		•				×		:.::	::
1	1	1	. 1	1	1	1	1 .	. 1	
СаСО _З <i>100 м</i> ас.	.%								Mn GO 3 100 mns %

Рис. 4. Графическое изображение изоморфного ряда кальцит-родохрозит по Фронделю [3] Точки – данные К. Фронделя и др.; крестик – образец из Керчи

непрерывный изоморфный ряд, т.е. между ними существует полная смесимость, и предлагают оставить в этом бинарном ряду следующие названия: кальцит (CaCO₃), манганокальцит (Ca, Mn)CO₃, кальциевый родохрозит (Mn, Ca)CO₃, родохрозит MnCO₃.

Исследованный нами минерал из Керчи содержит MnCO₃ 58,98% и может быть справедливо назван кальциевым родохрозитом, располагаясь в центральной части графика К. Фронделя (см. рис. 4, отмечено крестиком).

По данным рентгеновского исследования и ИК-спектроскопии, а также по значениям температур эндопиков на дериватограмме он близок к кутнагориту.

ЛИТЕРАТУРА

- Павлишин В.И., Сливко М.М. Об изоморфной смесимости в ряду CaCO₃ – MnCO₃ // Минерал. сб. (Львов). 1962. № 16.
- 2. Deer W.A., Howie R.A., Zussman J. Rock-forming minerals. L., 1962. Vol. 5. P. 371.
- Frondel C., Bauer L.H. Kutnahorite: a manganese dolomit CaMn(CO₃)₂ // Amer. Miner. 1955. Vol. 40. P. 748-760.

УДК 549.646.1:535.343.2

В.С. КУРАЖКОВСКАЯ, И.И. КУПРИЯНОВА, М.И. НОВИКОВА

ИК-СПЕКТРЫ РАЗЛИЧНЫХ КРИСТАЛЛОХИМИЧЕСКИХ ТИПОВ БЕРИЛЛА

Берилл кристаллизуется в гексагональной сингонии, пространственной группе P6/mcc. Теоретические параметры чистого $Be_3 Al_2 [Si_6O_{18}]$ должны быть $a_0 = 9,20, c_0 = 9,17$ Å [11]. Однако природные бериллы всегда содержат значительное число добавочных компонентов (Fe^{3^+} , Fe^{2^+} , Mg, Mn, Cr, Li, Na, Cs, H₂ O и др.), которые вызывают деформации кристаллической структуры и изменение параметров ячейки [1, 2, 8]. Существуют две главные схемы изоморфизма в бериллах: Ве²⁺ → L¹ + R⁺ и Al³⁺ → Me²⁺ + + R^+ , где Me²⁺ = Fe, Mg, Mn, а R^+ – крупные шелочные катионы, заполняющие в соответствии со своими размерами пустоты в каналах структуры и служащие компенсаторами валентности при гетеровалентном изоморфизме. В соответствии с этими схемами предложено выделять три кристаллохимических типа: "нормальные", или п-бериллы, с составом, близким к стехиометрическому; *t*-бериллы, в которых тетраздрические позиции Ве частично заняты ионами Li; о-бериллы с замещениями в октаэдрических позициях Al на Fe³⁺, Fe²⁺, Mg [1]. Однако сложная система изоморфных замещений в структуре минерала не ограничивается указанными схемами. Во всех анализах бериллов наблюдается недостаток Ве, который может быть частично восполнен не только Li⁺, но также Si⁴⁺ и Al³⁺. В результате замещения Ве²⁺ более высоковалентными катионами суммарный коэффициент группы Ве в формуле оказывается меньше трех. По определению Н.В. Белова, такие бериллы являются "дефектными", или "дефицитными", структурами вычитания [4]. Дефицит бериллия может также возникать путем вхождения лишь щелочей в каналы: $Be^{2^+} \rightarrow 2R^+ + \Box_{Be}$. Возможны также случаи, когда часть ионов Al³⁺ входит в Si-тетраэдры, восполняя дефицит Si⁴⁺ [3]. Тогда щелочные ионы, помешаясь внутри шестичленных колец, компенсируют пониженный заряд тех

тетраэдров, в которых ионы Si⁴⁺ замещены на Al³⁺. Кроме того, отмечаются изоморфные замещения с компенсацией валентности между стехнометрическими позициями без появления дополнительных щелочей: $3Be^{2+} \rightarrow 2Li^{+} + Si^{4+}$; $Be^{2+} + Si^{4+} \rightarrow Al^{3+} + Al^{3+}$ [9]. Таким образом, содержание щелочей не всегда коррелирует с дефицитом Ве или количеством октаэдрических катионов, замещающих Al.

Атомы Na pacnonaraются в каналах в плоскости гексагональных колец, а молекулы воды и Gs — между кольцами [12]. Причем в бесщелочных бериллах H—H вектор молекул воды параллелен оси с кристалла, а в бериллах, содержащих Na, молекулы воды, чтобы избежать Na—H контакта, поворачиваются таким образом, что их H—H вектор становится перпендикулярен оси с. Окружающие позиции в плоскости гекса-гональных колец вакантны.

Выявлению корреляции между рентгенографическими характеристиками и химическим составом бериллов посвящен ряд работ, где установлена прямолинейная зависимость роста параметра c берилла от Δ Be [1, 2] и от суммы щелочей [8]. Поскольку, однако, присутствие крупных щелочных катионов в каналах — следствие изменения состава основных структурных единиц, то зависимость метрики ячейки от содержания щелочей существует только в пределах одного кристаллохимического типа берилла, и в работе [8] такая зависимость установлена для t-бериллов. Параметр a прямолинейно возрастает с увеличением количества октаэдрических катионов [1, 2].

При изоморфных замещениях в тетраэдрических и октаэдрических позициях структуры берилла происходят структурные превращения, связанные с изменением симметрии кремнекислородного кольца. Вариации симметрии кольца не сказываются на рентгенограммах, так как сингония и пространственная группа остаются постоянными, однако они отражаются на ИК-спектрах. Поэтому представляет интерес исследовать различные кристаллохимические типы берилла не только рентгенографически, но и методом ИК-спектроскопии. Образцы бериллов из разных генетических типов месторождений и с разным характером изоморфных замещений во всех структурных позициях (табл. 1–3) были исследованы методами рентгеновской дифрактометрии и ИКспектроскопии. Съемка дифрактограмм производилась на дифрактометре УРС-50И, СиК_а-излучение, Ni – фильтр, скорость сканирования $1/2^{\circ}$ в минуту. Эталоном служил кремний высокой чистоты. Для расчета параметров бериллов, согласно данным работ [1, 2], были использованы рефлексы (541) и (336), расположенные в области углов θ 45 и 49°. Спектры поглощения образцов, приготовленных по методу тонкодисперсных пленок на подложке из КВт записывались на спектрофотометре UR-10W.

Используя принятую терминологию, образцы разделили на три типа. К *п*-бериллам отнесены образцы с неболышим количеством примесей (см. табл. 1–3, № 1–13). Дефицит бериллия в них составляет 0,10–0,20 формульных единиц и восполняется в основном Al^{3^+} . Примесные катионы Fe^{3^+} , Fe^{2^+} , Mg, Mn занимают 0,05–0,10 октаэдрических позиций. Этот ряд характеризуется постепенным увеличением дефицита Si⁴⁺ и вхождением в его позиции Al^{3^+} . Щелочные атомы выступают компенсаторами дефицита положительной валентности в Al-октаэдрах, Si-тетраэдрах и (в ряде образцов) в вакантных Ве-тетраэдрах (см. схемы изоморфизма в табл. 4). Это наиболее распространенный тип весьма обычен для кварцевожильно-грейзеновых комплексных месторождений W, Sn, Mo, Be, а также для ранних генераций берилла в редкометальных пегматитах; нередок он в слюдяных и керамических пегматитовых жилах (см. табл. 2). Обр. 13, замыкающий этот ряд, является по своему составу переходным к следующим кристаллохимическим типам: Δ Be составляет 0,56 формульной единицы и компенсируется Si, подобно *n*- и *o*-бериллам, и частично Li, как в *t*-бериллах. Примесных катионов в октаэдрах мало.

К *t*-бериллам принадлежат щелочные разновидности (см. табл. 1–3, № 14–21), в которых тетраэдрические позиции Ве частично заняты ионами Li⁺ и изоморфизм осуществляется в основном по схеме Be²⁺ \rightarrow Li⁺ + R⁺ (см. табл. 4). Дефицит Ве в ряду возрастает от 0,14 до 0,55 формульной единицы. К концу ряда заметно увеличивается содержание Cs. Роль октаэдрических катионов в изоморфных замещениях незначительна.

Компоненты				п-Бер	иллы			
	87*(1)	Ш.Г. (2)	2425 (3)	3628 (3)	1531 (5)	1025 (6)	Д-1 (7)	У95-21 (8)
SiO ₂	66,80	65,76	65,30	65,83	66,30	65,79	64,17	64,98
Al ₂ O ₃	17,76	18,53	18,53	18,77	19,03	18,77	18,21	18,60
TiO ₂	Не обн.	0,033		-	-	-	0,04	0,04
Fe ₂ O ₃	0,11	0,72	0,20	0,43	0,21	0,43	0,27	0,60
FeO	0,48	0,49	-	0,06	-	0,06	0,39	0,43
MnO	Не обн.		-	0.009	0,006	0,009	0,02	0,16
CaO	"	0,46	-	-	-	-	0,07	0,24
MgO	,,	0,22	0,32	0,37	0,30	0,37	0,25	0,16
BeO	12,91	12,80	13,20	13,02	13,37	13,02	12,61	12,93
Li ₂ O	0,013	-	0,01	0,052	0,09	0,12	0,014	
Na ₂ O	0,15	0,29	0,42	0,26	0,25	0,30	0,70	0,63 4
К, О	0;40	0,19	0,10	0,20	0,18	0,68	0,48	0,26
Rb, O	0,02	-		0,01	0,01	0,007	0,04	-
Cs ₂ O	0,27	-		0,04	0,01	0,02	0,008	-
H₂O⁺	0,18	1,86	1,87	1,37	0,70		2,42	1,60
Σ	100,22	101,433	100,016	100.421	100.49	101.377	99,67	100,47
Аналитики	Л.И. По-	_	Т.М. Ко-	Л.И. По	К.А. До-	Л.И. По-	К.А. До	рофеева
	лупано-		стырева	лупано-	рофеева	лупанова		1
	ва			ва				

Химический состав изученных бериллов (в мас. %)

Таблица 1

*Номер образца, в скобках - номер по порядку.

t-Бериллы встречаются только в редкометальных пегматитах, богатых литием и цезием, в ассоциации со сподуменом, лепидолитом, петалитом, поллуцитом (см. табл. 2).

Тип *о*-бериллов представлен разновидностями, обогащенными железом и магнием $(0,35-0,55 \phi opmyльной единицы), замещающими Al³⁺ (см. табл. 1–3, № 22–24). Компенсация дефицита положительных зарядов при этом замещении происходит за счет щелочей (преимущественно Na), а частично путем перехода Al³⁺ из октаздрических позиций в тетраздрические и замещения в них Be²⁺ (см. табл. 4, № 23). Следует отметить, что в восполнении существующего в этой серии дефицита бериллия (<math>\Delta Be = 0,30-0,40 \phi$ ормульной единицы) в отличие от *t*-бериллов атомы Li практически не участвуют. *о*-Бериллы образуются при формировании берилливого оруденения среди вмещающих пород основного или ультраосновного состава, а также среди доломитов. Их кристаллизация сопряжена с ранней или поздней стадиями отложения катионов при грейзенизации, реже с более низкотемпературными процессами пропилитизации или березитизации. Во всех этих случаях по сравнению со стадией кислотного выщелачивания активность шелочей (в первую очередь Na и K) повышена.

Различный, часто сложный характер изоморфных замещений в представленных сериях образцов берилла иллюстрируется рис. 1 и 2.

n-Бериллы образуют на графиках области значений, не выстраивающиеся в определенную зависимость, так как в них осуществляется в разных соотношениях сразу несколько схем изоморфизма в тетраэдрических Be- и Si-позициях. Отклонение некоторых *t*-бериллов от прямолинейной зависимости ΔBe-Li и особенно ΔBe-ΣR⁺

		n-Берилль	1			t-Бериллы	
40 (9)	4534 (10)	M-2 (11)	Mp-3 (12)	36-3 (13)	M-6 (14)	H-4 (15)	42 (16)
63,42	63,84	64,70	63,89	66,10	64,88	65,00	64,75
18,84	18,55	16,82	18,88	16,60	18,12	18,16	18,26
-	0,05	<0,01	0,005	0,014	_	Не обн.	0,006
0,69	0,79	0,60	0,74	-	0,69	0,72	0,36
0,27	0,43	0,91	0,23	0,41	0,13	0,23	0,14
0,032	0,08	0,02	0,008		0,008	0,012	0,006
_	0,13	0,07	-	0,16	_	Не обн.	-
_	0,12	0,24	0,170	0,20	_	**	
12,82	12,78	12,81	12,70	10,69	12,89	12,47	12,37
0,10	0,013	0,014	0,16	_	0,32	0,37	0,76
0,46	0,51	0,63	0,56	0,85	0,82	0,40	0,82
0,31	0,26	0,40	0,06	0,31	0,05	0,09	0,05
0,05	_	<0,04	0,007	<0,006	0,02	0,03	0,02
0,29	0,015	0,037	0,23	0,023	0,16	0,12	0,06
2,89	2,31	2,74	2,00	1,66	2,25	2,36	2,58
100,172	99,85	100,03	99,64	99,44	100,438	99,962	100,182
Л.М. Па- нина	С.П. Пу	русова	Л.М. Па- нина	Г.Н. Ав- деева, В.Г. Ко- сарева, Т.Н. Сви рина	л -	.М. Панина	

(см. рис. 1) объясняется тем, что в них, помимо Li, в Ве-тетраэдры входит некоторое количество высокозарядных катионов Al^{3+} и Si^{4+} с соответствующим понижением количества щелочных ионов. В *о*-бериллах, помимо основной схемы $Al^{3+} \rightarrow Me^{2+} + R^+$, наблюдается изоморфизм между стехиометрическими Ве- и Al-позициями без появления дополнительных щелочей $Be^{2+} + Al_0^{3+} \rightarrow Al_T^{3+} + Me^{2+}$ (N° 23). Отсюда пониженное содержание щелочных ионов и повышенное — двухвалентных металлов в этом образце по сравнению с обр. 24 и 22 (в последнем, кроме того, Al-позиции не полностью заняты) (см. рис. 2).

Расчет параметров бериплов разных кристаллохимических типов показал, что параметр *c t*-бериллов прямолинейно возрастает с ростом Δ Be от 9,210 до 9,250 Å (рис. 3, *a*), что связано с большим значением ионного радиуса Li⁺ (0,68 Å), замещающего Be²⁺ (*r* = 0,35 Å) в этих образцах. Небольшое отклонение от линии зависимости параметра *c* обр. 20 объясняется вхождением в Be-тетраэдры, помимо Li, катионов Si⁴⁺, имеющих размеры гораздо меньшие, чем у Li⁺. Параметр *c n*· и *o*-бериллов с Be²⁺/Al³⁺ и Be²⁺/Si⁴⁺ замещениями ниже значений *c t*-бериллов с аналогичным дефицитом Be из-за разницы ионов радиуса Li⁺ (0,68), Al³⁺ (0,51), Si⁴⁺ (0,42 Å) и размеров бериллиевых вакансий. Разброс значений *c n*-бериллов происходит из-за различных соотношений нескольких схем изоморфизма, осуществляемых в них. Увеличению *c* препятствует также разворот кремнекислородных колец и стягивающих их полиэдров при вхождении примесных ионов в октаэдрические позиции, что вызывает наклон общего ребра и уменьшение его роли в вертикальной составляющей [1, 10]. Так, параметр

Таблица 1 (окончание)

6

Компоненты			<i>t</i> -Бериллы				-Бериллы	
	Mp-66 (17)	My-7 (18)	M-5 (19)	Mp-1 (20)	M-1 (21)	CrA-1(22)	Б-1 (23)	Тш1-8 (24)
SiO ₂	63,35	64,76	64,12	63,82	63,07	65,29	61,93	64,80
Al ₂ O ₃	18,51	18,10	17,88	17,70	18,55	15,00	15,91	16,50
TiO ₂	0,006	0,007	0,009	0,01	0,02	0,08	0,010	0,14
Fe ₂ O ₃	0,53	0,10	0,08	0,07	-	2,05	1,17	0,28
FeO	0,10	0,10	0,03	0,05	0,15	0,96	2,22	0,93
MnO	0,008	0,013	0,005	0,007	-	0,02	0,14	0,023
CaO	-	-		-		1,07	0,22	0,10
MgO		-	-	-	0,02	0,36	1,80	1,85
BeO	12,12	11,83	11,89	11,04	10,72	12,02	11,80	11,74
Li ₂ O	0,72	0,93	0,92	1,14	0,91	-	0,039	0,026
Na ₂ O	0,97	1,14	1,33	1,09	0,84	1,08	1,03	1,55
K ₂ O	0,07	0,06	0,05	0,07	0,66	0,50	0,15	0,37
Rb ₂ O	0,06	0,04	0,05	0,11	<0,03	-	<0,03	0,008
Cs ₂ O	0,72	0,24	1,13	2,83	3,00	-	0,047	0,074
$H_2 O^+$	2,63	2,57	2,41	2,45	2,61	1,20	3,55	2,64
Σ	99,794	99,89	99,904	100,387	100,58	100,08	100,12	101,191
Аналитики		Л.М. П	анина		С.П. Пу- русова	А.А. Ли- патова	С.П. Пу- русова	Т.М. Кос стырева

Таблица 2

Условия нахождения образцов берилла

Nº π/π	Номер образца	Генетический тип месторождений	Место локализации (нахождения)	Минеральная ассоциация
		1	и-Бериллы	
1	87	Кварцевожильно-грейзе- новый	В прожилках и жилах	Кварц, полевой шпат
2	Ш.Г.	Грейзеновый	Жеоды и прожилки в грейзене	Топаз, кварц
3	2425	Грейзеновый, мусковит- берилл-флюоритовый	Прожилки в апокарбо- натном грейзене	Флю ори т, мусковит
4	3628	Комплексный кварцево- жильно-грейзеновый	Кварцевая жила	Кварц, вольфрамит
5	1531	Тоже	В прожилках и жилах	Кварц, касситерит
6	1025	Кварц-вольфрамит- молибденит-берил- ловый	В прожилках и зонах дробления	Кварц, полевой шпат, вољфрамит
7	Д-1	Комплексный кварц- берилл-молибдени- товый	Кварцевые жилы	Кварц, молибденит
8	У95-21	Скарново-грейзеновый	Прожилки в грейзени- зированных скарнах и сланиах	Полевой шпат, флюорит, флогопит, мусковит
9	40	Слюдяные пегматиты	Контакт кварцевого ядра и графической зоны	Кварц, микроклин
10	4534	Берилловые пегматиты	Контакт кварцевого ядра с блоковой зоной	То же

Таблица 2 (окончание)

№ п/п	Номер образца	Генетический тип месторождений	Место локализации (нахождения)	Минеральная ассоциация
11	M-2	Сподумен-альбитовые пегматиты с танта-	Зона висячего бока вбли- зи кварцевого ядра	Альбит, кварц, муско- вит
12	Mp-3	Сподуменовые пегма- титы	Зона висячего бока	Мусковит, кварц, аль- бит
13	36-3	Грейзеновый, флогопит- маргарит-берилловый	Мощная жила в талько- вом сланце	Альбит, мусковит, кварц, флюорит
			<i>t</i> -Бериллы	
14	Mn-6	Сподуменовые пегмати- ты с петалитом (Та, Nb, Be)	В лежачем контакте бло- ковой зоны	Кварц, альбит, плагио- клаз
15	H-4	Сподумен-микроклин- альбитовый	Вблизи с танталсодержа- щей зоной	Клевеландит
16	42	Сподуменовые пегма- титы	Контакт зоны блокового кварца со сподумено- вой зоной	Кварц, мусковит
17	Мр-66	Лепидолит-берилл-спо- думеновые пегмати- ты	Висячий контакт тела	Клевеландит, кварц, сподумен, лепидолит, шерл
18	Му-7	Сподумен-микроклин- альбитовый с лепи- долитом, поллуци-	Вблизи блокового кварца (ядра)	Кварц, альбит, сподумен, поллуцит
		том, петалитом		
19	M-5	Тоже	Кварц-лепидолит-альбито- вая зона	Кварц, лепидолит, альбит
20	Mp-1	Альбит-сподумен-лепи- долитовый с берил- лом, танталитом, микролитом, поллу- цитом	Сподумен-кварц-клеве- ландитовая зона	Клевеландит, кварц, спо- думен, лепидолит
21	M-1	То же	Лепидолит-клевеландит- кварцевая зона	Альбит, лепидолит, кварц, микролит
			о-Бериллы	
22	CrA-1	Грейзеновый, топаз- мусковит-флюори- товый	Прожилки в гранитной дайке среди апокарбо- натных грейзенов	Мусковит, флюорит, топаз
23	Б-1	Комплексный кварцево- жильный	Зона брекчий	Кварц, полевой шпат, вольфрамит, мо- либденит
24	Тш1-8	Пропилитовый полево- шпат-фенак итовый	Метасоматическая зона в песчанике	Кварц, ортоклаз, серицит

с у обр. 23, содержащего большее количество октаздрических катионов, ниже, чем у обр. 22 и 24.

Содержание щелочей коррелирует с возрастанием с в пределах t- и о-кристаллохимических типов бериллов (рис. 3, б, в). Однако зависимость $c-R^+$ носит вторичный характер, поскольку щелочные ионы не образуют собственные полиэдры в структуре минерала и являются лишь следствием изоморфизма в тетра- и октаэдрических позициях. Отсюда и сильное отклонение от линии зависимости значений с обр. 14, 16, с одной стороны, и попадание на эту линию точки обр. 13, сильно отличающегося по характеру изоморфизма от остальных t-бериллов, — с другой.

На рис. 4 показано прямолинейное возрастание параметра *a* о-бериллов с повышением содержания в Al-позициях более крупных примесных катионов. Значения *a n*- и *t*-бериллов колеблются от 9,212 до 9,218 Å, т.е. их вариации почти не выходят за пределы точности эксперимента.

Таблица З

2

Кристаллохимические формулы и параметры элементарной ячейки бериллов

№ п/п	Номер	Заполнение	позиций	
	образца	Ве	Si	
1	87	$(Be_{2,83}Si_{0,10})_{2,93}$		i
2	Ш.Г.	$(Be_{2,80}Al_{0,10})_{2,90}$	(Si _{5.99} Al _{0.01}) ₆	
3	2425	(Be _{2.91} Al _{0.05} Li _{0.02})2.98	(Si _{5.99} Al _{0.01}) ₆	
4	3628	(Be _{2,85} Al _{0,09} Li _{0,02}) _{2,96}	(Si _{5.99} Al _{0.01}) ₆	
5	1531	$(Be_{2,89}Al_{0,07}Li_{0,03})_{2,99}$	(Si _{5.97} Al _{0.03}) ₆	
6	1025	$(Be_{2,85}Al_{0,08}Li_{0,04})_{2,96}$	(Si _{5.94} Al _{0.06}) ₆	
7	Д-1	$(Be_{2,82}Al_{0,06}Li_{0,01})_{2,89}$	(Si _{5.98} Al _{0.02}) ₆	
8	У95-21	$(Be_{2,85}Al_{0,07})_{2,92}$	(Si _{5,96} Al _{0,04}) ₆	
9	40	(Be _{2.87} Al _{0.06} Li _{0.04}) _{2.97}	(Si _{5.92} Al _{0.08}) ₆	
10	4534	(Be _{2.86} Al _{0.07} Li _{0.01}) _{2.94}	(Si _{5.94} Al _{0.06}) ₆	
11	M-2	$(Be_{2,87}Si_{0,04}Al_{0,02})_{2,93}$	Si ₆	
12	Mp-3	(Be _{2,83} Al _{0,10} Li _{0,06}) _{2,99}	(Si5,93Al0,07)6	
13	36-3	(Be _{2,44} Si _{0,27} Li _{0,08}) _{2,79}	Si ₆	
14	Mn-6	$(Be_{2,86}Al_{0,01}Li_{0,1,2})_{2,99}$	$(Si_{5,98}Al_{0,02})_{6}$	
15	H-4	$(Be_{2.78}Al_{0.05}Si_{0.02}Li_{0.14})_{2.99}$	Si ₆	
16	42	$(Be_{2,75}Al_{0,02}Li_{0,28})_{3,05}$	Sic	N
17	Mp-66	$(Be_{2,73}Li_{0,27}Al_{0,04})_{3,04}$	(Si5 94 Al 0 06)6	
18	My-7	(Be _{2,65} Li _{0,35} Si _{0,03}) _{3,03}	Si ₆	
19	M-5	$(Be_{2,68}Li_{0,34}Si_{0,01})_{3,03}$	Si ₆	
20	Mp-1	$(Be_{2,52}Li_{0,42}Si_{0,06})_{3,00}$	Si ₆	
21	M-1	$(Be_{2,46}Al_{0,10}Li_{0,35}Si_{0,02})_{2,93}$	Si ₆	
22	СГА-1	(Be _{2,71} Si _{0,14})	Si	
23	Б-1	$(Be_{2,72}Al_{0,27}Ll_{0,01})_{3,00}$	(Si5.93Al0.07)6	
24	Тш1-8	(Be _{2,63} Al _{0,17} Si _{0,05} Li _{0,01}) _{2,86}	Si ₆	
При	мечание	R - шелочи в каналах структуры.		

Таблица 4

Баланс зарядов различных позиций в кристаллохимических формулах бериллов

№ п/п	Номер		Заряды пози	ций		Схема изоморфных	l
	образца	Be(6*)	Si(24 ⁺)	A1(6 ⁺)	R+	замещении	
1	87	+0,06	0	-0,16	+0,09	$Al^{3+} \rightarrow Me^{2+} + R^+$	1
2	Ш.Г.	-0,10	-0,01	-0,07	+0,17	$A1^{3+} \rightarrow Me^{2+} + R^+$	
3	2425	-0,01	-0,01	-0,05	+0,09	$AI^{3+} \rightarrow Me^{2+} + R^+$	
4	3628	-0,01	-0,01	-0,05	+0,07	$Al^{3+} \rightarrow Me^{2+} + R^+$	
5	1531	+0,02	-0,03	-0,07	+0,06	$A1^{3+} \rightarrow Me^{2+} + R^+$	
6	1025	-0,02	-0,06	-0,04	+0.13	$Al^{3+} \rightarrow Me^{2+} + R^+$	
7	Д-1	-0,17	-0,02	-0,02	+0,21	$Al^{3+} \rightarrow Me^{2+} + R^+$	
8	У95-21	-0,09	-0,04	-0,06	+0,18	$A1^{3+} \rightarrow Me^{2+} + R^+$	
9	40	-0,04	-0,08	-0,02	+0,14	$A1^{3+} \rightarrow Me^{2+} + R^+$	
10	4534	-0,06	-0,06	-0,03	+0,14	$A1^{3+} \rightarrow Me^{2+} + R^+$	

Заполнение позиций	Пустоты в каналах структ	уры	Парамет	rp, Å
Ai	R	Н 2 О	a _o	c ₀
$(Al_{1,91}Fe_{0,01}^{3+}Fe_{0,04}^{2+})_{1,96}$	$(Na_{0.03}K_{0.05}Cs_{0.01})_{0.09}$	0,10	9,213	9,211
$(Al_{1.88}Fe_{0.05}^{3+}Fe_{0.04}^{2+}Mg_{0.03})_2$	$(Na_{0.05}K_{0.02}Ca_{0.05})_{0.12}$	0,56	9,210	9,194
$(Al_{1,94}Fe_{0,01}^{3+}Mn_{0,01}Mg_{0,04})_2$	(Na _{0.08} K _{0.01}) _{0.09}	0,57	9,216	9,198
$(Al_{1,92}Fe_{0,03}^{3+}Mg_{0,05})_2$	(Na0,05K0,02)0,07	0,42	9,216	9,194
$(Al_{1,92}Fe_{0,01}^{3+}Mg_{0,07})_2$	(Na0,04K0,02)0,06	0,21	9,218	9,191
$(Al_{1,96}Fe_{0,03}^{2+}Mg_{0,01})_2$	(Na _{0,05} K _{0,08}) _{0,13}	0,29	9,215	9,209
$(Al_{1,92}Fe_{0,02}^{3+}Fe_{0,03}^{2+}Mg_{0,03}Ti_{0,01})_{2,01}$	(Na _{0,13} K _{0,06} Ca _{0,01}) _{0,20}	0,75	9,218	9,197
$(Al_{1,90}Fe_{0,04}^{3+}Fe_{0,03}^{2+}Mg_{0,02}Mn_{0,01})_2$	$(Na_{0,11}K_{0,03}Ca_{0,02})_{0,16}$	0,49	9,214	9,195
$(Al_{1,93}Fe_{0,05}^{3+}Fe_{0,02}^{2+})_2$	^{(Na} 0,08 ^K 0,04 ^{Cs} 0,01)0,13	0,90	9,212	9,205
$(Al_{1,90}Fe_{0,05}^{3+}Fe_{0,03}^{2+}Mg_{0,02}Mn_{0,01})_{2,01}$	(Na _{0,09} K _{0,03} Ca _{0,01}) _{0,13}	0,72	9,219	9,204
$(Al_{1,83}Fe_{0,04}^{3+}Fe_{0,10}^{2+}Mg_{0,03})_2$	$(Na_{0,11}K_{0,05}Ca_{0,01})_{0,17}$	0,85	9,228	9,208
$(Al_{1,91}Fe_{0,05}^{3+}Fe_{0,02}^{2+}Mg_{0,02})_2$	(Na _{0,10} K _{0,01} Cs _{0,01}) _{0,12}	0,63	9,212	9,208
(Al _{1,86} Fe ²⁺ _{0,03} Mg _{0,03}) _{1,92}	(Na _{0,16} K _{0,04} Ca _{0,02}) _{0,22}	0,53	9,219	9,228
$(Al_{1,94}Fe_{0,05}^{3+}Fe_{0,01}^{2+})_2$	$(Na_{0,15}K_{0,01}Cs_{0,01})_{0,17}$	0,69	9,218	9,213
$(Al_{1,93}Fe_{0,05}^{3+}Fe_{0,02}^{2+})_2$	(Na _{0,07} K _{0,01}) _{0,08}	0,73	9,218	9,219
$(Al_{1,97}Fe_{0,02}^{3+}Fe_{0,01}^{2+})_2$	(Na _{0,15} K _{0,01}) _{0,16}	0,82	9,215	9,221
$(Al_{1,95}Fe_{0,04}^{3+}Fe_{0,01}^{2+})_2$	(Na _{0,18} K _{0,01} Cs _{0,03}) _{0,22}	0,82	9,212	9,225
(Al _{1,99} Fe ³ 0,01)2	$(Na_{0,21}K_{0,01}Cs_{0,01})_{0,23}$	0,80	9,216	9,227
$(Al_{1,98} Li_{0,01}^{+} Fe_{0,01}^{+})_2$	$(Na_{0.24}K_{0.01}Cs_{0.04})_{0.29}$	0,75	9,216	9,232
$(Al_{1,98}Fe_{0,01}^{3+}Li_{0,01})_2$	(Na0,20K0,01Cs0,11)0,32	0,77	9,218	9,234
$(Al_{1,99}Fe_{0,01}^{2+})_2$	(Na _{0,15} K _{0,08} Cs _{0,12}) _{0,35}	0,83	9,215	9,247
$(Al_{1,66}Fe_{0,14}^{3+}Fe_{0,07}^{2+}Mg_{0,05}Ti_{0,01})_{1,93}$	$(Na_{0,20}K_{0,06}Ca_{0,04})_{0,30}$	0,38	9,236	9,219
$(Al_{1,46}Fe_{0,08}^{3+}Fe_{0,18}^{2+}Mg_{0,26}Mn_{0,01}Ti_{0,01})_2$	$(Na_{0,19}K_{0,02}Ca_{0,02})_{0,23}$	1,13	9,279	9,204
$(Al_{1,64}Fe_{0,02}^{3+}Fe_{0,07}^{2+}Mg_{0,26}Ti_{0,01})_2$	$(Na_{0,28}K_{0,04}Ca_{0,01})_{0,33}$	0,84	9,263	9,221

3

_

	Схема изомо	рфных замещений	
$2Be^{2+} \rightarrow Si^{4+} + \square$			
$2Be^{2+} \rightarrow Al^{3+} + \Box$	$Be^{2+} \rightarrow \Box + 2R^+$		
$2Be^{2+} \rightarrow Al^{3+} + \Box$	$2Be^{2+} \rightarrow Al^{3+} + Li^+$		
$2Be^{2+} \rightarrow Al^{3+} + \Box$	$2Be^{2+} \rightarrow Al^{3+} + Li^+$		
$2Be^{2+} \rightarrow Al^{3+} + \Box$	$2Be^{2+} \rightarrow Al^{3+} + Li^+$		$Si^{4+} \rightarrow Al^{3+} + R^+$
$2Be^{2+} \rightarrow Al^{3+} + \Box$	$2Be^{2+} \rightarrow Al^{3+} + Li^+$		
$2Be^{2+} \rightarrow Al^{3+} + \Box$	$Be^{2+} \rightarrow \Box + 2R^+$		$Si^{4+} \rightarrow Al^{3+} + R^+$
$2Be^{2+} \rightarrow Al^{3+} + \Box$	$Be^{2+} \rightarrow \Box + 2R^+$		$Si^{4+} \rightarrow A1^{3+} + R^+$
$2Be^{2+} \rightarrow Al^{3+} + \Box$	$2Be^{2+} \rightarrow Al^{3+} + Ll^*$	$Be^{2+} \rightarrow \Box + 2R^+$	$Si^{4+} \rightarrow Al^{3+} + R^+$
$2\mathrm{Be}^{2+} \to \mathrm{Al}^{3+} + \Box$		$Be^{2+} \rightarrow \Box + 2R^+$	$Si^{4+} \rightarrow Al^{3+} + R^+$

Таблица 4 (окончание)

№ п/п	Номер		Заряды по	Схема изоморфных			
	образца	Be(6 ⁺)	Si(24 ⁺)	Al(6 ⁺)	R*	замещений	
11	M-2	-0,04	1 0	-0,13	+0,18	$A1^{3+} \rightarrow Me^{2+} + R^+$	
12	Mp-3	+0,02	-0,07	-0,04	+0,12	$Al^{3+} \rightarrow Me^{2+} + R^+$	
13	36-3	+0,04	0	-0,27	+0,24	$Al^{3+} \rightarrow Me^{2+} + R^+$	
14	Mn-6	-0,13	-0,02	-0,01	+0,17	$Be^{2+} \rightarrow Li^+ + R^+$	
15	H-4	-0,07	0	-0,02	+0,08	$Be^{2+} \rightarrow Li^+ + R^+$	
16	42	-0,16	-0,03	-0,01	+0,16	$Be^{2+} \rightarrow Li^+ + R^+$	
17	Mp-66	-0,15	-0,06	-0,01	+0,22	$Be^{2+} \rightarrow Li^+ + R^+$	
18	My-7	-0,23	0	0	+0,23	$Be^{2+} \rightarrow Li^+ + R^+$	
19	M-5	-0,26	0	-0,02	+0,29	$Be^{2+} \rightarrow Li^+ + R^+$	
20	Mp-1	-0,30	0	-0,02	+0,32	$Be^{2+} \rightarrow Li^+ + R^+$	
21	M-1	-0,35	0	-0,01	+0,35	$Be^{2+} \rightarrow Li^+ + R^+$	
22	CrA-1	-0,02	0	-0,32	+0,34	$Al^{3+} \rightarrow Me^{2+} + R^+$	
23	Б-1	+0,26	-0,07	-0,44	+0,25	$Al^{3+} \rightarrow Me^{2+} + R^+$	
24	Тш1-8	-0,02	0	-0,32	+0,34	$Al^{3+} \rightarrow Me^{2+} + R^+$	

Примечание. о – октаздрическая позиция, т – тетраздрическая.

На рис. 5–7 приведены ИК-спектры исследованных серий бериллов. Кольцевые силикаты обнаруживают в области 1200–900 см⁻¹ интенсивный дублет, отвечающий трижды вырожденному валентному асимметричному колебанию v_{as} связи Si–O–Si [7]. Незначительное нарушение симметрии Td кубического тетраэдра при образовании кольцевого мотива приводит к частичному снятию вырождения с трижды вырожденного колебания тетрасиликатной группы, что реализуется в расщеплении основных полос дублета. В кольцевых силикатах в области 850–750 см⁻¹ наблюдается полоса, которую относят к валентному невырожденному полносимметричному колебанию v_s связи Si–O–Si [6]. Полносимметричное колебание проявляется в спектре только в результате деформации сложного иона, в данном случае при объединении тетраэдров в кольца. Таким образом, полоса 815 см⁻¹ отвечает v_s Si–O–Si. Характеристические полосы в области 750–590 см⁻¹ отнесены к колебания BeO₄-тетраэдра. Алюминию в шестерной координации соответствует полоса 524 см⁻¹. Полосы в области 500–400 см⁻¹ отвечают деформационным колебаниям δ связи Si–O–Si.

ИК-спектры трех кристаллохимических типов бериллов различаются главным образом характером расщепления полос, их смещением и интенсивностью в основной области валентных Si-O-Si колебаний 1200-960 см⁻¹, отражающим изменение симметрии кремнекиспородного кольца под влиянием изоморфных замещений в соседних группах. Кроме того, по-разному меняется интенсивность остальных полос спектра.

Для *п*-бериллов характерен спектр с интенсивными, четкими, узкими полосами (см. рис. 5). В спектрах ряда гидротермальных бериллов (N⁰ 1–3 и 13), в которых кольцевые тетраздры практически не содержат примесных ионов Al, структура дублета полос в области 1215–970 см⁻¹ осложнена максимумом 1110 см⁻¹, исчезающим при замещении части атомов Si алюминием или изоморфных замещениях в других кристаллографических позициях, вызывающих изменения конфигурации основной полосы. Наличие этого максимума отмечалось в [2, 6] для бериллов с составом, близким к стехиометрическому. В спектрах остальных образцов этого ряда полосы дублета в области 1215–970 см⁻¹ резко ограничены, между ними лежит максимум пропускания. При переходе от гидротермальных к пегматитовым бериллам происходит

$2Be^{2+} \rightarrow Al^{3+} + \Box \qquad 2Be^{2+} \rightarrow Si^{4+} + \Box \qquad Be^{2+} \rightarrow \Box + 2R^{+}$ $2Be^{2+} \rightarrow Al^{3+} + \Box \qquad 2Be^{2+} \rightarrow Al^{3+} + Li^{+}$ $2Be^{2+} \rightarrow Si^{4+} + \Box \qquad 3Be^{2+} \rightarrow Si^{4+} + 2Li^{+}$ $Si^{4+} \rightarrow Al^{3+} + R^{+}$ $3Be^{2+} \rightarrow Si^{4+} + 2Li^{+}$ $3Be^{2+} \rightarrow 2Al^{3+} + \Box$ $2Be^{2} \rightarrow Si^{4+} + \Box$ $Be^{2+} \rightarrow Al^{3+} \mu Al^{3+} \rightarrow Me^{2+}, r.e. Be^{2+} + Al^{3+}_{0} \rightarrow Al^{3+}_{T} + Me^{2+}$	Схема изоморфных замещений									
$2Be^{2*} \rightarrow Al^{3*} + \Box \qquad 2Be^{2*} \rightarrow Al^{3*} + Li^{+} \qquad Si^{4*} \rightarrow Al^{3*} + 2Be^{2*} \rightarrow Si^{4*} + 2\Box^{+}$ $Si^{4*} \rightarrow Al^{3+} + R^{+}$ $3Be^{2*} \rightarrow Si^{4*} + 2Li^{+}$ $3Be^{2*} \rightarrow 2Al^{3*} + \Box$ $2Be^{2} \rightarrow Si^{4*} + \Box$ $Be^{2*} \rightarrow Al^{3*} \mu Al^{3*} \rightarrow Me^{2*}, \text{ r.e. } Be^{2*} + Al^{3*}_{0} \rightarrow Al^{3*}_{T} + Me^{2*}$			$Be^{2+} \rightarrow \Box + 2R^+$	$2\mathrm{Be}^{2+} \rightarrow \mathrm{Si}^{4+} + \Box$	$2Be^{2+} \rightarrow Al^{3+} + \Box$					
$2Be^{2+} \rightarrow Si^{4+} + \square \qquad 3Be^{2+} \rightarrow Si^{4+} + 2Li^{+}$ $Si^{4+} \rightarrow AI^{3+} + R^{+}$ $3Be^{2+} \rightarrow Si^{4+} + 2Li^{+}$ $3Be^{2+} \rightarrow 2Al^{3+} + \square$ $2Be^{2} \rightarrow Si^{4+} + \square$ $Be^{2+} \rightarrow Al^{3+} \mu Al^{3+} \rightarrow Me^{2+}, r.e. Be^{2+} + Al^{3+}_{0} \rightarrow Al^{3+}_{T} + Me^{2+}$	R+	$Si^{4+} \rightarrow Al^{3+} + F$		$2Be^{2+} \rightarrow AI^{3+} + Li^+$	$2Be^{2+} \rightarrow Al^{3+} + \Box$					
$\begin{split} Si^{4+} &\rightarrow Al^{3+} + R^+ \\ & 3Be^{2+} \rightarrow Si^{4+} + 2Li^+ \\ & 3Be^{2+} \rightarrow 2Al^{3+} + \Box \\ & 2Be^2 &\rightarrow Si^{4+} + \Box \\ & Be^{2+} \rightarrow Al^{3+} \mu Al^{3+} \rightarrow Me^{2+}, \text{ r.e. } Be^{2+} + Al^{3+}_0 \rightarrow Al^{3+}_T + Me^{2+} \end{split}$				$3Be^{2+} \rightarrow Si^{4+} + 2Li^+$	$2Be^{2+} \rightarrow Si^{4+} + \Box$					
$\begin{split} Si^{4*} &\rightarrow Al^{3+} + R^+ \\ & 3Be^{2+} \rightarrow Si^{4+} + 2Li^+ \\ & 3Be^{2+} \rightarrow 2Al^{3+} + \square \\ & 2Be^2 &\rightarrow Si^{4+} + \square \\ & Be^{2+} \rightarrow Al^{3+} \mu Al^{3+} \rightarrow Me^{2+}, \text{ r.e. } Be^{2+} + Al_0^{3+} \rightarrow Al_T^{3+} + Me^{2+} \end{split}$										
$\begin{aligned} \text{Si}^{4+} &\rightarrow \text{Al}^{3+} + \mathbb{R}^+ \\ & 3 \text{Be}^{2+} \rightarrow \text{Si}^{4+} + 2\text{Li}^+ \\ & 3 \text{Be}^{2+} \rightarrow 2\text{Al}^{3+} + \square \\ & 2 \text{Be}^2 &\rightarrow \text{Si}^{4+} + \square \\ & \text{Be}^{2+} \rightarrow \text{Al}^{3+} \text{ M Al}^{3+} \rightarrow \text{Me}^{2+}, \text{ r.e. Be}^{2+} + \text{Al}^{3+}_0 \rightarrow \text{Al}^{3+}_T + \text{Me}^{2+} \end{aligned}$										
$3 \operatorname{Be}^{2+} \rightarrow \operatorname{Si}^{4+} + 2\operatorname{Li}^{+}$ $3 \operatorname{Be}^{2+} \rightarrow 2\operatorname{Al}^{3+} + \square$ $2 \operatorname{Be}^{2-} \rightarrow \operatorname{Si}^{4+} + \square$ $\operatorname{Be}^{2+} \rightarrow \operatorname{Al}^{3+} \operatorname{H} \operatorname{Al}^{3+} \rightarrow \operatorname{Me}^{2+}, \text{ r.e. } \operatorname{Be}^{2+} + \operatorname{Al}^{3+}_{0} \rightarrow \operatorname{Al}^{3+}_{T} + \operatorname{Me}^{2+}$					$Si^{4+} \rightarrow Al^{3+} + R^+$					
$\begin{array}{l} 3 \operatorname{Be}^{2+} \to 2\operatorname{Al}^{3+} + \Box \\ 2 \operatorname{Be}^{2} \twoheadrightarrow \operatorname{Sj}^{4+} + \Box \\ \operatorname{Be}^{2+} \to \operatorname{Al}^{3+} \mu \operatorname{Al}^{3+} \to \operatorname{Me}^{2+}, \text{ r.e. } \operatorname{Be}^{2+} + \operatorname{Al}^{3+}_{0} \to \operatorname{Al}^{3+}_{T} + \operatorname{Me}^{2+} \end{array}$					3Be ²⁺ → Si ⁴⁺ + 2Li ⁺					
$2Be^{2} \rightarrow Si^{4+} + \square$ Be ²⁺ $\rightarrow Al^{3+} \mu Al^{3+} \rightarrow Me^{2+}$, r.e. Be ²⁺ $+ Al_{0}^{3+} \rightarrow Al_{T}^{3+} + Me^{2+}$					$3Be^{2+} \rightarrow 2Al^{3+} + \Box$					
Be ²⁺ → Al ³⁺ \bowtie Al ³⁺ → Me ²⁺ , r.e. Be ²⁺ + Al ₀ ³⁺ → Al _T ³⁺ + Me ²⁺					$2Be^2 \rightarrow Si^{4+} + \Box$					
· 1			+ Me ²⁺	$1e^{2+}$, r.e. $Be^{2+} + Al_0^{3+} \rightarrow Al_7^{3+}$	Be ²⁺ \rightarrow Al ³⁺ и Al ³⁺ \rightarrow M					
$3 \operatorname{Be}^{2+} \to 2\operatorname{Al}^{3+} + \Box$ $2 \operatorname{Be}^{2+} \to \operatorname{Si}^{4+} + \Box$				$2Be^{2+} \rightarrow Si^{4+} + \Box$	$3 \operatorname{Be}^{2+} \rightarrow 2 \operatorname{Al}^{3+} + \Box$					

увеличение диффузности спектра — уменышение четкости полос, что характерно для неупорядоченного состояния. Спектр обр. 13, являющегося переходным к *t*-и *о*-бериллам, в основной области осложнен едва заметной полосой 1065 см⁻¹, которая четко выражена в следующей серии бериллов.

ИК-спектры t-бериллов обнаруживают смещение к более длинным волнам и дальнейшее расщепление полос в основной области Si-O-Si колебаний (см. рис. 6). Наиболее существенно смещение коротковолновой полосы: 1215 → 1205 → 1180 см⁻¹, причем оно пропорционально увеличению дефицита бериллия (рис. 8). Полоса 970 см⁻¹ также смещается к 960 см⁻¹. На ее контуре появляется плечо 1065 см⁻¹, которое при постепенном повышении содержания Li в тетраздрических позициях увеличивается в интенсивности и превращается в широкую полосу, сливающуюся с полосой 1020 см⁻¹ и поглощающую последнюю. Дублет преобразуется в триплет, причем интенсивность среднего пика приближается к интенсивности основных полос. В [5] появление триплета интенсивных полос 1180, 1140 и 1060 см⁻¹ в спектрах Li-содержащих бериллов также связывается с Be/Li изоморфизмом. Преобразования в основной области объясняются дальнейшим понижением позиционной симметрии SiO4-тетраэдров в результате их деформации под влиянием поля объединенных с ними в четырехчленные кольца BeO4-тетраздров, в которых Be²⁺ частично замещен на крупные ионы Li⁺. "Кольцевая" полоса принимает значение 820 см⁻¹. Относительная интенсивность полос колебаний BeO4-тетраэдра 680 см⁻¹ и особенно 595 см⁻¹ уменьшается, что также связано с понижением содержания Ве и вхождением в его позишии Li⁺.

В *о*-бериллах повышенное содержание Fe, Mg, Mn в октаэдрических позициях и соответствующее понижение в них доли Al с переходом последнего в больших количествах в Ве-тетраэдры приводят к такому изменению позиционной симметрии SiO₄-тетраэдров, которое проявляется в резком увеличении интенсивности полосы 1020 см⁻¹ и смещении полос основного дублета: 1215 \rightarrow 1190 см⁻¹; 970 \rightarrow 960 см⁻¹ (см. рис. 7). Смещение, как и в *t*-бериллах, пропорционально Δ Be (см. рис. 8). Обр. 13 с Be²⁺/Si⁴⁺ изоморфизмом не попадает на линию зависимости из-за близости размеров Si и Be. Полоса 1020 см⁻¹ проявляется в спектре в результате деформации кольца

Рис. 1. Зависимости между дефицитом Ве (Δ Ве) и суммой крупных щелочных ионов в каналах (a) и между Δ Ве и Li в t-и о-бериллах (б), соответствующие разным схемам изоморфизма: Be²⁺ \rightarrow Li⁺⁺ R⁺ (t) и 3Be²⁺ \rightarrow 2Al³⁺ + \Box ; 2Be²⁺ \rightarrow Al³⁺ + Li⁺ (n, о-бериллы) l - n-бериллы; 2 – о-бериллы; 3 – t-бериллы

Рис. 2. Зависимости между суммой двухвалентных ионов в октаэдрических позициях и суммой щелочных ионов в каналах (a), а также между дефицитом Ве и $\Sigma \text{ Me}^{2+}$ (b), соответствующие двум схемам изоморфизма в о-бериллах: $Al^{3+} \rightarrow Me^{2+} + R^+$ (N° 24) и $Be_T^{2+} + Al_0^{3+} \rightarrow Al_T^{3+} + Me^{2+}$ (N° 23) Обозначения те же, что на рис. 1

главным образом при вхождении в соседние Ве-тетраэдры ионов Al и в гораздо меньшей степени Si⁴⁺, близкого по размерам к Be²⁺. Она мало интенсивна в спектрах *n*-бериллов, практически исчезает в спектрах *t*-бериллов, где перекрывается полосой 1065 см⁻¹. В спектрах же *o*-бериллов с большим Δ Be, восполняемым в основном Al, основная область представляет собой триплет равной интенсивности полос: 1190, 1020, 960 см⁻¹. Минерал миларит, в котором треть некольцевых тетраэдров занята Al, имеет ИК-спектр, где полоса 1020 см⁻¹ наиболее интенсивна в дублете, полоса 960 см⁻¹ преобразуется в плечо на ее контуре, коротковолновая полоса дублета имеет значение 1130 см⁻¹. В длинноволновой области спектра *o*-бериллов наблюдается уменьшение относительной интенсивности полосы колебаний Al^{VI}–O (524 см⁻¹), что соответствует изменениям их состава. Понижение содержания Be проявляется в относительном уменьшения интенсивности полосы 750 см⁻¹.

В области деформационных 1800–1500 см⁻¹ и валентных 3800–3000 см⁻¹ колебаний молекул воды бериллов наблюдаются полосы, отвечающие двум типам молекул воды: с вектором H–H, параллельным оси с кристалла (полосы 1542 и 3700 см⁻¹), и с вектором H–H, перпендикулярным оси с (полосы 1630 см⁻¹ и 3600, 3650 см⁻¹)

ø

Рис. 3. Зависимость параметра c₀ элементарной ячейки g, бериллов от дефицита бериллия (α: ΔBe), суммы крупных щелочных ионов в каналах (б; ΣR⁺), ΣR⁺ + Li⁺ (β) Обозначения те же, что на рис. 1

Рис. 4. Зависимость параметра *а* элементарной ячейки берилла от содержания примесных катионов в октаэдрических позициях

1 – п-бериллы: 2 – о-бериллы

[13]. В спектре обр. 1 полосы воды мало интенсивны. В спектрах следующих обр. 2–5, содержащих невысокое количество щелочей, преобладает первый тип воды (рис. 9, 1). В обр. 6–12 повышается содержание щелочей, в основном Na, это заставляет часть водных молекул поворачиваться, чтобы избежать Na–H контакта, количество воды обоих типов выравнивается (рис. 9, 2). Обр. 13, имеющий в своем составе еще большее количество атомов щелочных элементов при относительно невысоком содержании молекулярной воды, обнаруживает в спектре присутствие полос только второго типа (рис. 9, 3). $t - u \ o$ -бериллы имеют в этой области аналогичный спектр, причем интенсивность полос второго типа усиливается (рис. 9, 4). В двух обогащенных Cs t-бериллах (N° 20, 21) Na присутствует в достаточном количестве, чтобы подавляющая часть молекул воды были развернута своим H–H вектором перпендикулярно оси c, и на спектре в отличие от чисто цезиевого искусственного берилла [9] отсутствуют полосы первого типа.

9,220

0 20

40

2++ Fa 3+

60 E Me

Рис. 8. Зависимость длины волны в области 1215-1180 см⁻¹ ИК-спектра берилла от дефицита △Ве Обозначения те же, что на рис. 1

Рис. 9. ИК-спектры бериллов в области валентных и деформационных колебаний молекул воды

выводы

1. Помимо двух главных схем изоморфизма, определяющих появление кристаллохимических типов *t*-и *o*-бериллов: $Be^{2+} \rightarrow Li^+ + R^+$; $Al^{3+} \rightarrow Me^{2+} + R^+$, следует принимать во внимание существование и ряда других схем замещения, вызванных дефицитом ионов бериллия, а также кремния: $3Be^{2+} \rightarrow 2Al^{3+} + \Box$; $2Be^{2+} \rightarrow Al^{3+} + Li^+$; $Be^{2+} \rightarrow 2R^+ + \Box$; $2Be^{2+} \rightarrow Si^{4+} + \Box$; $Be^{2+} + Al_0^{3+} \rightarrow Al_T^{3+} + Me^{2+}$; $Si^{4+} \rightarrow Al^{3+} + R^+$.

2. Корреляция между параметром с и Δ Ве имеет разный характер у *t*- и *о*-бериллов за счет разницы в размерах ионов Li⁺, Al³⁺, Si⁴⁺, замещающих в них Be²⁺, и, кроме того, в *о*-бериллах увеличению параметра с препятствует разворот кольцевых тетраэдров под влиянием расширения октаэдров, включающих более крупные, чем Al³⁺, ионы Fe³⁺, Fe²⁺ и Mg²⁺.

3. Выявлены характерные черты ИК-спектров бериллов трех кристаллохимических типов, каждый из которых имеет свою отчетливую специфику (табл. 5). *п*-Бериллы характеризуются ИК-спектром с интенсивными, четкими, узкими полосами. В области 1215–970 см⁻¹ две основные полосы резко разграничены. В образцах с минималь-

Таблица 5

Изменения ИК-спектра берилла при изоморфных замещениях

Длина вол- ны, см ⁻¹	Природа колебания	Происходящие изменения	Влияющие факторы	№ обр. (см. рис. 7–9)
1215-1180	v _{as} Si–O–Si	Смещение к более длинным волнам	Изменение Si-O-Si колебаний при изоморфных замещениях в тетра- и октаэдрических позициях <i>t</i> - и <i>о</i> -бе- риллов	1-24
1150-1145	vas Si-O-Si	Без изменений	-	1 - 24
1110	ν _{as} Si−O−Si	Исчезновение поло- сы	Изменение Si-O-Si колебаний при отклонении состава от стехиомет- рического	1-3, 13
1065	ν _{as} Si−O−Si	Появление и увели- чение интенсивнос- ти	Расщепление Si−O−Si колебаний при Be ²⁺ → Li ⁺ замещении в <i>t</i> -бериллах	14-21

Длина вол- ны, см ⁻¹	Природа колебания	Происходящие изменения	Влияющие факторы	№ обр. (см. рис. 7–9)
1020	v _{as} Si–O–Si	Увеличение интен- сивности	Изменение Si $-O-Si$ колебаний при $Al^{3+} \rightarrow Me^{2+}$ и $Be^{2+} \rightarrow Al^{3+}$ замещениях в <i>о</i> -бериллах	22-24
970–960	v _{as} Si–O–Si	Смещение к более длинным волнам	Изменение Si-O-Si колебаний при изоморфных замещениях в тетра- и октаэдрических позициях <i>t</i> -и <i>о</i> -бериллов	1-24
815	ν _s Si−O−Si	Небольшое смеще- ние	Изменение Si–O–Si колебаний при Be ²⁺ → Li замещении в <i>t</i> -бериллах	14-21
750	Be-O	Уменьшение интен- сивности	Понижение содержания Ве с заме- ной его на Al в <i>о</i> -бериллах	22-24
680, 595	Bt-O	То же	Понижение содержания Ве с заменой его на Al в t-бериллах	14-21
525	Al ^{VI} –O		Понижение содержания Al в октаэдрах в о-бериллах	22-24
500-400	δ Si-O-Si	Без изменений	_	1-24

ным количеством примесей в основной области наблюдается максимум 1110 см⁻¹, природа которого требует дальнейшей расшифровки.

Отличительной особенностью ИК-спектров *t*-бериллов является смещение основных полос дублета к более длинным волнам, появление максимума 1065 см⁻¹ и образование в результате триплета полос 1180, 1065, 960 см⁻¹.

Для *о*-бериллов характерен ИК-спектр с интенсивной полосой 1020 см⁻¹, смещением основных полос дублета и образованием триплета полос равной интенсивности: 1190, 1020, 960 см⁻¹, а также уменьшением интенсивности полосы 526 см⁻¹ (Al^{VI}-O).

4. Появление на ИК-спектре полос H₂O первого и второго типов зависит от содержания Na и количества молекулярной воды в каналах структуры. При увеличении Na наблюдаются полосы только второго типа (H-H вектор перпендикулярен оси c), так как присутствие ионов Na⁺ препятствует ориентации водных молекул по первому типу (H-H вектор параллелен оси c).

ЛИТЕРАТУРА

 Бакакин В.В., Рылов Г.М., Белов Н.В. О корреляции химического состава и параметров элементарной ячейки бериллов // Докл. АН СССР. 1967. Т. 173, № 6. С. 1404–1407.

67

Таблица 5 (оконцания)

- Бакакин В.В., Рылов Г.М., Белов Н.В. Рентгенографическая диагностика изоморфных разновидностей берилла // Геохимия. 1970. № 11. С. 1302-1310.
- Барабанов В.Ф. О зональности бериллов и причинах ее возникновения // Минералогия и геохимия вольфрамовых месторождений. Л.: ЛГУ, 1975. С. 223-242.
- Белов Н.В. Развернутые формулы берилла // Геохимия. 1959. № 8. С. 734-736.
- Зорина М.Л., Гордиенко В.В. О возможности диагностики Li-Ве замещений в бериллах по их ИК-спектрам поглощения // Вестн. ЛГУ. 1981. № 24. С. 77-80.
- 6. Плюснина И.И. Инфракрасные спектры силикатов // М.: Изд-во МГУ, 1967. 189 с.
- 7. Поваренных А.С. Инфракрасные спектры

колыцевых силикатов // Минерал. журн. 1979. Т. 1, № 2. С. 3–18.

- Соседко Т.А., Франк-Каменецкий В.А. По поводу структурного типоморфизма шелочных бериллов // Минерал. сб. Львов. ун-та. 1972. Вып. 2, № 26. С. 159–170.
- 9. Шацкий В.С., Лебедев А.С., Павлюченко В.С. и др. Исследование условий вхождения щелочных катионов в структуру берилла // Геохимия. 1981. № 3. С. 351-360.
- Almeida S.F.H., Sighinolfi G.P., Galli E. Contribution to the crystall chemistry of beryl // Contribs Mineral and Petrol. 1973. Vol. 38, N 4. P. 279-290.
- 11. Gaines R.V. Beryl a review // Miner. Rec. 1976. Vol. 7, N 5. P₁211-223.
- Hawthorne F.C., Cerny P. The alkali-metal positions in Cs-Li beril // Canad. Miner. 1977. Vol. 5, N 3. P. 414-421.
- Wood D.L., Nassau K. Infrared spectra of foreign molecules in beryl // J. Chem. Phys. 1967. Vol. 47, N 7.P. 2220-2228.