельно удлинению кристалла наблюдается ясная спайность, а на гранях призмы штриховка. Излом раковистый. Плотность минерала (обр. СК-5) определена В. Ф. Недобой методом гидростатического взвешивания из навески 0,35 г и оказалась 7,04 г/см³, что очень близко к плотности этого минерала из месторождения Гладхаммар — 7,01.

В отраженном свете линдстремит белый с чуть заметным желтоватым оттенком. Двуотражение в воздухе слабое, в иммерсии — отчетливое со слабым цветным эффектом: бледно-желтый (||удлинению) и фиолетово-серый (_удлинению). Максимальное отражение параллельно удлинению кристалла. В скрещенных николях отчетливо анизотропный с прямым погасанием относительно ребер призматических сечений. Для получения наиболее достоверных данных по отражательной способности и микротвердости линдстремита нами были приготовлены ориентированные шлифы (вскрыты плоскости, перпендикулярные кристаллографическим осям *a*, *b* и *c*). Замеры отражательной способности по спектру проводились на приборе ПООС-I. Измерения велись в воздухе с объективом 21⁺; апертура 0,40. Эталоном служил кремний. Результаты измерения приведены в табл. 1.

На рис. 1 показаны кривые дисперсии по спектру главных показателей отражения Rg, Rm и Rp. Анализ колориметрических кривых подтвердил качественные оценки минерала: подъем кривой дисперсии Rg линдстремита на участке спектра 440—540 нм и приуроченность максимума кривой к желто-зеленой области спектра хорошо согласуются с

Кривые дисперсии отражательной способности линдстремита

визуальным восприятием цветового тона минерала как бледножелтого в положении просветления. Колориметрическая кривая *Rp* в фиолетовой области спектра имеет слабо выраженный аномальный характер, переходящий в нормальный на участке 480—660 *нм*, что соответствует наблюдавшемуся в положении затемнения фиолетово-серому цвету. Из приводимой фигуры видно также, что двуотражение минерала более

Таблица 1

Значение дисперсии главных показателей отражения линдстремита

						1				1		
λнм	440	460	480	500	520	540	560	580	600	620	640	660
Rg	47,4	48,1	43,6	48,8	48,9	48,7	48,5	48,3	47,8	47,2	46,5	46,0
Rm	45,9	46, 5	46,7	46, 6	46,3	45,9	45,4	44,8	44,4	43,9	43,6	43,5
Rp	39,3	39,8	40,0	39,9	39,6	39,2	38,6	38,1	37,8	37,5	37,3	37,0

отчетливо будет фиксироваться в желто-зеленой части спектра. Измерение микротвердости, так же как и отражательной способности осуществлялись на ориентированных сечениях (см. табл. 2).

Как видно из этих данных микротвердость линдстремита, измеренная в различной ориентировке относительно кристаллографических осей, характеризуется сравнительно близкими значениями.

Химический состав линдстремита изучался на двух образцах, взятых на разных участках месторождения, из кварц-вольфрамитовой жилы № 1 (обр. СК-4, гор. 80 м; обр. СК-5, гор. 100 м). Для большей надежности диагностики линдстремита, для которого в литературе, кроме химического состава, отсутствуют четкие характеристики необходимые для определения минерала, нами проведено его изучение также с помощью электронного микроанализатора типа JXА-ЗА.

Плоскость изме- нения	Направление измерения	Микротвердость /Н/ кГ/мм	Число измерзний
(100)	∥ спайность спайности под ∠45° к спайности	$\begin{array}{c} 224-243 & (233) \\ 202-231 & (215) \\ (221) \end{array}$	8 8 5
* (010)	∥удлинение ⊥удлинение	179—205 (192) 202—214 (206)	8
(001)	не ориентировано	184—243	10

Таблица 2 Характеристика микротвердости линдстремита* (при нагрузке 20Г)

* На плоскостях || (100) на некоторых отпечатках наблюдалось расщепление по направлению к снайности, что приводило к резким занижениям микротвердости. Подобные значения нами не учитывались.

Количественный анализ проводился при ускоряющем напряжении 30 кв по линиям BiLa; PbLa; CuKa и при ускоряющем напряжении 20 кв по линиям SKa. В качестве эталонов использовались химически чистая медь, гидротермально-перекристаллизованный искусственный висмутин и химически проанализированный галенит. Определение состава минерала проводилось для нескольких зерен, причем измерение интенсивности рентгеновского излучения (I) в каждом из них повторялось не менее 6-8 раз на двух спектрометрах. Для расчета концентрации брались средние значения. Расчет концентрации элементов проводился методом гипотетического состава (Батырев, Рыдник, 1970) с введением поправок на поглощение, атомный номер. Результаты анализов и их пересчет подтвердили принадлежность исследованного минерала к линдстремиту (табл. 3). При изучении образцов линдстремита на микроанализаторе методом линейного сканирования была обнаружена фаза, близкая по составу к линдстремиту, но отличающаяся от него более высоким содержанием свинца и более низким содержанием висмута. В связи с тем, что содержание висмута и свинца в этой фазе и линдстремите отличаются незначительно (5% относительных), то для увеличения точности определения химического состава в качестве эталона использовался линдстремит. В этом случае поправки на разницу условий возбуждения и поглощения рентгеновского излучения в эталоне и образце практически равны 1, поэтому точность анализа при измерении интенсивности на двух каналах будет определяться только воспроизводимостью микроанализатора и будет находиться в пределах 0,4-0,7% относительных.

Пересчет данных микрорентгеноспектрального анализа привел к формуле минерала как — Cu_{2,1}Pb_{2,2}Bi_{5,8}S_{12,3}, т. е. он по своему составу отвечает одному из членов ряда висмутин-айкинит. Визуальное сравнение его рентгенограммы с эталонными рентгенограммами минералов ряда висмутин — айкинит подтвердили принадлежность исследованного минерала к этому ряду.

В связи с тем, что в литературе отсутствуют сведения о пространственной группе и размере элементарной ячейки линдстремита, нами из материала подготовленного для химического анализа (обр. СК-5) были отобраны кристаллические осколки, которые использовались Е. Б. Халезовой для монокристальных исследований. Параметры элементарной ячейки линдстремита определены методом качания в камере РКОП (λСu, λFe), которые затем уточнялись по порошкограмме. При анализе рентгенограмм качания были обнаружены вставные плоскости,

Состав линдстремита по данным химического анализа *								Состав линдстремита по данным микрозонда				
Обр. СК=4. аналитик II. Г. Шумкова Обр. СК=5, аналитик Н. Г. Шумкова						Обр. СҚ=5, аналитик А. С. Авдонин						
Элементы	Bec. %	Атомные колич.	Отношение атомных кол-в	Bec. %	Атомные колич.	Отношение атомных кол-в	Bec. %	Атомные колич.	Отношение атомных кол-в	Bec. %	Атомные колич.	Отношение атомных кол-в
Bi	57,10	0,2732	3,01	54,90	0,2627	2,84	56,9	0,2723	2,93	56,2	0,2689	2,93
Sb	Следы			0,22	0,0018	0,02	Не обн.			Не обн.		
Pb	18,75	0,0905	1,00	19,30	0,0931	1,00	19,7	0,0951	1,02	19,0	0,0917	1,00
Cu	6,14	0,0966	1,06	5,21	0,0820	0,89	6,5	0,1023	1,10	6,1	0,0960	1,05
Ag	0,18	0,0017	0,02	0,75	0,0070	0,08	Не обн.			Не обн.		
Fe	0,23	0,0041		0,48	0,0087		»			»		
S	17,45	0,5442	5,91	18,87	0,5885	6,17	17,8	0,5513	5,94	17,7	0,5520	6,02
Сумма	99,85		<u> </u>	99,73			100,9		- I	99,0		
Формула	(Cu, Ag),	Pb1.00 Bi3.0	S 5.91	(Cu Ag) _{0,97}	Pb _{1.00} (Bi,	Sb) _{2.86} S _{6.17}	Cu _{1.10} Pb _{1.0}	2 Bi2.93 S5.94	1	Cu _{1.05} Pb _{1.0}	Bi2,93 S6.0	2

	Табли	ца З	
Результаты	химических	анализов	линдстремита

* Присутствие железа в анализах, как показали минераграфические исследования, связано с примесью пирита, поэтому при расчете анализов железо и соответствующее количест во серы были исключены. подтверждающие предполагаемую Е. Велином (Welin, 1966) сверхструктуру. В результате параметр a_0 увеличился, по сравнению с таковым основной псевдоячейки минералов висмутин — айкинитовой серии, в два раза. Полученные параметры ячейки линдстремита в сопоставлении с аналогичными данными для других минералов ряда висмутин-айкинит приведены в табл. 4.

	Парамет	іры элементарно	_		
Минерал	<i>a</i> ₀	b ₀	C.	Исследователь	
Висмутин	11,15	11,29	3,98	Berry, Thompson,	
Гладит	33,66	11,45	4,02	1962 Welin, 1967	
Линдстремит	22,38	11,51	4,005	Данные авторов	
Минерал Е. Велина	56,07	11,57	4,01	Welin, 1967	
Хаммарит	33,45	11.58	4,01	То же	
Айкинит	11,32	11,65	4,01	Berry, Thompson, 1962	

Та	блица	4
	V PAAA LL SS	

Размеры элементарных ячеек минералов ряда висмутин-айкинит

На основании полученных параметров и приведенной выше формулы рассчитано число формульных единиц в элементарной ячейке, которое оказалось равным 4, а без учета сверхструктуры 2. Вычисленная теоретическая плотность линдстремита — 7,02, хорошо согласуется с экспериментальной — 7,04.

Поликристаллические рентгеновские исследования линдстремита проводились на камере РКУ-114 (λ Fe) и на дифрактометре ДРОН-1 (λ Cu K_{α} , скорость движения счетчика 1 град/*мин*). Результаты расчета дебаеграммы и дифрактограммы приведены в табл. 5.

Индицирование проводилось как с использованием параметров псевдоячейки (a=11,19), так и истинной ячейки (a=22,38). Анализ индицированных отражений по псевдоячейке привел к пространственной группе Pbmm, в которой согласно закону погасания в отражениях типа okl присутствуют только те, где k=2.

В то же время анализ индицированных отражений на основании ячейки сверхструктуры с удвоенным параметром a_0 , привел к другому дифракционному классу. Помимо закона погасаний, характерного для пространственной группы основной ячейки (Pbmm; в okl, k=2n), в отражениях типа hol присутствуют отражения только с h=2n, что позволило определить возможную пространственную группу линдстремита как: D^{*}_{2h} =Pbam или C^{*}_{2v} =Pba². Эту группу, выведенную по индицированным отражениям порошкограммы подтвердил анализ погасаний на инфраграммах разверток слоевых линий okl и hol. Истинную пространственную группу сверхструктуры подтверждает также присутствие отражений (d=1,693; 1,658) не индицируемых в основной ячейке.

Таким образом, проведенные исследования подтвердили теоретические предположения Е. Велина о том, что линдстремит является самостоятельным минеральным видом с удвоенным по отношению к айкиниту параметром a_0 .

Таблица 5 Межплоскостные расстояния линдстремита в А

17

Nt		^d вкс		4	hkl			
п/ п	¹ i	ДРОН-1	РКУ-114	^и вычисл.	a'=11,9 пр. г. Рbam	а=22,38 пр. гр. Рbam		
1	1	_	5.74	5.75	020	020		
2	2	5.12	5.12	5.12	120	220		
3	7	4.02	3,96	4.01	220	420		
4	2	3.77	3,75	3.77	101	201		
5	9	3 63	3,60	3 59	111	211		
6	5	3 54	3 51	354:353	310	610: 520		
7	3	3.29	3.25	3 26	201	401		
8	10	3 14	3.13	$3 \ 13 \cdot 3 \ 13$	211: 320	411. 620		
q	<1	2.88		2.88	040	040		
40	8	2.84	2.82	2,83	221	421		
11	2	2.73	2.71	2,73,2,72	301 410	601: 810		
42	5	2,65	2.64	2,67:2.69	330: 131	630: 231		
13	6	2 56	2.55	2,56	240	44()		
14	2	2,54	2,50	2,51	420	820		
15	3	2.48	2.47	2 48. 2 47	234 324	431. 621		
16	4	2.34	2,33	2, 19, 2, 11	041	041		
10	3	2.29	2.28	2 29: 2 28	141. 340	241 640		
18	3	2 25	2.24	2, 20, 2, 20	150: 411: 430	250. 841. 830		
10	2	2 156	2,154	2,20, 2,20, 2,20	244	441		
20	5	2,130	2 126	2, 200	250	450		
20	1	2,100	2,030	2,034	520	10.2.0		
21 99	1	2,000	1,998	2,005	440	840		
22	7	1 965	1,966	1 964	151	251		
20	4	1 923	1,929	1 931	531	10.3.1		
24	4	1 882	1.881	1 879 1 880	254	451 940		
26	4	1 865	1.865	4 866: 4 865	600	12.0.0: 750		
20	<1	1 814	1.815	1,000, 1,000	260	460		
21	2	1 789	1.791	1 793	222	42.2		
29	4	1 763	1.762	1 765 1 762	540	10 4 0 560		
30	4	1 739	1.738	1 729	061	061		
31	2	1 713	1.714	1 709	161	261		
32	-1	1 686	1.693	1,688	101	950		
33	1	1 672	1.671	1,636	630	12.3.0		
34	1	1.657	1.653	1,660		11 4 0		
35	2	1.626	1,638	1 629 1 626	402. 142	802: 242		
36 -	-1	1.609	1.604	1 604: 1 605	550	10 5 0 370		
37	4	1 578	1.579	1 578: 1 581	242: 460	442: 860		
38	2	1 567	1.566	1 564	640	12.4.0		
39	1	1 539	1.536	1 539	720	14 2 0		
40	Å	1 529	1.525	1 523 1 520	- 071	11 5 0: 071		
41	1	1.473	1,470	1 472 1 467	271	13 4 0: 471		
42	2	1.455	1,457	1 455	560	10.6.0		
43	2	1 437	1,437	1 438. 1 435	080	180 180		
44	2	1.418	1,417	1 417	470	870		
45	1	_	1 413	1 412		380		
46	4	1 391	1,389	1 391 1 388	532 810	10 3 2: 16 1.0		
_0		-, -, -, -, -, -, -, -, -, -, -, -, -, -	1	1,001, 1,000	,,			

- атырев В. А., Рыдник В. И. О количест-венном рентгеноспектральном микроана- Johansson K. H. Bidrag Till Glandhammer-Батырев В. А., Рыдник В. И. О количестлизе многокомпонентных систем.— За-водская лаборатория, 1970, № 6. Бородаев Ю. С., Мозгова Н. Н. Изоморф-
- ный ряд висмутин айкинита. Вестн. Моск. ун-та, 1970, серия IV, геол., № 1. Рамдор П. Рудные минералы и их сраста-ния. ИЛ, 1962.
- Чухров Ф. В., Сендерова В. М., Янченко М. Т. О содержании свинца и меди в висмутинах из Северо-Коунрадского месторождения. Труды Мин. музея АН

- gruvornas mineralogie. Arkiv kemi, 1924, 9, N 8. Padera K. Beitrag zur Revision der Mine-ralien aus der Gruppe von Wismutglanz und Aikinit .- Chem. Erde, 18, H. 1-2, 1956.
- Welin E. Notes on the mineralogy of Sweden. 5. Wismith-bearing sulfosalts from Gladhammar, a revision.— Arkiv mineral och. geol., 4, 1966.