АКАДЕМИЯ НАУК СССР

Труды минералогического музея им. А. Е. Ферсмана

1975

Ответственный редактор д-р геол.-мин. наук Г. П. Барсанов

т. н. иванова, в. г. фекличев к минералогии кунцитов

В 1903 г. американский минералог В. Г. Кунц опубликовал заметку о находке кристаллов прозрачного сподумена сиреневого цвета в литиевых пегматитах месторождения Пала, около Сан-Диего в Калифорнии (Kunz, 1903). Минерал ассоцийрует с полихромным турмалином, лепидолитом, наибольшие размеры кристаллов достигают в длину четверти метра. На приведенных в работе фотографиях видны отмечаемые Кунцем двойникование по (100) и растворенная поверхность граней (100), (110) и др. Приводится угол (110) \angle (110) $= 93^{\circ}15'$ по измерениям Пенфильда и удельный вес 3,183 *г/см*³. Отмечается способность минерала люминесцировать и его хорошие данные для использования в качестве драгоценного камня.

В том же году С. Баскервиль, изучая оптические свойства Мп-содержащих минералов, дал название «КУНЦИТ» этой разновидности сподумена, представляющей новый тип драгоценного камня (Baskerville, 1903). В этой работе Баскервиля и, особенно, в более поздней их совместной с Кунцем дается более подробное описание необычных физических свойств кунцита (Baskerville, Kunz, 1904). У кунцита наблюдался отчетливый дихроизм из бледно-розового (поперек кристаллов) до густо-аметистового (в длину). Описаны результаты исследования люминесценции и фосфоресценции кунцита при нагревании, электрическом воздействии, облучении ультрафиолетовым светом и рентгеновскими лучами, в контакте с радиоактивными препаратами. Особенно сильное оранжево-розовое послесвечение наблюдалось после облучения рентгеновскими лучами.

Первый анализ кунцита из Пала показал 0,11% MnO (табл. 1) и 0,44% ZnO (Davis, 1904). В остальном он мало отличается от анализов обычных сподуменов.

Бледно-розовые непрозрачные сподумены отмечались и в прошлом веке, но выделение кунцита было сделано на основании его уникальных оптических свойств (сиреневая окраска, прозрачность, дихроизм, фосфоресценция), обнаружению и изучению которых благоприятствовала находка крупных прозрачных и чистых кристаллов в полостях пегматитов. Ф. Л. Хесс (1937) отмечает характерность нахождения прозрачных кристаллов кунцита, полихромного турмалина и ростерита в пустотах пегматитов Пала.

Благодаря исследованиям Кунца и, особенно, Шаллера (Schaller, 1903) изучена морфология первой находки кристаллов кунцита. На нем обнаружены формы а {100}, b {010}, e {320}, m {110}, n {130}, A {350}.

Позднее кунцит был обнаружен еще в ряде месторождений, но минералогическое изучение его неполно. Многочисленные работы по кунциту

Компонент	Kunz, 1903; Davis, 1904; Bötcher, 1956 Пала, Калифорния*	Соседко, 1961 Европейская часть СССР	Duparc, Sabot, Wun- der, 1910 Антсирабе, Мадагаскар
SiO ₂	64.05	64,99	63,85
Al_2O_3	27,30	27,17	29,87
Fe ₂ O ₃	_	Следы	0,15
FeO	_	0,00	
MgO	Нет	0,03	0,13
CaO	0,80	0,14	0,52
Na ₂ O	0,30	0,60	0,98
K ₂ O	0,03	0,05	0,13
Li ₂ O	6,88	7,26	3,76
MnO	0,11	0,05	Следы
H_2O^+	_	0,03	_
H ₂ O-	_	0,10	-
П. п. п.	0,15	-	0,37
Сумма	100,15	100,53	99,76
Цвет	Сиреневый	Лиловый	Розовый
nn	1,66017-1,66032	1,660	1,6603
n	1.66493-1.66536	_	1,6653
n	1 67571-1 67605	1 678	1 6753
"g d	2 402	2 45 2 40	2 477
u	0,100	5,15-5,10	3,111

			Табли	ца	1	
Состав в	и	свойства	кунцитов	по	литературным	давным

посвящены в основном его окраске и люминесценции, обзор которых сделан в работах Е. Клафи (Claffy, 1953) и К. Пшибрама (1959). Отмечаются противоречия в описании кунцита (Bonk, 1969). В табл. 1 сведены литературные скудные данные по минералогическим свойствам и составу кунцита. Обращают внимание узкие пределы колебаний показателей преломления и удельного веса. Анализ из работы Дюпарка, так же как и содержание ZnO в анализе Девиса, сомнительны.

Нами минералогически изучены образцы кунцита других месторождений (56080-образец Минералогического музея АН СССР, из альбитизированного пегматита Забайкалья, М-2-образец Н. Н. Морозовой из пегматита Кольского полуострова, А-Ф-образец В. Д. Панферова из занорышей пегматита Афганистана, 64665а-образец Минералогического музея АН СССР, из занорышей пегматита Синь-Цзяна, Китай). В табл. 2 представлены новые анализы кунцитов, пересчитанные на 6 атомов кислорода, а в табл. 3 — физические свойства изученных образцов. Сопоставление полученных данных позволяет сделать важный вывод: несмотря на то, что образцы кунцита взяты из разных месторождений, разных стран, их состав и физические свойства практически одинаковы.

Специально изучалась микротвердость кунцитов. Получены небольшие колебания микротвердости в зависимости от степени прозрачности кристаллов. В табл. 3, 4 даны значения микротвердости для прозрачных участков и анизотропия микротвердости между гранями (100) ($\bot C$) и гранями (100) (001).

		M-2	Α. Φ.				56080		
Окисел	Bec. %	Атомн. колич.	Форм. колич.	Bec. %	Атомн. колич.	Ф орм. колич.	Bec. %	Атомн. колич.	Форм. колич.
SiO ₂	63,07	1,04959	1,963	63,57	1,05791	1,987	62,72	1,0438	1,953
$A1_2O_3$	28,05	0,55022	1,029	27,76	0,54453	1,023	28,26	0,55434	1,040
Fe_2O_3	0,25	0,00313	0,006	0,20	0,00250	0,005	0,21	0,00263	0,005
MnO	0,24	0,00338	0,006	0,03	0,00127	0,002	0,29	0,00403	0,003
CaO	0,29	0,00517	0,010	0,26	0,00464	0,003	0,24	0,00428	0,008
MgO	0,41	0,01017	0,019	0,37	0,00318	0,017	0,22	0,00516	0,010
H_2O^-	_			0,30	0,0333		_		
H ₂ O+	-	_	-	0,12	0,01332	0,003	-	_	-
						(H_3O)			
K ₂ O	0,27	0,00573	0,011			-	-		-
Na ₂ O	0,27	0,00871	0,016	0,21	0,00378	0,013	0,21	0,00578	0,013
Li_2O	7,57	0,50669	0,947	7,53	0,50402	0,947	7,71	0,51606	0,968
Rb_2O			_	0,0079	0,00008	-			-
Cs_2O	0,056	0,00040	0,001	0,031	0,00058	0,001	—	-	-
Сумма	100,47		4,008	100,49		4,012	99,86		4,610

Таблица 2 Новые анализы кунцитов и их пересчеты на формулу*

Аналитик Г. Е. Черепивская, ИМГРЭ.

* O6p. M-2. (Li, Na, K, Cs, Ca, Mn, Mg),010 (Al,029 Fe0,006 Si,863)2,998 O6;

• Οδρ. Α. Φ. (Li, Na, Cs, H₃O, Ca, Mn, Mg)_{0,997} (Al_{1,023} Fe_{0,005} Si_{1,987})_{3,015} O₆;

• Ofp. 56080. (Li, Na, Ca, Mn, Mg)_{1,007} (Al_{1,040} Fe_{0,005} Si_{1,958})_{3,003}O₈

У всех изученных кунцитов одинаковые углы угасания $C: Ng 26-28^{\circ}$, угол (+) $2V=62-63^{\circ}$, величина двойного лучепреломления $n_g-n_p=$ =0,016-0,017. Схема плеохроизма в толстых пластинках одинаковая: по Np — сиреневый, по Ng — светло-розовый. Измерения на полированном параллелепипеде кунцита из Китая на установке кафедры кристаллофизики МГУ не обнаружили пьезоэффекта по направлениям \bot (100), \bot (010) и по оси C.

		Св	етопреломл	Размеры		
Номер образца	Цвет	np	n _m	ng	a	62
56080	Розовато-лиловый	1,660	1,666	1,677	9,460	8,404
M-2	Сиреневый	1,660	1,666	1,676	9,482	8,404
АФ.	Светло-розовый	1,659	1,665	1,676	9,433	8,397
64665a	Розовато-сиреневый	1,660	1,666	1,676	9,468	8,403

Таблица З Физические свойства кунцитов

Светопреломление измерено методом «Фокального экранирования» с точностью ±0,001; параметры эле a₀. в₀±0,008, c₀±0,016 Å, β±4'; удельный вес определялся методом гидростатического взвешивания с

Грань	Положение диагонали отпечатка	А-Ф Н (кГ/мм ²)	64665а Н (кГ/мм [*])	Грань	Положение диагонали отпечатка	А-Ф А-Ф	64665а Н (кГ/жж ²)
(100)	[001]	1187	1176		45° [001]	1166	1138
	⊥ [001]	1164	1143	Tc		1020	1003
	4 5° [001]	1164	1140	(110)	_	1296	-
(010)	[001]	1203	1138	ΔH (010)	-	134	132
	[001]	1074	1056	ΔH (100) ($\perp c$)	_	155	154

Кроме средней окраски и люминесценции, в раздробленном материале наблюдалась их анизотропия в крупных кристаллах кунцита. Плеохроизм кунцита отмечался и ранее. По К. Пшибраму (1959) вдоль направления распространения света по Np окраска розовая, по Nm — бледно-розовая, по Ng — бесцветная. Плеохроизм наблюдался также при изменении направления распространения света (табл. 5).

На кристаллах кунцита обнаружено явление поляризованной люминесценции: при разной ориентировке кристаллов кунцита цвет люминесценции в ультрафиолетовых лучах менялся (табл. 5). Из минералов поляризованная люминесценция наблюдалась на рубине (Принсгейм, 1951).

В связи с тем, что многие кристаллы кунцита образуются в полостях, особый интерес вызывают морфологические особенности кунцитов. Микрокристалломорфология кунцитов детально изучалась на прозрачных кристаллах из полостей в пегматитах Афганистана (образцы О. В. Кононова и В. Д. Панферова). Размер кристаллов около 3—4 см в длину и 1—2 см в поперечнике. Кристаллы по удлинению огранены одинаково развитыми формами пинакоидов {100} и {010} и узкими гранями призмы {110}, подвергшихся интенсивному растворению, а с торцов покрыты сплошной скульптурой растворения. На торце кристаллов

элементарной ячейки				$H_{-m} (\kappa \Gamma / M M^2)$	
C ₀	β	V, Å3	Уд. вес	на полиров. грани (100)	Окраска люминесценции при λ=365 нм
5,222	110°06′	339 , 33 50	3,190 3,185	1165	Розовая с сиреневатым оттенком
5,231	110°20'	390,872	3,195 3,20	1169	Розовато-сиреневая с фиолето- вым отгенком
5,229	110°20'	390,433	$3,178 \\ 3,18$	1175	Розовая с лиловым оттенком
5,229	110°07'	390,824	3,186 3,19	1162	Розовая с сиреневым оттенком

ментарной ячейки вычислялись по дифрактограммам, полученным на приборе TuRM-62 с точностью точностью ±0,005 (первое значение), методом микропоплавка с точностью ±0,01 (второе значение).

Таблица 5 Анизотропия цвета и УФ-люминесценция кунцита

11

Образец	Α-Φ	64665
	Окраска	
на (100)	почти бесцветный	светло-розовый
на (010)	светло-розовый	розовато-сиреневый
на (⊥с)	розовато-сиреневый	сиреневый
	Люминесценция	
на (100)	ярко-розовая с оранжен	зым оттенком
на (010)	ярко-сиреневая	
на (с)	густорозовато-лиловый	

и грани (010) видны протравленные швы двойникования по пинакоиду (100). Кристаллы интересны своей микроскульптурой растворения.

Реликты скульптуры роста сохранились на грани (010), где она представлена слоями роста и тонкой комбинационной штриховкой. На некоторых гранях (010) наблюдался отпечатковый микрорельеф. Беспорядочно ориентированные на плоскости грани отпечатки пластинчато-удлиненной формы имеют плоское малорельефное дно, параллельное габитусной грани, и пересекаются небольшим количеством штрихов из числа развитых на поверхности грани (рис. 1). Такой характер отпечатков говорит о том, что кристаллы налипали на поверхность грани свободно растущего кристалла в виде присыпки на последней стадии его роста и позднее были растворены.

Грани (010) покрыты большим количеством мелких и крупных (до 1 мм в глубину) фигур растворения с контурной формой параллелограмма (рис. 2). Ориентировка фигур растворения на грани (010) такова, что ось оптической индиктрисы Ng кристалла лежит в остром углу параллелограмма (рис. 3, *a*).

На грани (100) чередующиеся крупные штрихи-выступы и штрихиуглубления, вытянутые по оси С и обусловленные ростом, покрыты микроскульптурой второго порядка, обусловленной растворением и представленной тонкой слоистостью и удлиненными фигурами растворения с заостренными концами (рис. 4, a). В участках грани около головки кристаллов штрихи-выступы и слои роста растворены наиболее сильно. Здесь развита криволинейная слоистость растворения и заостренные выступы (рис. 4, δ).

На гранях (100) и (010) наблюдаются единичные вытянутые каналы растворения, имеющие крутые боковые стенки и глубину до 2 мм. На узких гранях (110) развита односторонне-ступенчатая слоистость растворения и небольшие сегментообразные фигуры растворения, ориентированные выпуклостью к ребру с гранью (100).

Головки кристаллов растворены настолько интенсивно, что покрыты сплошной скульптурой растворения с криволинейными и остроугольными выступами (рис. 5, *a*). На рис. 5, *в* изображена головка одного кристалла, занятая криволинейной габитусной гранью растворения, покрытой ступенчато расположенными треугольными выступами. Ось симметрии выступов совпадает с плоскостью симметрии кристалла и габитусной грани. Образующая габитусной криволинейной грани наклонена к оси *а* и *с* кристалла соответственно под углами 32° и 78° (рис. 3, *a*).

По краю головки кристалла на рис. 5, в проходит двойниковый шов, за которым наклон габитусной грани растворения направлен в другую

Рис. 1. Отпечатковый микрорельеф на грани (010)

а — беспорядочная ориентировка отнечатков, увел. 20; б — взаимоотношения штриховки роста, отнечатков и фигур растворения, увел. 75

Рис. 2. Скульптуры растворения на грани (010) *а* — фигуры травления, увел. 50; *б* — фигуры травления и каналы растворения, увел. 75

сторону. Соответственно меняется и оптическая ориентировка (рис. 3, δ). Характер распределения и ориентировки микроскульптур растворения на разных гранях кунцита показан на рис. 3, β . Симметрия и ориентировка контурных форм скульптур растворения на всех гранях кристаллов кунцита хорошо характеризуют симметрию соответствующей габитусной грани (рис. 6).

10

Рис. 3. Ориентировка элементов оптической индикатрисы и форм растворения на кристаллах и двойниках кунцита

а — соотношение между оптической ориентировкой, расположением и формой фигур растворения на грани (010) и положением габитусной грани растворения на головке кристалла кунцита; б оптическая ориентировка в двойнике кунцита; в — распределение и ориентировка форм растворения на разных гранях кунцита

Рис. 4. Скульптуры растворения на грани (100)

а — ступенчатость, штриховка и канальчатые фигуры, обусловленные растворением, увел. 50; б — копьевидные выступы растворения и ступенчатость у вершины кристалла, увел. 5

Различие в растворимости разных простых форм кристаллов приисследователей издавна влекало (Федоров, 1908). Как отмечает И. И. Шафрановский (1961), нет единого мнения о причинах различной растворимости разных простых форм кристаллов. Наши исследования показывают, что механизм растворения и его интенсивность находятся в зависимости от особенностей кристаллической структуры сподумена. Наиболее структурно плотные грани (100) и (110) растворяются на небольшую глубину, но сплошь (тонкие слои, параллельные отдельности по (100) и спайности по (110) удаляются при растворении целиком). На гранях (010) растворение идет избирательно. В дефектных участках грани (010) развиты многочисленные фигуры растворения и каналы растворения. Грани головки кристалла, обладающие наименьшей структурной плотностью, растнаиболее воряются интенсивно, вплоть до образования самостоятельных габитусных граней растворения.

На прозрачном китайском кунците также наблюдались сходные фигуры и слои растворения. В отполированных пластинках наблюдались канальчатые однофазные включения толщиной около 10 микронов, вытянутые по оси C, и тонкие двойники по (100).

Характер процессов растворения кристаллов кунцита из полостей сходен для всех месторождений. Общий облик растворенных кристаллов и фигуры растворения на разных гранях на образцах из Афганистана, Китая, Калифорнии и Мадагаскара похожи. В работе Лакруа (Lacroix, 1922) аналогичные формы растворения приведены на образцах бесцветного сподумена из Махаритры.

На кунците из массивных образцов альбитизированных пегматитов Забайкалья (обр. 56080) нами обнаружены также явления растворения, выраженные в виде развития фигур и слоев растворения (рис. 7).

Сопоставляя все имеющиеся данные по минералогии кунцитов, укажем на постоянство состава, физи-

Рис. 5. Микрорельеф на растворенных головках кристаллов кунцита

a — слонстые скульптуры растворения на двойнике кунцита, увел. 5; 6 — каналы растворения вдоль трещин спайности по (110) и двойникового шва, увел. 12; a — наклоненные конусовидные выступы на габитусной грани растворения, увел. 5

5 Новые данные, вып. 24

ческих свойств, морфологии, ассоциации для кунцитов всех месторождений. Это позволяет предполагать, что образование кунцита характерно для определенного узкого этапа в процессе формирования Li-пегматитов. Это происходило тогда, когда падала роль железа и возрастала:

Рис. 6. Соответствие симметрии контурных форм растворения и габитусных граней кунцита

а — грань (400), симметрия m; б — грань (110), симметрия 1; в грань (040), симметрия 2; г — габитусная грань растворения, симметрия m

роль марганца (кунцит не встречается вместе с шерлом, а только с рубеллитом или полихромным турмалином, содержит повышенное количество Мп и пониженное Fe по сравнению с другими сподуменами), в пегматитовых жилах идут процессы заполнения пустот и замещения зон, при которых кристаллы кунцита растут и растворяются в результате закономерной эволюции флюидного раствора определенного состава. Этот этап, для которого типоморфен кунцит, в классификации A. E. Ферсмана (1932) для пегматитового процесса более всего соответствует фазе G.

Рис. 7. Треугольные и трапециевидные фигуры растворения на грани (110) кунцита из кварц-лепидолитовой ассоциации. Увел. 50

- Иванова Т. Н., Фекличев В. Г. Исследование микротвердости сподументов. Новые данные о минералах СССР. Труды минерал. музея АН СССР, вып. 22, 1973.
- Принсгейм А. Флуоресценция и фосфорес-
- ценция. ИЛ, 1951. Пишбрам К. Окраска и люминесценция минералов. ИЛ, 1959.
- Соседко А. Ф. Материалы по минералогии и геохимии гранитных пегматитов. Изд-
- во АН СССР, 1961. Федоров Е. С. Различная растворимость граней и ее проявление в минеральном царстве. — Записки Горн. ин-та, т. 1, 1908.
- Ферсман А. Е. Пегматиты, т. 1. Изд-во АН CCCP, 1932.
- Хесс Ф. Л. Пегматиты западных штатов.-В кн.: Геология рудных месторождений западных штатов США, 1937. Шафрановский И. И. Кристаллы минера-
- лов. Кривогранные, скелетные и зерни-
- стые формы. Гостеолтехиздат, 1961. Baskerville C. Kunzite, a new gem.— Science, N. S. 18, N 453, 1903. Baskerville C., G. F. Kunz. Kunzite and its

unique properties. Amer. J. Sci. 18, N 103. 1904.

- Bonk H. Spodumen seine Varietäten Hid-denit und Kunzit.— Z. Dtsch. Gemmol. Ges., 18, N 4, 1969.
- Bottcher G. Zur Kenntnis der Kunzits und Hiddenits .- Hamburger Beiträge zur Angewandten Mineralogie und Kristallophysik. Berlin, 1956. Claffy E. W. Composition, tenebrescence and
- luminescence of Spodumene minerals.— Amer. Miner, 38, N 11—12, 1953.
- Davis R. O. Analysis of Kunzite.— Amer. J. Sci., 18, N 103, 1904.
- Duparc L., Sabot R., Wunder M. Les mineraux des pegmatites des environs d'Ant-sirabe à Madagascar.- Mém. Soc. phys. et natur. Cenève, 36, N 3, 1910.
- Kunz G. F. On a new lilac-colored transparent Spodumene.— Amer. J. Sci., 16, N 93, 1903.
- Lacroix A. Mineralogie de Madagascar, 1. Paris, 1922. Schaller. Univ. Calif. Bull. Geol., 3, 1903.