Вып. 25

10

АКАДЕМИЯ НАУК СССР

1976

Труды Минералогического музея им. А. Е. Ферсмана

Ответственный редактор д-р геол.-мин. наук Г. П. Барсанов

Г. А. АННЕНКОВА, Н. И. ОРГАНОВА, Е. С. РУДНИЦКАЯ, А. Н. ПЛАТОНОВ, М. Г. ДОБРОВОЛЬСКАЯ, А. Л. ДМИТРИК

АЛАИТ ИЗ ФОНДОВ МИНЕРАЛОГИЧЕСКОГО МУЗЕЯ АН СССР

В Минералогическом музее имени Ферсмана АН СССР на экспозиции «Минералы, открытые на территории России и СССР» в запарафинированном стеклянном сосуде хранится единственный образец алаита, описанный К. А. Ненадкевичем в 1909 г. (Ненадкевич К. А., 1909). Минерал был найден на месторождении Тюя — Муюн в предгорьях Алайского хребта, от которого и получил свое название. По описанию К. А. Ненадкевича алаит «представляет очень красивые и необычные в минеральном царстве формы густого мягкого мха, темно-кровяно-красного цвета с шелковистым блеском». В статье приведена формула $V_2O_5 \cdot H_2O$, выведенная К. А. Ненадкевичем по результатам химического анализа. Исследования физических, оптических и других свойств алаита до сих пор не проводились. Только в 1965 г. был сделан спектральный анализ и обнаружен кальций (Минералы, 1965).

В 1974 г. запарафинированный образец был вскрыт, и часть его взята для исследований. Окраска минерала, по-видимому, с течением времени изменилась, поскольку цвет волокон сейчас правильнее определить как лилово-коричневый. Размер волоконец 2—3 мк в поперечнике и до 3 мм в длину. Волокна легко переплетаются в войлокоподобную массу и тогда с трудом отделяются друг от друга. В таких уплотненных агрегатах окраска с внешней стороны кажется более светлой. Способность волоконец образовывать рыхлую войлокоподобную массу не позволила определить плотность минерала.

В иммерсионном препарате в проходящем свете наблюдались сильные внутренние рефлексы красного цвета. В скрещенных николях волокна обнаруживают четкое прямое погасание, положительное удлинение, $n \sim 1,714$. Плеохроизм слабый в коричневых тонах, причем по удлинению параллельно наибольшей оси — коричневый, параллельном наименьшей оси — светло-коричневый $n_g > n_p$.

Малое количество материала не позволило, к сожалению, повторить химический анализ. Микроспектральный лазерный анализ показал очень сильные линии ванадия, средние — кальция, следы Fe, Mg, Cu, Si, что свидетельствует о присутствии в исследуемом образце незначительной примеси Ca-содержащего минерала.

ИК-спектр (рис. 1) характеризуется интенсивной полосой в области 700—400 см⁻¹ с 2 четкими максимумами 535 и 480 см⁻¹, которые соответствуют валентным колебаниям связей V—О в октаэдрах, а также двумя ступенями около 600 и 670 см⁻¹. В области 1700—700 см⁻¹ наблюдаются слабые четкие максимумы 770 и 980 см⁻¹, отнесение которых осталось невыясненным. Сильная полоса 1130—1150 см⁻¹ является обычной для многих окислов. Наблюдаются также слабые полосы 1470 и 1630 см⁻¹. В области валентных колебаний ОН (3100—3700 см⁻¹) проявляется слабая полоса 3420 см⁻¹. Наличие двух максимумов — 3420 и 1630 см⁻¹ — свидетельствует о присутствии в минерале молекулярной воды. Максимум около 1470 см⁻¹ принадлежит, вероятнее всего, кальциту, что соотносится с результатом спектрального анализа.

Прогревание образца при 160° С в течение 30 мин приводит практически к исчезновению в ИК-спектре полос молекулярной воды (3420— 1630 см⁻¹). По-видимому, вода слабо связана со структурой минерала.

Рис. 1. ИК-спектр алаита: *а* — до, *б* — после нагревания Рис. 2. Оптический спектр поглощения алаита

Сильное ослабление максимума 670 см⁻¹ после нагревания показывает, что он был связан с либрационными колебаниями группы ОН в молекуле воды. Это указывает на возможное размещение воды в структурных полостях.

Для решения вопроса о возможных валентностях ванадия был получен оптический спектр поглощения алаита на микроспектрофотометре. Оптический спектр поглощения (рис. 2) снимался методом диффузного отражения при комнатной температуре в области 300—1000 нм. Спектр алаита характеризуется широкой интенсивной полосой поглощения с максимумом ~ 1870 см⁻¹, весьма характерной для спектров минералов и соединений, содержащих ионы V^{5+} в пятерной или шестерной координации (Платонов А. Н., 1972). Интенсивная полоса поглощения в спектре алаита связана с поглощением V-радикалов и обусловлена электронными переходами с переносом заряда $O^{2-} \rightarrow V^{5+}$. На длинноволновом крыле этой полосы с трудом фиксируются слабые полосы 15100 и 14100 см⁻¹, которые можно связать с поглощением ионов V^{4+} . Подобные, но несколько отличающиеся по энергии, полосы поглощения наблюдаются в спектрах пухерита, хаммерита, хьюэттита и вообще характерны для соединений V^{4+} (Платонов А. Н., 1973).

Таким образом, исследования инфракрасного и оптического спектров поглощения дали сопоставимые результаты и позволили предположить, что анализированный образец относится к группе окислов со слабо связанной молекулярной водой и содержит в основном V^{5+} , а V^{4+} составляет очень незначительную примесь.

Структурное изучение алаита производилось методами порошковой рентгенографии и микродифракции. Получение дебаеграммы оказалось не простой задачей, поскольку было трудно уплотнить войлокоподобный агрегат в капилляре для стемки. Рентгеновские снимки ряда полученных столбиков содержали в области малых углов широкие максимумы, что связано, по-видимому, с вхождением воды в сложную струк-

15				Порошкограмма алаита							
1	d _{ИЗМ.}	d _{выч.}	h/zl	1	<i>d</i> _{ИЗМ.}	d _{выч.}	hkl	1	d _{иэм.}	d _{Bbiy.}	hkl
10 2 4 1 7 8	8,22 5,42 4,18 3,63 3,47 3,42	8,22 5,36 4,18 3,63 3,47 3,51 3,10 3,15	$ \begin{array}{r} 001\\ 201\\ 300\\ 202\\ 110\\ 301\\ 401\\ 111 \end{array} $	5 4 1 4	3,04 2,84 2,63 2,30	3,04 2,86 2,71 2,67 2,32 2,34	$30\overline{2} \\ 211\overline{1} \\ 40\overline{2} \\ 311\overline{1} \\ 402 \\ 411\overline{1} \\ 203$	3 2 7 2	2,23 2,049 1,805 1,569	2,25 2,21 2,045 2,044 2,055 1,805 1,570	403 411 313 113 004 020 800

Таблица 1

Условия съемки: Cr-излучение, камера РКГ, D = 86 мм, диаметр образца 0,3 мм.

Таблица 2

Кристаллографические характеристики некоторых ванадиевых минералов и искусственных соединений ванадия

Название	Формула	а	Ь	с	β	прост. гр	z
Хьюэттит Na-Ca-разность метахьюэттита	$ \begin{vmatrix} CaV_6O_{16} \cdot 9H_2O \\ NaCa_{0,5}V_6O_{16} \cdot 2H_2O \end{vmatrix} $	12,56 12,26	$3,61 \\ 3,58$	11,47 8,11	97° 92,5°	$\begin{array}{ c c } P2_1/m \\ P2_1/m \end{array}$	1 1
Na-Ca-разность метахьюэттита дегидратированная	NaCa _{0,5} V ₆ O ₁₆	12,28	3,60	8,00	96,3°	P2 ₁ /m	1
Искусс твенный окисел Li-ванадиевая бронза	V_2O_5 $Li_{1+x}V_3O_8$	11,51 12,03	3,53 3,60	4,37 6,63	90° 107°50	Pmmn P2 ₁ /m	$\frac{2}{2}$
Корвусит	$V_{2}^{4+}V_{12}^{5+}O_{34} \cdot nH_{2}O$	11,60	3,65	3			
Алаит Щербинаит *	$\begin{array}{c} V_2O_5\cdot H_2O\\ V_2O_5\end{array}$	12,65 11,53	3,61 3,57	8,30 4,35	93°	$P2_1/m, P2_1$	3
• Борисенко, 1970.							

туру минерала. В табл. 1 помещены результаты расчета дебаеграммы, в которой малоугловое отражение было достаточно острым. Все линии имеют малую интенсивность и число их невелико. Сопоставление с эталонными порошкограммами известных ванадиевых минералов, а также искусственных соединений подходящего состава не привело к идентификации алаита с одной из них. Вместе с тем из литературы известно (Bachmann, 1962; Quraschi, 1961), что при изменении степени гидратации в минералах — хьюэттите и метахьюэттите, содержащих воду (табл. 2), образуется несколько полиморфных разновидностей не только с разными параметрами *с*, но и с разными значениями углов моноклинности, а в нашем распоряжении не было дебаеграмм всех промежуточных членов.

Изучение минерала в электронном микроскопе показало, что его частицы, диспергированные ультразвуком, укладываются на подложку гранью, которая условно обозначена (001), и имеют так же, как и их макроаналоги, форму вытянутых в направлении оси иголок или волокон. В образце присутствует также ничтожное количество примеси со своей дифракционной картиной. Точечные электронограммы от микромонокристаллов алаита (рис. 3) богаты отражениями. Рефлексы располагаются по ромбическому мотиву.

Погашенными оказываются отражения типа ОКО с K=2n+1, что соответствует плоским группам симметрии pgm или pg1. Измерения привели к следующим параметрам элементарной ячейки: a = 12,7 Å и b=3,61 Å. Зная два периода в плоскости (001) и приняв самую сильную линию порошкограммы с d=8,22 Å за отражение от плоскости (001) (ее принадлежность к типу (001) подтверждается текстурированностью), удалось проиндицировать все линии дебаеграммы (табл. 1) в моноклинной ячейке с параметрами a = 12,66, b = 3,61, c = 8,30 Å, $\beta = 98^\circ$. Из ранее указанных погасаний в плоскости hk0 возможными оказываются пространственные группы Р2,/т или Р2, В табл. 2 сведены кристаллографические характеристики и формулы тех соединений ваналия. которые имеют сходные с алаитом размеры элементарных ячеек. Для большинства из них структуры известны. Как правило, пятивалентный атом ванадия в них имеет в своем окружении пять кислородов, располагающихся по углам искаженной дипирамиды. Исключение составляет ванадиевая бронза (Wadsley, 1957), в которой большая часть атомов

Рис. 3. Точечная электронограмма алаита

Рис. 4. Проекции структур: *a*-хьюэттита вдоль *b*, *б*-ванадиевой бронзы вдоль *b*

ванадия имеет октаэдрическую шестерную координацию, а меньшая дипирамидальную пятерную. В минералах — хьюэттите и метахьюэттите (Bachmann, 1962) дипирамиды через общие ребра связываются в одинарные с составом (VO₃)_∞ и двойные (V₂O₅)_∞, изолированные друг от друга цепочки (рис. 4, *a*), вытянутые вдоль оси *b*, совпадающей, как и для всех помещенных в таблицу 2 соединений, с направлением вытянутости иголок. Катион Са и вода располагаются между слоями, составленными описанными цепочками. В искусственном окисле V₂O₅ двойные цепочки из дипирамид связаны друг с другом в слои с разделением общих вершин (Bachmann, 1961). В уже упомянутой ванадиевой бронзе слои образуются в результате конденсации одинарных цепочек из дипирамид и сдвоенных — из октаэдров (рис. 4, *б*).

Для проведения структурного исследования алаита с помощью метода микродифракции необходимо было иметь надежный набор интенсивностей типа *hk*0. При изготовлении препарата для изучения под электронным микроскопом методом суспензии микрочастицы ложатся на подложку хорошо развитыми гранями, в случае алаита это грань

Рис. 5. Точечная электронограмма алаита после поворота препарата

(001). Для таких частиц с моноклинной решеткой пучок электроно. перпендикулярный подложке, не совпадает с кристаллографической осью, если только плоскость спайности не перпендикулярна грани. Фиксируемые на фотопластинке интенсивности в таком случае искажаются и не соответствуют истинным. Для получения истинного сечения *hk*0 обратной решетки была использована гониометрическая головка, вмонтированная в держатель столика микроскопа. На рис. 5 приведен микродифракционный снимок от кристалла алаита, повернутого на угол 8° относительно оси волокна. Всего было зафиксировано и измерено 46 независимых отражений (измерения производились путем съемки с кратными экспозициями и с использованием марок почернения). При получении интенсивностей использовалось усреднение интенсивностей симметричных рефлексов. Поправки на мозаичность кристалла (Вайнштейн, 1956) не вводились.

Проекция Патерсона содержала максимумы, в основном расположенные на уровнях V=0 и V=0,5. Попытки задать координаты атомов известных структур хьюэттита и ванадиевой бронзы не привели к успеху. Из анализа проекции Патерсона можно было сделать вывод, что в элементарной ячейке алаита присутствуют три независимых атома ванадия. Задание их координат привело к R=53,2%. Построение проекции потенциала не только обнаружило сдвиг в координатах заданных атомов, но и появление кислородных пиков. Учет их координат позволил добиться резкого улучшения согласия с экспериментальными интенсивностями.

В настоящее время структура не расшифрована полностью, однако несомненно присутствие цепочек двух типов: одинарной цепочки из связанных по ребрам пятивершинников ванадия, аналогичных ранее обсуждавшимся в хьюэттите, а также сдвоенной цепочки, характер связей в которой остался невыясненным. Вода располагается, вероятно, между описанными слоями.

Проведенные исследования подтвердили, что алаит является самостоятельным минеральным видом. Использование методов ИК-спектроскопии и рентгено-структурного анализа позволили отнести его к окислам пятивалентного ванадия, содержащим воду.

ЛИТЕРАТУРА

- Борисенко Л. Ф., Серафимова Е. К., Казакова М. Е., Шумяцкая Н. Г. Первая находка кристаллической V₂O₅ в продуктах вулканических извержений Камчатки.— ДАН СССР, **193**, № 3, **1970**.
- Вайнштейн Б. К. Структурная электронография. Изд-во АН СССР. 1956. Минералы. т. 2, вып. 2. Изд-во «Наука», 1965.
- Ненадкевич К. А. Алаит и туранит два новых ванадиевых минерала.— Изв. АН СПб., № 3, 1909.
- Платонов А. Н. Оптическая спектроскопия ванадия в природных минералах. И. Спектры оптического поглощения ванадатов со сложными радикалами.— Сб. «Конституция и свойства минералов», вып. 6, 1972.
- Платонов А. Н., Таращан А. Н. Оптическая спектроскопия ванадия в природных минералах. III. Спектры поглощения комплексов V⁴⁺ и V³⁺— Сб. «Кон-

ституция и свойства минералов», вып. 7, 1973.

- Bachmann H. Y., Ahmed F. R., Barnes W. H. The crystal structure of vanadium pentoxide.—Zeitschr., t. Krist., 115, 1961.
- pentoxide.—Zeitschr., t. Krist., 115, 1961. Bachmann H. Y., Barnes W. H. The crystal structure of a sodium-calcium variety of metahewettite. Canadium Mineral, 7, p. 2, 1962.
- Bachmann H. Y. Kristallchemische Beziehungen zwischen natürlichen Faser — Polyvanadaten (Hewettiten) und Vanadiumbronzan.— Beiträge zur Mineralogie und Petrographie. 8, 1962.
- Quraschi M. M. The polymorphism and hydration cherecteristics of hewettite and metahewettite.— Canadian miner, 6, p. 5, 1961.
- Wadsley A. D. Crystal chemistry of nonstoichiometric pentavalent vanadium oxides: crystal structure of Li_{1+x}V₂O₈.— Acta crystall., 10, 1957.