АКАДЕМИЯ НАУК СССР

Вып. 24

Труды минералогического музея им. А. Е. Ферсмана

1975

Ответственный редактор д-р геол.-мин. наук Г. П. Барсанов

Р. Д. КУЛИЧИХИНА, А. М. ГУБАНОВ

КОБАЛЬТИН И ГЕРСДОРФИТ ИЗ МЕСТОРОЖДЕНИЙ ЧОРУХ-ДАЙРОНСКОГО РУДНОГО ПОЛЯ (СЕВЕРНЫЙ ТАДЖИКИСТАН)

В Чорух-Дайронском рудном поле известны скарноворудные проявления халькопирит-молибденит-шеелитовым (Чорух — Дайрон, Хамрабат), шеелит-халькопирит-магнетитовым, молибденит-шеелитовым (Шурале), халькопирит-молибденит-магнетитовым (Южный Янгикан) и сфалерит-галенит-магнетитовым (Янгикан) оруденением. Геологоструктурные особенности и вещественный состав месторождений подробно рассмотрены в работах Н. А. Смольянинова, Д. Д. Мотина, А. К. Полякова, И. Х. Хамрабаева, А. В. Королева, П. А. Шехтмана, Л. К. Яхонтовой, Б. В. Кристального и многих других исследователей.

Скарноворедкометальные месторождения характеризуются сложным, многокомпонентным составом руд. Главными минералами в них являются шеелит, молибденит, халькопирит, магнетит, из второстепенных примесей часто встречаются пирит, пирротин, галенит, сфалерит, борнит и марказит. При детальных минераграфических исследованиях руд нами впервые для скарноворедкометальных месторождений района встречены сложные сульфиды кобальта и никеля. Эти минералы ассоциируют в рудных зонах с галенитом, сфалеритом, халькопиритом, борнитом, пиритом, марказитом, гематитом, мушкетовитом, блеклой рудой, виттихенитом, самородным золотом, образование которых происходило после наложенных на скарны шеелитовых, магнетитовых, молибденитовых и пирротин-халькопиритовых руд (Нечелюстов и др., 1969, Зленко и др., 1970, 1971 и др.).

Сульфиды кобальта и никеля встречаются в виде редких мелких (тысячные — первые сотые доли мм) выделений, с трудом различимых под микроскопом. Изучение таких образований обычными методами микроскопического анализа оказалось практически невозможным, поэтому была применена методика определения химического состава минералов в аншлифах на микроанализаторе IXA-3A. Для проанализированных на зонде образцов проводилось рентгенометрическое изучение, определялись оптические характеристики и микротвердость. В результате проведенных исследований установлена принадлежность сложных сульфидов кобальта и никеля к конечным и промежуточным членам ряда кобальтин—герсдорфит: кобальтину, герсдорфиту и кобальтистому герсдорфиту. За исключением кобальтина, ранее отмечавшегося (Вольфсон, 1951) при описании Янгиканского сфалерит-геленит-магнетитового месторождения (рис. 1), находки этих минералов являются оригинальными в районе.

Рис. 1. Кобальтин (белое) из Янгиканского месторождения. Отраж. свет, увел. 250

Рис. 2. Зональное строение кристалла

1 — кобальтин, 2 — кобальтистый герсдорфиг, 3 — пирит. Месторождение Южный Янгикан. Отраж. свет, увел. 250 (с диафрагмой)

Кобальтин в редкометальных месторождениях встречен в виде очень редких выделений в массивных магнетитовых рудах с метасоматической вкрапленностью пирита, марказита, галенита, сфалерита, халькопирита и кобальтистого герсдорфита (Южный Янгикан). Минерал образует изометричные или неправильной формы зерна, приуроченные к центральным частям (зонам) кристаллов кобальтистого герсдорфита.

Химический состав кобальтина (табл. 1) близок к теоретическому, но отличается от него присутствием небольших количеств железа (3,7%) и никеля (2,3%). Никель, возможно, является типоморфным 24

Химический состав и микротвердость сложных сульфидов кобальта и никеля

			Состав, всс. %							Микротвердость, кг/л:м ²	
Минерал	Месторождения	11омер образцов	Со	Ni	Fe	Λs	Sb	S	сумма	предел колебаний	среднее из 3—5 измерений
Кобальтин	Южный Яшги- кан	242	$29,6^{1}$	2,3	3,7 (0.0662)	40 (0. 5339)	Не обн.	24,3	99,9	922—1053 ⁴⁾	1000
Кобальтистый герс- дорфит	То же	242a	(0, 0022) 14 (0, 2375)	16 (0,2725)	5,7 (0,1020)	39,6 (0,5285)	»	25 (0,7797)	100,2	756—861	808
Герс дорфит	Чорух-Дайрон	1060	4,7 (0,0797)	24,1 (0,4105)	10 (0,1790)	38,4 (0,5125)	»	20,4 (0,6363)	97,6	667—729	696
Г ерсдорфит	То же	745	3,8 (0,0645)	28 (0,4770)	-	= 42 (0,5605)	»	25 (0,7797)	98,8	609- 765	668
Герсдор фит	»	879	2,7 (0,0458)	31 (0,5281)	-	43 (0,5739)	»	23 (0,7174)	99,7	609—712	655
Кобальтин	Янгикан	Кб-1	32,15 ³⁾ (0,5454)	Не обн.	2,08 (0,0372)	46,30 (0,6179)	-	19,30 (0,6019)	99,9	948—1085	1028

Формулы:

Кобальтин, обр. 242 (Co_{0,83} Fe_{0,11} Ni_{0,06})_{1,00} As_{0,88} S_{1,24} Герсдорфит, обр. 745 (Ni_{0,88} Co_{0,12})_{1,00} As_{1,03} S_{1,44}

Кобальтистый герсдорфит, обр. 242a (Ni_{0,45} Co_{0,38} Fe_{0,17})1,00 As_{0,88} S_{1,27} Герсдорфит, обр. 879(Ni_{0,92} Co_{0,08})1,00 As_{1,00} S_{1,25}

Герсдорфит, обр. 1060 (Ni_{0,61} Fc_{0.26} Co_{0,13})_{1,00} As_{0,77} S_{0,95} Кобальтин, обр. Кб-I (Co_{0,93} Fe_{0,07})₁₀₀ As_{1,06} S_{1,03}

1. Анализы образцов 242, 242а, 1060, 745, 879 выполнены на микроанализаторе IXA — ЗА в ВИМС' е. За счет погрешностей измерений на зонде во многих минералах по сравнению с теоретическими составами отмечаются заметные отклонения в содержаниях серы и мышьяка.

2. Атомные количества.

3. Химический анализ, аналитик А. А. Дубинина (ИМГРЭ). Образец для исследований получен от Б. В. Мамонтова.

4. Измерсния микротвердости сделаны С. И. Лебедевой (ИМГРЭ) на приборе ПМТ-3 при нагрузках 70-100 грамм.

π,

признаком минерала, характерным для скарноворедкометальных месторождений района и не отмечающимся в кобальтине из скарновых рудопроявлений с другим, полиметаллическим типом оруденения (табл. 1).

В отраженном свете кобальтин нежно-кремовый, с розоватым оттенком; изотропный. Характеризующий его спектр отражения близок к эталонной кривой дисперсии показателей отражения чистого кобальтина, но отличается от нее несколько более низким уровнем (рис. 2).

Следует отметить, что кривые дисперсии показателей отражения кобальтина в литературе отсутствуют, имеющиеся сведения по герсдорфиту относятся к образцам неопределенного состава. Нами в качестве эталонных использованы полученные Т. Н. Чвилевой (ИМГРЭ) кривые дисперсии показателей отражения химически проанализированных кобальтина из Янгиканского месторождения, не содержащего никеля (табл. 1), и герсдорфита из Пышмы с небольшими примесями кобальта (1,76%) и железа (2,07%).

В кривых дисперсии показателей отражения минералов наряду с некоторыми общими чертами в видимой области спектра обнаруживаются и заметные различия. Так, по общему уровню величины отражения эталонные кобальтин и герсдорфит близки и характеризуются умеренновысокими значениями R (45-55%). Кривая дисперсии R кобальтина принадлежит к аномальному типу (только в коротковолновой части спектра намечается точка перегиба и кривая приобретает тенденцию к переходу к нормальному типу). В отличие от кобальтина, кривая дисперсии R герсдорфита имеет сложную структуру: левая, более крутая ветвь принадлежит к нормальному типу, от точки перегиба ($\lambda =$ =590 нм) спектральный профиль переходит в короткую аномальную ветвь. В связи с различными в характерах кривых дисперсии R находятся и цветовые характеристики минералов в отраженном свете: кобальтин имеет четко выраженный нежно-розовый цвет, а герсдорфит практически бесцветный (белый со слабым, едва различимым лиловатым оттенком).

Из рассматриваемых сложных сульфидов кобальта и никеля у кобальтина наблюдаются наиболее высокий относительный рельеф в аншлифах и микротвердость (табл. 1).

Кобальтистый герсдорфит установлен в одних образцах с кобальтином. Он встречается в виде кристаллов изометричной формы, которые имеют зональное строение с хорошо различающимися под микроскопом (по яркости, цвету, твердости) двумя зонами: центральная представлена кобальтином, а окружающая ее внешняя зона — собственно кобальтистым герсдорфитом (рис. 3). Во внешней зоне при более тонких исследованиях на микрозонде также выявляется зональность в распределении кобальта и никеля (рис. 4).

В кристаллах кобальтистого герсдорфита под микроскопом обнаруживается спайность в трех направлениях и редкие треугольники выкрашивания, как у галенита.

Химический состав минерала, полученный на микрозонде в нескольких сближенных точках, характеризуется высокими содержаниями кобальта и никеля, но с небольшим преобладанием последнего элемента (табл. 1). Минерал аналогичного состава (без детальной его расшифровки) отмечался в Чимбастауском кобальто-никелевом месторождении в Казахской ССР («Минералы», 1960). Кобальтистый герсдорфит близок также к установленному Н. Н. Шишкиным (1958) «джулукулиту» промежуточному члену ряда кобальтин — герсдорфит, но в отличие от него содержит больше никеля, при отношении в формуле Ni : Co>1. Необходимо отметить, что применяемый нами термин «кобальтистый герсдорфит» в приложении к минералу из Южно-Янгиканского месторождения в значительной мере условен, так как минерал неоднороден по своему составу, и в нем, как уже отмечалось выше, при сканировании

1 — эталонная кривая кобальтина из Янгикана (хим. анализ в табл. 1, обр. Кб-1); 2 — эталонная кривая герсдорфита из Пышмы; 3 — никельсодержащий кобальтин, обр. 242; 4 — кобальтистый герсдорфит, обр. 242а; 5, 6 — кобальтсодержащий герсдорфит, обр. 1060 и 879

Рис. 4. Профили распределения кобальта и никеля при сканировании зонального кристалла кобальтистого герсдорфита (автоматическая запись на микроанализаторе JXA-3A)

1 — кобальтин, 2 — кобальтистый герсдорфит

на микроанализаторе выделяются отдельные зоны с переменными соотношениями никеля и кобальта (рис. 4). К сожалению, из-за чрезвычайно малых размеров указанных зон, не различимых при микроскопических наблюдениях, нами не были получены для каждой из зон в отдельности количественные характеристики химического состава и других свойств.

Кобальтистый герсдорфит в отраженном свете белый, по сравнению с пиритом темнее, с голубоватым оттенком, в сравнении с галенитом несколько светлее, изотропен. Кривая дисперсии показателей отражения при $\lambda = 470-660$ нм находится в «вилке» между эталонными кобальтином и герсдорфитом (рис. 3). В коротковолновой части видимого спектра она близка к исследованному никельсодержащему кобальтину, но

6*

затем с увеличением длины волны света в значительной степени выполаживается. Правая ветвь кривой на 1,5—3% опущена ниже в сравнении с аналогичным участком кривой дисперсии показателей отражения кобальтина (обр. 242).

Для кобальтистого герсдорфита наблюдается более низкая твердость, чем у кобальтина, что отчетливо устанавливается по относительному рельефу в аншлифах и измеренной микротвердости (табл. 1).

Герсдорфит распространен в месторождениях Чорух — Дайрон, Южный Янгикан, Шурале и встречается в виде одиночных неправильных или изометричных зерен и кристаллов, иногда с футлярообразными формами. Так же, как у кобальтистой разновидности, проявляется спайность в трех направлениях и треугольники выкрашивания. Герсдорфит приурочен к сульфидосодержащим рудам, в которых наблюдается в срастаниях с галенитом, сфалеритом, халькопиритом, борнитом и блеклой рудой, нередко выполняющими в минерале очень тонкие трещинки катаклаза.

Характерной особенностью химического состава герсдорфита является присутствие в нем кобальта в количестве 2,7—4,7% (табл. 1).

Дебаеграммы минерала и рассчитанные по ним параметры элементарной ячейки сходны с аналогичными характеристиками кобальтсодержащего (2,93%) герсдорфита из Бутрахтинского медного месторождения в Хакассии (табл. 2). Межплоскостные расстояния и параметры элементарной ячейки герсдорфита уменьшаются с увеличением в нем кобальта.

Номер линий		06	ip. 879		Обр. 1060	Обр. 549/58		
	hkl	I	$d_{\mathbf{a}}/n$	I	d _a /n	I	d_{α}/n	
1	200	6	2,83	5	2.81	5	2.824	
2	210	10	2,53	10	2,52	10	2,529	
3	211	7	2.31	8	2.29	10	2,302	
4	220	3	2,00	2	1,985	5	2,006	
5	310			2	1,789			
6	311	7	1,710	7	1,698	10	1.704	
7	222	1	1,638	1	1,627	1	1,634	
8	320	2	1,573	2	1.558	6	1,567	
9	321	3	1,515	3	1,505	6	1.511	
10	420			1	1,262	1	1.266	
11	421	2	1,238	2	1.230	3	1.238	
12	332					3	1.204	
13	511,333	3	1,092	2	1.085	6	1.090	
14	520,432	2	1,052	2	1.047	3	1.055	
15	521	2	1,036	2	1,030	2	1.036	
16	440	2	1,002	2	0,9962	5	1.002	
17	611,532				í í	6	0.9220	
18	533	_				5	0.8666	
19	630,542					6	0.8482	
20	631					6	0,8364	
а _р (в Å)		5,67	± 0.02	5.6	4 ± 0.02	$5,67\pm0.01$		

Таблица 2

Межплоскостные расстояния кобальтсодержащего герсдорфита

Условия съемки образцов 879 и 1060: камера РКД, D = 57,3 мм, $\lambda -$ Fe. Аналитик Н. М. Черницова (ИМГРЭ). Образец 549/58 — герсдорфит (2,93% Со) из Бутрахтинского месторождения, по Н. Н. Шишкину, 1961; условия съемки: камера РКД, D = 57,3 мм, $\lambda -$ Си, Ni — фильтр.

ь отраженном свете герсдорфит похож на кобальтистую разновидность и имеет сходные с нею пологие спектры отражения слабо выраженного аномального типа (рис. 3).

В отличие от других сложных сульфидов кобальта и никеля, обнаруженных нами, кобальтсодержащий герсдорфит характеризуется наименьшей микротвердостью (табл. 1).

В серии изученных минералов ряда кобальтин — герсдорфит в зави симости от соотношений кобальта и никеля устанавливаются закономерные изменения микротвердости, возрастающей с увеличением содержаний кобальта, и характера спектров отражения.

Крайние члены ряда имеют заметные различия по уровню и типу кривых дисперсии показателей отражения. Появление небольших примесей никеля снижает показатели отражения кобальтина (рис. 3, обр. 242), но отчетливый аномальный характер кривой дисперсии *R* при этом сохраняется. С увеличением содержаний никеля (рис. 3, обр. 242а, 1060, 879) кривые дисперсии показателей отражения выполаживаются и в большей части видимой области занимают промежуточное положение между эталонными спектрами отражения кобальтина и герсдорфита. Отмеченные особенности в изменениях оптических характеристик и микротвердости могут быть использованы при диагностике сложных сульфидов ряда кобальтин — герсдорфит в рудах скарновых месторождений района.

Авторы выражают глубокую благодарность за обсуждение работы сотрудникам ИМГРЭ: научному руководителю Б. Ф. Зленко и Т. Н. Чвилевой.

ЛИТЕРАТУРА

- Вольфсон Ф. И. Структура и генезис свинцово-цинковых месторождений Юго-Западного Карамазара. Изд-во АН СССР, 1951.
- Зленко Б. Ф., Губанов А. М., Мамонтов Б. В., Коган Р. И. Взаимоотношения метасоматических изменений вмещающих пород и оруденения на скарновом халькопирит-молибденит-магнетитовом месторождении в Средней Азии.— В кн. «Проблемы метасоматизма». «Недра», 1970.
- Зленко Б. Ф., Губанов А. М. Изменение пород, вмещающих молибденит-шеелитовое оруденение, на месторождении Чорух — Дайрон (Северный Таджикистан). — В кн. «Минералогия и геохи-

мия вольфрамовых месторождений. Изд. ЛГУ, 1971.

- Нечелюстов Н. В., Зленко Б. Ф., Губанов А. М., Есимов Б. О. Некоторые закономерности распределения концентраций висмута в скарноворудных месторождениях Карамазара.— В кн. «Форма нахождения и особенности распределения висмута в гидротермальных месторождениях». «Наука», 1969.
- Шишкин Н. Н. Джулукулит новый кобальтовый минерал.— Докл. АН СССР, 1958, 121, № 4.
- 1958, 121, № 4. Шишкин Н. Н. Герсдорфит из Бутрахтинского месторождения (Хакассия).— Зап. Всесоюзн. минералог. об-ва, ч. 90, вып. 5, 1961.