- 22. С е в е р г и н В.М. Опыт минералогического землеописания Российского государства. СПб., 1809. Ч. 1/2.
- 23. С е в е р г и н В.М. Наставления о лучших способах добывать, изготовлять и очищать селитру в России, опытами и свидетельствами доказаны. В двух ответах на задачу Вольного экономического общества, по Высочайшему повелению поставленную. СПб., 1812.
- 24. С у х о м л и н о в М.И. Очерк о жизни и деятельности акад. В.М.Севергина // История Российской академии. СПб., 1819. Т. 4.
- 25. Т е р я е в А. История минералогии или краткое изображение основания, приращения и усовершенствования оной науки, особливо в последнее двадцатилетие с присовокуплением новейших систем по всем частям всеобщей минералогии. СПб., 1819.
- Berg E. Repertorium der Literatur über die Mineralogie, Geologie, Paleontologie Berg- und Hüttenkunde Russland, bis zum Schluß des XVIII Jahrhunderts / Bearb. E. von Berg. St. Petersburg, 1862. Bd. 20. 227 S.
- 27. Laksmann M. Sibiriche Briebe / Herausgegeben von Schlözer.St. Petersburg, 1769.
- 28. L o m o n o s o v M. Musei Imperialis Petropolitani. Petropoli, 1745. Vol. 1: pars tertia, qua contineivtur res naturalis ex regno minerali.
- 29. Моівеіјепко F.P. De Spatio ponderoso. 1776 (Архив АН СССР. Л., 1955. С.49-77. – Пер. с лат. яз. А.В.Немиловой).
- 30. Moiseijenko F.P. Mineralogische Abhandlung von dem Zinnstein. Leipzig, 1779.
- 31. Patrain E. Notice mineralogique de la Daurie. P., 1791. Vol. 38. P. 225-245.
- 32. S e v e r g i n V.M. Exposition de quelques experiences docimastiques faifes sur les mines de cuerze // Nova acta Acad. sci. 1806. Vol. XV: (1802).

УДК 549.6

10

Д.И.Белаковский, В.Ю.Карпенко, А.В.Мохов

ДВУПРЕЛОМЛЯЮЩИЙ АНАЛЬЦИМ ИЗ КАМЕРНЫХ ПЕГМАТИТОВ ВОЛЫНИ

Широко распространен и неоднократно изучался анальцим из пегматитов щелочных пород, где его образование связано с процессами позднего гидротермального замещения. В гранитных пегматитах этот минерал не отмечался. Нами анальцим найден в камерных пегматитах Волыни. Среди гидротермальной минерализации этих пегматитов известен натролит, а также цеолит, близкий по свойствам к стильбиту <u>/</u> 4 7.

Анальцим обнаружен здесь в пустотах округлых и вытянутых сечений в крупном обломке частично альбитизированного кристалла ортоклаза из блоковой зоны пегматита. Происхождение пустот, вероятно, связано с выщелачиванием из полевого шпата крупных индивидов кварца. Размеры пустот 0,5-5 см. Альбитизация монокристалла ортоклаза наиболее сильно проявлена около стенок пустот, которые инкрустированы щетками мелких кристаллов альбита размером до 0,2-0,3 мм. На отдельных участках щеток - мелкие зерна сидерита. На такой подложке расположены бесцветные прозрачные кристаллы анальцима тетрагонтриоктаздрического габитуса. В ряде участков кристаллы срастаются в щетки с индукционными поверхностями между индивидами. На отдельных кристаллах расположены сферолиты гематита. Размер кристаллов анальцима 0,05-0,5 см, сферолитов гематита 0,05-0,1 см. Диагностика всех минералов подтверждена рентгенографически.

Значительная часть кристаллов анальцима содержит многочисленные зеленые включения, которые темнеют при их извлечении из кристалла-хозяина. На дебаеграмме зафиксированы немногочисленные рефлексы (0,7I нм и др.), характерные для слоистых силикатов. В составе минерала, определенном на электронном микроскопе с помощью энергодисперсионной приставки Kevex-5100, помимо кремния и алюминия, присут-

ствует только железо (аналитик А.В.Мохов, ИГЕМ). Почернение минерала на воздухе, видимо, связано с окислением железа. По свойствам он может быть предварительно диагностирован как гриналит Fe3²⁺(OH)₂[Si₂O₅]

Анальцим в иммерсионном препарате отчетливо анизотропен, наблюдаются сдвойникованные зерна, полисинтетические двойники. Коноскопические фигуры показывают наличие зерен с одноосными отрицательными и двуосными положительными фигурами. Показатели преломления n_g = 1,484±0,002, n_p = 1,482±0,002. Химический состав анальцима был проанализирован на зондовом микроанализаторе. Результаты приведены в табл. I.

Таблица І

Компоненты	I	2	3
Si0 ₂	60,99	61,28	62,59
A1203	21,66	21,76	21,85
CaO	0,01	0,01	0,01
Na ₂ 0*	10,93	I0,74	II,67
κ ₂ ō	0,01	0,00	0,02
Сумма	93,60	93,79	96,13

Химический состав (в мас. %) анальцима из Волыни

Дефицит Na - за счет выноса его при облучении электронным пучком.

П р и м е ч а н и е. I-3 - номера проанализированных участков. Условия съемки: рентгеновский микроанализатор "Сатебах", ускоряющее напряжение 20 кВ, ток зонда 20 нА; все элементы определялись по К_м-излучению. Эталоны: ^{Na}-жадеит; к, Al - ортоклаз; si, ca - голубой диопсид. Аналитик О.Л.Георгиевская, ИМГРЭ.

Рентгенограммы анальцима из Волыни, выполненные на дифрактометре, представлены в табл. 2. Все рефлексы индицируются в кубической ячейке с параметром а = I,3202 нм. При этом ряд достаточно сильных рефлексов - 0,3202 нм (II4), 0,2697 нм (43I) и др. - противоречит пространственной группе Ia3d, приводимой для минерала в справочниках. По данным Кумбса [5], эти рефлексы наблюдаются и в анальциме из базальтов района Флиндерс в Австралии. Отклонений от кубической метрики в явном виде нет. Слабая линия 0,64I нм принадлежит, по-видимому, примеси.

Таблица 2

hkl	I		2		3			4	
	I	d∕n,HM	I	d/n,HM	I	d/n,HM	I	d/n, HM	
200		111			2	0,688	I	0,687	
	IO	0,641							
II2	90	0,565	100	0,598	8	0,561	8	0,560	
220	30	0,487	50	0,485	4ш	0,485	4	0,486	
312	IO	0,368	40	0,366	Зш	0,365-0,367	2	0,367	
400	I00	0,344	100	0,343	IO	0,343	IO	0,343	

Рентгенограммы анальцима

3.3ak.1479

Таблица 2(окончание)

hkl	1		2		3		4	
	I	d/n, HM	I	d/n, HM	I	d/n, HM	I	d/n, HM
(411)	IO	0.325	20	0.324	I	0.324		
	40	0,320	20	0,321	-	-,		
		-,	30	0,319				
420			20	0,308	2	0,308		
					Ι	0,306		
332	90	0,2932	100	0,2913	7	0,2929	8	0,2925
					3	0,2896		
224	30	0,2808	20	0,2797	2	0,2804	2	0,2801
					Ι	0,2779		
(431)	70	0,2697	40	0,2696	4	0,2696	5	0,2693
512	60	0,2513	50	0,2504	5	0,2506	5	0,2505
440	50	0,2435	20	0,2428	2	0,2434	3	0,2426
			20	0,2411	2	0,2412		
(433)					Iш	0,2360		
600		-	20	0,2290	I	0,2290		
532	60	0,2231	30	0,2227	Зш	0,2217-0,2229	4	0,2226
620	IO	0,2174	10	0,2169	Ι	0,2170	Ι	0,2168
(541)	5	0,2121	IO	0,2124	Ι	0,2125	Ι	0,2115
			5	0,2108	Ι	0,2100		
316	IO	0,2024	I0	0,2018	2ш	0,2015	Ι	0,2022
			5	0,1952				
(543)	Ι0	0,1942	5	0,1944	Ιw	0,1940	Ι	0,1940
640	60	0,1905	30	0,1906 '	3	0,1906	5	0,1903
			30	0,1895	3	0,1892		
336	50	0,1874	30	0,1870	4ш	0,1869	4	0,1867
624	5	0,1836					Ι	0,1833
723, 156	80	0,1744	40	0,1740	5ш	0,1744-0,1734	6	0,1743
800	30	0,1717	20	0,1713	4	0,1713	3	0,1716
(741)	40	0,1690	20	0,1688	2	0,1692	4	0,1689
					2	0,1679		
820	10	0,1665	20	0,I665	2	0,1663	Ι	0,1664
860	10	0,1616	20	0,1619	2	0,1621	2	0,1618
(831), (743) 40	0,1595	10	0,1594	2ш	0,1596-0,1585	3	0,1596
824	20	0,1497	10	0,1498	Ι	0,1500	2	0,I498
192, 566	20	0,1479	20	0,1479	2	0,1480	2	0,I480
664	5	0,1462					I	0,I463
(851), (754) IO	0,1446	10	0,1449	I	0,1449	I,	0,1447
932, 736	60	0,1416	20	0,1416	3ш	0,1416	4	0,1415

Примечание. I - анальцим из камерного пегматита, Волынь. Условия съемки: ДРОН-2,0, анод Си, фильтр - Ni, скорость съемки I^O в минуту. Аналитик Д.И.Белаковский; 2 - анальцим из щелочного пегматита, Хибины. Условия съемки аналогичны на рентгенограмме I; 3 - анальцим из Лавен, Норвегия [5]; 4 - анальцим из Флиндерс, Австралия [5]. Значения индексов hkl, не удовлетворяющие условию 2h+1=4b, указаны в скобках.

В то же время в ряде источников описан анальцим, расцепление рефлексов 332, 440, 640 на рентгенограммах которого свидетельствует об искажении кубической ячейки. Это наиболее характерно для анальцима из пегматитов целочных пород (например, район Лавен в Норвегии [5], Приазовье [3] и др.). В [2] приводятся данные о находке некубического гидротермального анальцима в эффузивах Карадага.

Полученная нами рентгенограмма образца анальцима из центральной зоны пегматита, залегающего в хибинитах горы Айкуайвенгчорр (Хибины) очень сходна с рентгенограммой анальцима из Лавен [5] (см. табл. 2). На ней (рис. I,а) видно расщепление пиков, соответствующих отражениям 440 и 640. На дифрактограмме образца из Волыни (рис. I,б) эти пики симметричны и расщеплений не содержат. Профиль дифрактограммы хибинского анальцима отличается, кроме того, расширением и большей асимметричностью ряда других пиков.

Р и с. І. Фрагменты дифрактограмм

а – анальцима из щелочного пегматита горы Айкуайвентчорр, Хибины; б – анальцима из камерного пегматита, Волынь. Условия съемки: ДРОН-2,0, анод – Си, фильтр – Ni, скорость – I^O в минуту. Аналитик Д.И.Белаковский (лаборатория МГРИ)

Исследования полиморфизма анальцима позволили Кумбсу [5] выделить три его структурные модификации:

I. Кубическая, оптически изотропная, с пространственной группой Ia3d, к которой относится синтетический анальцим, полученный из гидротермального раствора.

2. Отклоняющаяся от кубической двуосная двупреломляющая модификация, в которой отклонение от кубической симметрии не фиксируется явно на рентгенограммах. Для этой модификации характерно появление рефлексов hkl с 2h+l≠4n, запрещенных в пространственной группе Ia3d.

 Тригональная или близкая к ней двупреломляющая модификация с расщеплением ряда рефлексов на рентгенограмме.

Ко второй модификации Кумбс отнес анальцим из Флиндерс. По-видимому, к ней же можно отнести и анальцим из Волыни. Расщепление рефлексов 440 и 640 при сохранении нерасщепленными рефлексов h00 для лавенского и хибинского анальцима позволяет предположить для них деформацию структуры по одной из осей третьего порядка с образованием ромбоэдрической ячейки. Угол при вершине ромбоэдра отклоняется при этом от прямого на величину не более 0,6⁰. В качестве причин образования аномалий различные авторы указывают изменение содержания воды в минерале, остаточные напряжения при росте, упорядоченность распределения кремния и алюминия в структуре анальцима.

Образцы с меньшим отношением содержаний кремния и алюминия проявляют тенденцию к более сильному искажению ячейки. Поскольку обедненные кремнеземом образцы анальцима характерны для щелочных пород, рентгеновские и оптические аномалии могут оказаться типоморфным признаком. Различие в упорядоченности кремния и алюминия в структуре анальцима разного генезиса подтверждается данными инфракрасной спектроскопии. На ИК-спектрах присутствуют полосы поглощения 1630 см⁻¹ (деформационные колебания воды) и широкий пик с максимумом 1020 см⁻¹ (валентные антисимметричные колебания 5i-0-Si и Si-0-A1). Низкочастотные пики 450, 625, 730 и 770 см⁻¹ связаны с деформационными симметричными колебаниями Si-0-Si и Si-0-A1. По данным Ахвледиани [I], отношения высот пиков 730 и 770 см⁻¹ определяют степень упорядоченности кремния и алюминия. Отношения высот этих пиков на ИК-спектрах анальцима из Волыни (рис. 2,а) и Хибин (рис. 2,б) равны соответственно 0,86

Р и с. 2. Инфракрасные спектры анальцима

а – из камерного пегматита, Волынь;б – из щелочного пегматита горы Айкуайвентчорр, Хибины. Условия съемки: Спекорд-751R, запрессовка в КВг, навеска – 7 мг. Аналитик Н.С.Шатская (лаборатория ИМГРЭ)

и 2,56. Таким образом, по этим данным упорядоченность в хибинском анальциме эначительно выше, что согласуется с его более низкой симметрией. В работе [I] приводятся также данные о преимущественном влиянии на величину параметра ячейки анальцима температуры его образования. Если эти данные справедливы, то температура образования анальцима в камерных пегматитах Волыни по приведенному в [I] графику определяется как 300+20°С.

В заключение следует отметить, что термин "аномальное двупреломление" по отношению к анальциму не является удачным. Нами были просмотрены образцы анальцима различного генезиса и ассоциаций из минералогического музея МГРИ, и ни один из них не оказался изотропным. Двупреломление здесь не является аномальным, так как связано с отклонением от кубической ячейки. В тех образцах, где это отклонение не фиксируется явно, о нем свидетельствует разброс значений параметра ячейки, вычисленных по разным рефлексам одной рентгенограммы. Этот разброс превышает пределы погрешности измерений. В связи с вышесказанным представляет интерес поиск среди природных образцов изотропного кубического анальцима.

Литература

- I. Ахвледиани И.Р. Анальцимовый геотермометр // Тр. Груз. политехн. ин-та. 1982. № 3. С. 63-70.
- 2. Гриваков А.Г. О находке некубического гидротермального анальцима в Крыму // Зап. Всесоюз. минерал. о-ва. 1967. Вып. 6. С. 724-728.
- В ременко Г.К., Вальтер А.А. Некубический анальцим из нефелиновых сиенитов Приазовья // Минерал. сб. Львов. ун-та. 1965. № 19, вып. 3. С. 373-378.
- Лазаренко Е.К. и др. Минералогия и генезис камерных пегматитов Волыни. Львов: Изд-во Львов. ун-та, 1973.
- Coombs D.S. X-ray observations on wairacite and non-cubic analcime // Miner. mag. 1955. Vol. 30. P. 699-708.

УДК 548.2+548.5; 549.01

А.А.Годовиков, О.И.Рипинен, В.С.Павлюченко

ЛЮТЕЦИНОВЫЕ ГЕКСАЛИТЫ - ПРИМЕР НОВОГО ТИПА НЕОРГАНИЧЕСКИХ КРИСТАЛЛИЧЕСКИХ ТЕЛ, А ИХ СРАСТАНИЯ - НОВЫЙ ТИП МАЛЫХ МИНЕРАЛЬНЫХ ТЕЛ

Введение

Лютецин впервые выделен в качестве самостоятельной волокнистой разновидности халцедона в I892 г. М.Мишель-Леви и М.Мунье-Чалмас [22]. Эти авторы в зависимости от различия в оптических свойствах выделили три волокнистые разновидности кварца: халцедон - с удлинением волокон по оси а и прямым угасанием (оптический знак -), кварцин - с удлинением волокон по оси с и прямым угасанием (оптический знак +) и лютецин - волокнистый кварц с косым угасанием с углом

30°. В этой же работе они описали характерные срастания волокон лютецина, образующих сетку с углом между волокнами ~120°, хорошо видимые под микроскопом в шлифах 1 "L₃", образующие уплощенные шестиугольные индивиды с головками в виде сильно уплощенной гексагональной дипирамиды. Учитывая косое угасание и особенности штриховки граней гексагональной дипирамиды лютециновых индивидов, вскры вающей их псевдогексагональную природу, авторы считали, что лютецин отличается