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INTRODUCTION

The value of atomistic simulations in the earth and materials
sciences lies in demonstrating the mechanisms of atomistic pro-
cesses, and extending this capability to evaluate material prop-
erties to regimes where direct laboratory measurements are
difficult or impossible to perform. Knowledge of the transport
properties of cations in carbonate minerals is necessary to evalu-
ate order/disorder relations, deformation, and geothermometry,
but slow transport rates and the decomposition of carbonate
phases at high temperatures limit experimental evaluation. Al-
though simulations do not replace careful experimental mea-
surements, a well-parameterized atomistic model can provide
a solid framework for evaluating mechanisms and predicting
activation energies and rates for diffusion under conditions not
accessible to the experimentalist. This study develops a fully
consistent model of the carbonate minerals based upon a shell
description of the electronic structure of the oxygen in the co-
valent CO3

2– group. Ultimately, the model may be used to cal-
culate chemical diffusion rates, phase relations, and surface
reactivity.

The divalent cations Ca, Mg, Mn, Fe, Cd, Zn, Co, and Ni
form stable carbonate phases of the calcite structure, respec-
tively, calcite, magnesite, rhodochrosite, siderite, octavite,
smithsonite, and cobalt and nickel carbonates. They share the

A shell model for the simulation of rhombohedral carbonate minerals
and their point defects

DIANA  K. FISLER,1,* JULIAN  D. GALE ,2 AND RANDALL  T. CYGAN1,†

1Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-0750, U.S.A.
2Department of Chemistry, Imperial College of Science, Technology, and Medicine, South Kensington, London, SW7 2AY, U.K.

ABSTRACT

The electronic polarization of oxygen ions has been explicitly incorporated in a shell model to
better simulate the structure of calcite and related rhombohedral carbonate minerals. Pair-potentials
for Ca2+ ions and C and O comprising the carbonate molecular ion were simultaneously fitted to
experimental lattice, elastic, dielectric, and vibrational data for calcite, and the structure and elastic
properties of aragonite. The resulting potential parameters for the CO3

2– group were then transferred
to models for the structures and bulk moduli of the carbonate minerals incorporating Mn, Fe, Mg,
Ni, Zn, Co, Cd, and thus a fully consistent set of interaction parameters for calculating the properties
of the carbonate minerals was obtained. Defect energies for doping the divalent cations into the
calcite structure, and for calcium and carbonate ion vacancies were calculated. In addition, various
disorder types for dolomite, including anti-site defects, stacking defects, and the energy related to
increasing the Ca/Mg ratio in the dolomite structure were simulated. The theoretical enthalpy for
dolomite ordering (34.4 kJ/mol) compares very well with experimental measurements.

mathematically equivalent hexagonal or rhombohedral struc-
tures. The structure may also be regarded as being comprised
of basal layers of metal cations and layers of planar CO3

2– groups
normal to the c axis. In the mixed metal cation dolomite struc-
ture, Ca2+ and Mg2+ preferentially occupy the alternate hexago-
nal basal planes and form calcium and magnesium layers. Larger
cations such as Sr2+, Pb2+, and Ca2+ at higher pressures form the
orthorhombic aragonite structure, also composed of ionic CO3

2–

units and the metal cations.
Previous molecular mechanics studies (Pavese et al. 1992;

Dove et al. 1992; Catti et al. 1993; Catti and Pavese 1997) gen-
erally focused on parameterizing a model for only CaCO3. These
studies included extensive testing of both rigid ion and shell
models of the lattices of calcite and aragonite, and calculated
basic properties such as elastic and optical properties, and iso-
tope fractionation. Parker et al. (1993) used the atomistic model
for calcite to examine surface precipitation and dissolution pro-
cesses, an area of wide application for geologic problems in-
volving the alteration and weathering of carbonate rocks such
as limestone, dolomite, and marble.

By calculating the properties of most of the known divalent
carbonate phases, we have created a general framework for
interpreting a variety of bulk carbonate properties, and for be-
ginning to address the problems of inhomogeneous zoning and
dolomitization. The fully transferable potentials for the CO3

2–

group, in particular, lend a great deal of flexibility to the
empirical models, such that substitution defect energies and
disorder defect energies can be derived. Additionally, the mod-
els can be used to evaluate transition state geometries and pre-
dict Arrhenius activation energies for chemical diffusion in the
carbonate phases (Fisler et al. 1998).

*Present address: Johns Manville Technical Center, 10100 W.
Ute Avenue, P.O. Box 625005, Littleton, Colorado 80162-5005,
U.S.A.
†E-mail: rtcygan@sandia.gov

Brought to you by | New York University Bobst Library Technical Services
Authenticated

Download Date | 7/7/15 8:46 PM



FISLER ET AL.: SHELL MODEL FOR CARBONATE MINERALS218

THEORETICAL  PROCEDURE

Interatomic energy and shell model

The simulations performed in this study use a modification
of the Born model description of solids, which treats the ionic
material as a collection of point ions with electrostatic (Cou-
lombic) and short-range forces acting between them. The pro-
cedure is described at length elsewhere (Catlow and Mackrodt
1982). In brief, the different energy contributions for all ion-
ion interactions of the crystal are summed out to a maximum
cut-off of 15 Å for the short-range terms (if there is no C6 term
then these can be truncated at 10 Å with no significant loss of
accuracy) whereas electrostatic interactions are partially per-
formed in reciprocal space according to the Ewald method to
ensure proper convergence (Tosi 1964). The electrostatic po-
tential Vij

el is inversely proportional to the distance between ions:

Vij
el(r ij ) = e2ZiZj/r ij (1)

where r ij  is the distance between ions having charge Zi and Zj,
and e is the charge of an electron. The short-range potential Vij

sr

is expressed as a function of the interatomic distance based on
the Buckingham functional form:

Vij
sr(r ij ) = Aijexp(–r ij /ρij ) – Cijr ij

–6 (2)

where Aij , ρij, and Cij are the empirical parameters for the short-
range attractive and van der Waals energies. The potential form
differs from that usually used in the Born model in that elec-
tronic polarization of ions in the lattice is accounted for by the
addition of charged shells (Dick and Overhauser 1958). The ion
is therefore represented by a massless shell of charge Zs and a
core of charge Zc, where Zs + Zc equals the total charge of the
ion. The total charge on each ion in these simulations is reduced
from its formal ionic charge and the partial charge on each ion is
a fitted parameter. The core and shell are coupled by a harmonic
spring of analytical form Epolar = 1/2 kX2, where X represents the
separation distance of the shell and core of an ion. During the
energy minimization calculations, the shell positions are allowed
to relax about the ion core resulting in a dipole that mimics the
electronic polarization. Shells are only included for describing
the large polarization associated with the oxygen ions; all other
atoms were represented by a rigid ion.

Calcium carbonate minerals

The empirical fitting of model parameters often leads to a
non-unique set of values that can easily reproduce the lattice
parameters for a given structure. However, it is much more
desirable and accurate to incorporate as many high quality
measurements of observable properties, such as elastic and di-
electric constants, as possible in the fitting of the parameters to
maximize transferability. The structures of calcite (rhombohe-
dral CaCO3) and aragonite (orthorhombic CaCO3), the elastic,
static and high frequency dielectric constants and vibrational
frequencies of the carbonate deformation modes of calcite have
been used to fit the potential parameters using the relaxed fit-
ting algorithm (Gale 1996) in which the changes in the struc-
tural parameters on optimization are used to calculate the
residual error.

The chief improvement of our model for calcium carbonate
over the previous studies (Pavese et al. 1992; Dove et al. 1992;
Catti et al. 1993; Parker et al. 1993) is recognizing that com-
pletely different interaction potentials are required between and
within CO3

2– molecular anions. Therefore, an intermolecular O-
O Buckingham potential and an intramolecular O-O Buckingham
potential have been defined. A three-body O-C-O term and a
torsional O-C-O-O potential simulate additional interactions
within the CO3

2– molecular anion. A more extensive functional
form for the oxygen core/shell spring constant by including a
4th order term has been used to accurately reproduce the vi-
brational frequencies in calcite, while predicting the relative
stability of aragonite with respect to calcite which is critically
dependant on the oxygen polarizability. All intramolecular po-
tentials are defined to act between cores while intermolecular
interactions act on shells, where applicable. Furthermore, all
Coulomb interactions are excluded within molecules. Table 1
provides the values for the optimized interatomic potential pa-
rameters obtained through this process.

Simulations of the bulk structure of calcite (and metal-sub-
stituted derivatives) use the primitive rhombohedral cell, al-
though lattice parameters are reported here in hexagonal
coordinates as the two representations are mathematically
equivalent. The aragonite and the Mg-rich huntite phases re-
quire an orthorhombic simulation cell. The computer program

TABLE  1.  Interionic potentials obtained from fits to calcite and aragonite structures and properties

Potentials Aij rij Cij eV Cutoffs
(eV) (Å)  (Å6)  (Å)

Buckingham (intramolecular) O-O 4030.30 0.2455 0–2.5
Buckingham (intermolecular) O-O 79158.6 0.1983 21.844 0–15
Buckingham Ca-O 2154.06 0.2891 0–10
Buckingham Cd-O 4329.81 0.2563 0–10
Buckingham Mn-O 2000.94 0.2727 0–10
Buckingham Fe-O 2151.99 0.2651 0–10
Buckingham Zn-O 1029.39 0.2891 0–10
Buckingham Co-O 1095.60 0.2863 0–10
Buckingham Ni-O 1634.46 0.2666 0–10
Buckingham Mg-O 1039.59 0.2893 0–10
Notes: For Morse C-O, De = 5.0 eV, a = 2.5155 /Å, and r0 = 1.2025 Å.
For spring O-O, k2 = 32.194 eV/Å2 and k4 = 10000 eV/Å4.
For three body O-C-O (intramolecular), k2 = 1.7887 eV/rad2, and θ0 = 120°.
For torsion O-C-O-O, k = 0.1510 eV and n = –2.
Partial charges are ZC = +1.3435, ZO-core = +1.0185, ZO-shell = –2.1330, and ZCa = +2.0000.
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GULP (Gale 1997) was used to first derive the potential pa-
rameters and then to perform the energy minimizations required
for the bulk structural and defect calculations. Energy minimi-
zations were performed at constant pressure allowing all indi-
vidual ionic coordinates and lattice parameters to vary, while
constraining the space group symmetry. Although the theoreti-
cal results reported here are 0 K calculations, in practice, ther-
mal effects are effectively included in the interatomic potentials
by fitting to room temperature experimental data.

Other rhombohedral carbonate minerals

There are few high quality measurements of the structural
and physical properties for the other divalent carbonate phases.
The interatomic potentials and charges for the carbonate anion
group and the cation charge (+2) were held fixed for fitting to
the structure and the bulk modulus for the other carbonate
phases; the only degree of freedom for the fitting model was in
the cation-oxygen Buckingham potential. Due to the non-di-
rectional nature of the metal cation as described by the
Buckingham potential of Equation 2, there is no explicit term
that addresses the d-electrons of the transition metal cations.
The transition metal cations are represented as spherical rigid
ions (no electronic polarization) as with Ca2+ and Mg2+, and there-
fore magnetic effects are ignored. The data for the bulk moduli
were obtained from Zhang and Reeder (1999). Finally, struc-
tures for dolomite [CaMg(CO3)2] and huntite [Mg3Ca(CO3)4]
were simulated, with no attempt to further optimize the poten-
tials with respect to those observed structures.

Defect calculations

A large number of defect calculations have been performed
on oxides and halides (e.g., Catlow and Mackrodt 1982;
Mackrodt 1984). Defect calculations of covalent materials are
significantly less straightforward, but in examining calcite we
are able to treat the structure as a de facto ionic solid and create
ionic defects involving the metal cation and the CO3

2– molecu-
lar anion. Mott and Littleton (1938) demonstrated that the dis-
placement around a defect may be treated mathematically as a
combination of short range and long range displacement re-
gions. In this formalism, the lattice energy will almost certainly
converge, as is not always possible if all ionic displacements in
the full lattice are allowed. The defect formation energy can
then be calculated from the difference between the energies of
the defective lattice and the perfect lattice. The size of region 1
(the atomistic region immediately surrounding the defect) is
increased until the energy of the defect has converged satisfac-
torily. The techniques used in defect calculations resemble those
used in bulk lattice simulations except for the high degree of
distortion in the environment of the defect, and the fact that the
calculation can use only point group symmetry, if any exists,
in the defective region. Region 1 typically contains up to a few
hundred atoms, and all coordinates of the ions in this region
are explicitly allowed to relax. In region 2a, which may con-
tain several thousands of atoms, the relaxation energy is calcu-
lated assuming that the ions respond harmonically about their
lattice sites to the electrostatic forces due to the defect species.
Beyond this in region 2b, the ions respond only to the total
charge of the defect and the relaxation energy is calculated

implicitly by lattice summation techniques. We used the above
procedure to examine a variety of point defects in the carbon-
ate phases, and performed several preliminary evaluations of
more complex defect aggregates.

RESULTS

Table 2 compares the properties of calcium carbonate used
to develop the shell model potentials (Table 1) by the described
procedure. Table 2 also reportes measured properties that were
not used in the fit for comparison with the calculated values,
and calculated properties for which there are no reliable ex-
perimental data. The vibrational frequencies were calculated
at the gamma point (zero wavevector) and therefore we do not
report dispersion curves and TO-LO modes. For degenerate
vibrational modes in calcite both calculated frequencies are
reported. In principle, all of the vibrational modes of calcite
and aragonite could be used in the parameterization procedure,
but due to the cooperative motions of a large number of atoms
in the low frequency region, and the uncertainty in assigning
the eigenvalues for each experimental mode, we have chosen
to rely on the high frequency localized modes of the carbonate
ion. This ensures that the parameterization properly fits vibra-
tional frequencies to the correct internal modes. The low fre-
quencies that are primarily associated with Ca-O modes are
incorporated in the model by fitting the elastic properties rather
than the vibrational frequencies.

The lattice parameters differ from reported values by less
than experimental error for calcite, and those for aragonite dif-
fer by less than 1% (see Table 2). The elastic constants for cal-
cite are reproduced with a relative error of approximately 6.6%
including those not used in the fitting procedure. The elastic
constants of aragonite are reproduced with about the same ac-
curacy as previously published rigid ion models (e.g., Pavese
et al. 1992), with the most obvious failure in the off-diagonal
C12 and C13 constants. The relatively poor agreement in these
off-diagonal terms is related to several factors: the emphasis of
parameterization in the weighting on the diagonal terms, the
structure, and relative energies of the two phases; the relative
inaccuracies in the experimental data for aragonite compared
to calcite; and the relatively simple nature of the bonding model.
Overall, the new shell model provides a significant improve-
ment in the prediction of the second derivative properties, in-
cluding the elastic and dielectric constants and the vibrational
frequencies, compared to the previous models.

Structures of the carbonate minerals

The calculated lattice parameters for the end-member car-
bonates (used in the fit) differ from their measured lattice pa-
rameters by less than 1% (Table 3). The relative errors in lattice
parameters for the divalent carbonates are all slightly smaller
than the relative error (2.1%) for calcite lattice parameters by
the rigid ion model of Pavese et al. (1992). Lattice parameters
for dolomite and huntite differed from measured values by less
than 2%, although no attempt was made to fit to those struc-
tures directly. The lattice energy generally increases with in-
creasing ionic radius (Fig. 1). The minor deviations of the lattice
energies from the trend are attributed to the anomalous experi-
mental bulk moduli with respect to bond length (and ionic ra-
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TABLE  2.  Experimental and calculated properties of CaCO3

Aragonite Calcite
Experimental Calculated ∆ (%) Experimental Calculated ∆ (%)

Elastic Constants (GPa)
C11 85.0† 89.9 6.5 145.7§ 140.9 –3.3
C22 159.6† 155.3 –2.7
C33 87.0† 104.2 20 85.3§ 85.8 0.6
C44 42.7† 23.3 –45 33.4§ 33.4 0.0
C55 41.3† 36.7 –11
C66 25.6† 12.4 –52
C12 15.9†* 48.0 >100 55.9§ 63.7 14
C13 36.6†* 55.9 53 53.5§* 62.6 17
C14 –20.5§* –19.5 –4.9
C23 2.0†* 54.7

Static Dielectric
ε0

11 7.84 8.5|| 9.28 9.2
ε0

22 22.48
ε0

33 8.26 8.0|| 8.30 3.7

High Frequency Dielectric
ε∞

11 2.86‡* 3.05 6.6 2.75‡ 2.69 –2.2
ε∞

22 2.82‡* 2.53 –10
ε∞

33 2.34‡* 2.50 6.8 2.21‡ 3.02 37

Vibrational frequencies (cm –1)
Asymmetric stretch (IR), ν3 1473# 1500 1.8 1463# 1465 3.8

1573
Symmetric C-O stretch (Raman), ν1 1086# 1124 3.5 1088# 1082 –0.1

1091
Torsional bending (IR), ν2 873# 781 –11 881# 878 6.2

994
Stretch/bend (IR), ν4 705# 627 –11 714# 612 –14
* Properties not used in the potential fitting.
† Experimental values from Hearmon (1946).
‡ Experimental values from Deer et al. (1966).
§ Experimental values from Dandekarand Ruoff (1968).
|| Experimental values from Kaye and Laby (1982).
# Experimental values averaged from White (1974).

dius) observed by Zhang and Reeder (1999) and which were
used in the parameterization. Simple variation of the cation-
oxygen potential parameters failed to satisfactorily reproduce
the exact trend in bulk moduli.

The lattice energy of aragonite is less exothermic per mole
than calcite at ambient pressure, consistent with the metasta-
bility of aragonite at room pressure. A series of minimizations
have been performed at increasing applied pressure for both cal-

FIGURE  1. Calculated lattice energies for the rhombohedral
carbonate minerals as a function of ionic radius of the divalent cation.

cite and aragonite and the corresponding enthalpies determined.
Because of the differing degrees of oxygen polarization in the
two structures the enthalpy increases at different rates as a func-
tion of pressure and a transition from calcite to aragonite is pre-
dicted to occur at approximately 2.4 kbar consistent with
experimental measurements (Crawford and Hoersch 1972).

Defect energies

The Mott-Littleton method requires that the defect energy
has properly converged to a value consistent with an infinitely
large region 1 volume. The energies for each type of defect
(Table 4) demonstrate convergence to within 0.02 eV for sub-
stitutional defects (0.1 eV for vacancies) with an increase in
the size of region 1 from 6 to 12 Å. Region 2a was held fixed at
20 Å; varying this radius had a negligible effect on the defect
energy. Figure 2 includes two views of a calcium vacancy in
calcite and shows the limiting extents of the different calcula-
tion regions. The expanded view (Fig. 2b) shows that the sig-
nificant distortion due to a calcium vacancy reaches less than
10 Å into the surrounding crystal. Substitutional defects (e.g.,
Mn for Ca) show much less distortion of the calcite lattice. The
amount of distortion around a calcium vacancy in calcite is
quantified by comparing oxygen-oxygen distances in the vi-
cinity of the defect with those in the perfect lattice (Fig. 3).
The O-O distances within the carbonate anion near the defect
are seen to contract, whereas the intermolecular distances are
observed to expand and also exhibit a broader range of values.
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TABLE 3.  Comparison of carbonate structural properties

Bulk modulus
Composition Lattice energy Calculated Experimental ∆ a ∆a b ∆b c ∆c

(eV) (GPa) (GPa) (%) (Å) (%) (Å) (%) (Å) (%)
CaCO3 (calcite)‡ –85.31 77 73§§ 5.5 4.99 0.01 4.99 17.06 –0.01
CaCO3 (arag)† –170.60 71 48## 47.9 5.75 0.31 4.94 0.48 7.92 0.61
CaCO3 (arag)‡‡ –85.30
CdCO3§ –87.76 98 100* –2.0 4.90 –0.51 4.90 16.39 –0.63
MnCO3‡ –89.55 108 108* 0.0 4.78 0.29 4.78 15.56 –0.51
FeCO3‡ –90.79 121 117* 3.4 4.73 0.80 4.73 15.25 –0.87
ZnCO3‡ –91.30 123 123* 0.0 4.67 0.45 4.67 14.88 –0.94
CoCO3|| –91.37 124 124* 0.0 4.67 0.25 4.67 14.89 –0.51
NiCO3|| –92.59 138 131* 5.3 4.64 0.65 4.64 14.73 –0.03
MgCO3‡ –91.16 122 107* 14.0 4.68 –0.96 4.68 14.92 0.69
MgCa(CO3)2** –88.32 94 91* 3.3 4.85 0.89 4.85 15.82 –1.16
1⁄2[Mg3Ca(CO3)4]†† –179.68 110 9.64 1.40 9.64 7.70 –1.50
1⁄2[Mg3Ca(CO3)4] ‡‡ –89.84
* Bulk moduli from Zhang and Reeder (1999).
† Experimental lattice parameters from dal Negro and Ungaretti (1971).
‡ Experimental lattice parameters from Effenberger et al. (1981).
§ Experimental lattice parameters from Borodin et al. (1979).
|| Experimental lattice parameters from Graf (1961).
# Experimental lattice parameters from Finger (1975).
**Experimental lattice parameters from Ross and Reeder (1992).
†† Experimental lattice parameters from Dollase and Reeder (1986).
‡‡ Aragonite and huntite are also reported per unit cell equivalent to the rhombohedral carbonates.
§§ Calculated from experimental elastic constants of Dandekar and Ruoff (1968).
## Calculated from experimental elastic constants of Hearmon (1946).

TABLE 4.   Point defect energies (eV) in calcite as a function of region 1
radius

Defect 6 Å 8 Å 10 Å 12 Å
Ca vacancy  VCa 20.71 20.52 20.43 20.53
CO3 vacancy VCO3

28.73 28.45 28.24 28.17
Schottky pair VCa + VCO3

46.776 30.478 46.378 not converged
Cd substitution CdCa –1.19 –1.19 –1.20 –1.20
Mn substitution MnCa –1.95 –1.99 –2.00 –2.01
Fe substitution FeCa –2.48 –2.53 –2.55 –2.56
Zn substitution ZnCa –2.64 –2.71 –2.74 –2.76
Co substitution CoCa –2.67 –2.75 –2.78 –2.79
Ni substitution NiCa –3.20 –3.29 –3.33 –3.35
Mg substitution MgCa –2.58 –2.65 –2.68 –2.70

FIGURE 2. (a) Schematic of the defect region for a Ca vacancy in calcite based on the Mott-Littleton calculation method. The hexagonal-
based unit cell of calcite is also indicated. Defect calculations were performed for region 1 radius varying from 6 to 12 Å. (b) Close-up view of
an 8 Å defect region showing the distortion of CO3

2– ions surrounding the calcium vacancy.

Formation energies for Ca2+ and CO3
2– vacancies are quite

large and represent the energy for an isolated and charged va-
cancy defect being removed to an infinite distance from the
crystal. Strictly, the energy for the vacancy defect should be
calculated for removing the ion to the surface, though creating
a surface was beyond the scope of the present study. Thus the
calculated defect energies represent a maximum and should be
compared to experimentally derived defect energies with cau-
tion. Also shown in Table 4 is the energy for a neutral Schottky
defect pair of a Ca2+ vacancy and a CO32– vacancy. The defect
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was created by the removal of neighboring Ca2+ and CO3
2– ions

aligned along the c axis of the hexagonal cell and separated by
a distance of 4.46 Å. The results show that the formation en-
ergy for the coupled defect is less than the sum of the isolated
defects. The reduced energy is related to the lattice distortion
that occurs about the defect sites and the electrostatic interac-
tion of the charged defect centers in forming an associated de-
fect pair. Therefore, the long-range Coulombic contribution to
the Schottky defect is approximately half the vacancy defect
energy and the remainder of the energy is related to the accom-
panying steric distortion.

Defect calculations involving the substitution of other metal
cations for Ca in calcite yield negative binding energies. The

spontaneous formation of these types of point defects results
from their smaller ionic size. Defect energy of the metal sub-
stitution generally increases with the ionic radius of the metal
ion (Fig. 4).

Dolomite disorder

Several different types of disorder associated with dolomite
are easily addressed within the modeling framework and the
new potential model. The energy of a single anti-site defect
was calculated by combining a single substitution of magne-
sium for calcium paired with a substitution of calcium for mag-
nesium. Stacking defect energies (Table 5) were determined
from lattice energies of dolomite with a single magnesium and
calcium site switched in a bulk supercell that is three times the
unit-cell dimension in the c direction (total of 18 basal cation
planes). To determine dolomite ordering energies, the occu-
pancies of magnesium and calcium in the fully ordered dolo-
mite unit cell were varied from 1 (fully ordered) to 0.5 (fully
disordered). The lattice energies (Table 6) for the relaxed con-
figurations representing this increasing disorder were calcu-
lated using a mean field approach in which each metal site of
the dolomite experiences a potential that is the mean of all pos-
sible disordered positions. As a consequence, all possible con-
figurations are equally as likely with no preference for any
particularly stable configuration (Gale 1997). This modeling
procedure also represents the carbonate configuration that
would be expected to occur under kinetic control rather than a
process that is driven by thermodynamics.

DISCUSSION

Bulk and defect structures

The models satisfactorily reproduce the lattice parameters and
elastic properties of all the end-member rhombohedral carbon-
ates and aragonite using a uniform set of potentials for the car-
bonate anion. However, less-satisfactory lattice parameters for
dolomite and huntite result from the direct transfer of cation-
oxygen potentials that were optimized for calcite and magnes-
ite. In addition, the models have incorporated the unusually “soft”
bulk modulus reported by Zhang and Reeder (1999) for magne-
site. The experimental modulus is slightly smaller, yet similar to

FIGURE 3. Radial distribution function (RDF) plot of the variation
in oxygen-oxygen distance due to the presence of a calcium vacancy
in calcite (black line) vs. that in the perfect lattice (gray line).
Intramolecular O-O distances broaden in the defect region, whereas
intermolecular oxygen-oxygen distances broaden and expand slightly.
The dashed lines in the insets of the CO3

2– groups represent the
corresponding O-O distances for the peaks in the RDF.

FIGURE 4. Substitution defect energies of metals in calcite as a
function of ionic radius. Defect energies generally increase with
decreasing metal radius. TABLE  5. Energies for the formation of disordering defects in dolomite

Disorder types Energy (eV)
MgCa + CaMg  anti-site defect 1.3
Stacking defect 1-1 0.505
CaMg 5.03
MgCa –3.91

TABLE  6. Occupancy of calcium in calcium site as a function of
lattice energy for dolomite at constant Ca/Mg = 1

Ca per Ca site Lattice energy Ca per Ca site Lattice energy
 (eV)  (eV)

1.00* –88.32 0.75 –87.77
0.95 –88.18 0.65 –87.66
0.90 –88.05 0.60 –87.63
0.85 –87.94 0.50† –87.60
0.80 –87.85
*Fully ordered dolomite.
†Fully disordered dolomite.
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the values obtained by Ross (1997) and Fiquet and Reynard
(1999). Further refinement of these carbonate models may help
to determine the source of the anomaly, in particular, further ex-
ploration of the specific properties of magnesite may allow cal-
culation of the predicted changes in elastic properties with
increasing substitutions and defects in the magnesite structure.

Understanding of the point defect structure of minerals is
crucial in the characterization and evaluation of many chemi-
cal and physical properties. Kronenberg et al. (1984) indicated
that manganese impurities are the mostly likely defect in cal-
cite, and, indeed, all of the divalent cations are soluble in cal-
cite up to a few percent. The present calculations indicate that
the most favored impurity defect in calcite is Ni2+. However,
all substitutions occur as spontaneous defects, and the likeli-
hood of a defect will obviously be dependent on the relative
energy of competing metal oxides and on the availability of
the cation dopant. The defect calculations also assume the ex-
istence of an isolated and uncharged defect. As the impurity
content increases, this dilute defect approximation is no longer
valid and the carbonate structure begins to markedly distort
giving rise to two-phase regions. Electrical conductivity mea-
surements by Rao and Rao (1968) indicate that lattice defects
are responsible for charge transport in calcite, and they calcu-
lated formation energies between 1 and 2 eV. Although the de-
fect structure of calcite is likely to be quite complex, the high
formation energies calculated here for calcium vacancies im-
ply that calcium vacancies alone are not responsible for trans-
porting charge, and that extrinsic defects are likely to be
involved in the formation of defects in the calcite lattice. Re-
cent experimental studies of cation diffusion in calcite (Fisler
and Cygan 1999) provide activation energies on the order of
2.9 eV (at 550 to 800 °C) which are in the range appropriate
for ionic diffusion processes. However, the energies are sig-
nificantly smaller than the defect energies calculated here and,
therefore, probably represent an extrinsic process controlled
by the migration energy of the cation diffusion from an occu-
pied site to a defect site.

Dolomite disorder types

Ordering energetics in dolomite and the process of dolo-
mitization are still not fully understood. Completely disordered
phases preferentially form at low temperatures but are less stable
than fully ordered dolomite, which forms rapidly from disor-
dered dolomite (Hardie 1987). Ordering and dolomitization rely
on both the driving energies for ordering and on the transport
rates for cations in dolomite. Several disorder types for dolo-
mite have been calculated in this study, and may be used to
evaluate the ordering mechanisms. Burton (1987) has shown
by cluster variation method analysis of carbonate crystals that
experimental phase diagrams are reproduced by taking into
account highly anisotropic cation ordering, such that interlayer
cations highly favor ordering while intralayer interactions fa-
vor clustering. The cluster variational model provides a sim-
plistic view of metal interactions based on a tetrahedral cluster
and two parameterized interaction terms.

The results of the Mott-Littleton defect model used in the
present study provide a more direct measure of the energy pen-
alty for interlayer disorder in dolomite—this is equivalent to the
energy of a single anti-sit defect, 1.3 eV. By contrast, the energy
for forming a single stacking fault (a switch of full magnesium
and calcium basal planes) is approximately 0.5 eV, while the
energy for an isolated cation substitution is exothermic. These
calculations therefore agree that interlayer disorder is energeti-
cally disfavored compared to a clustering of cation defects within
basal planes. Using varying occupancies for the magnesium and
calcium site in a dolomite structure, the carbonate model allows
a comparison in lattice energy between fully ordered dolomite
and fully disordered (proto-) dolomite. The resulting lattice en-
ergy (Fig. 5) can be represented by E = E0 + a[1 – exp(–bx)],
where x is the fractional occupancy of Mg on the Ca sites. The
energy difference between the two fully ordered and fully disor-
dered dolomite (34.4 kJ/mol) represents the driving force for
dolomite ordering and compares very well with the enthalpy of
disordering (35.76 ± 0.44 kJ/mol) for dolomite measured ex-
perimentally by Dooley and Navrotsky (unpublished data).
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