Acta Cryst. (1950). 3, 1

The Structure of Vivianite and Symplesite

BY H. MORI AND T. ITO

Mineralogical Institute, University of Tokyo, Japan

(Received 26 May 1949 and in revised form 30 June 1949)

The crystal structure of vivianite, $Fe_3(PO_4)_2.8H_2O$, and symplesite, $Fe_3(AsO_4).8H_2O$, has been determined using Weissenberg and oscillation photographs (Mo $K\alpha$, $\lambda = 0.710$ A.). The unit cells have dimensions:

Vivianite a = 10.08, b = 13.43, c = 4.70 A., $\beta = 104^{\circ}$ 30', Symplesite a = 10.25, b = 13.48, c = 4.71 A., $\beta = 103^{\circ}$ 50',

with two molecules in each cell. The space group is $C_2^{3h}-C2/m$. The structure is built up of single and double octahedral groups of oxygen and H_2O around Fe. The double group, $Fe_2O_6(H_2O)_4$, is linked to two neighbouring similar groups and four other single groups, $FeO_2(H_2O)_4$, by P (or As) which is in the middle of a tetrahedron of oxygen, forming a complex band extended parallel to (010). Parallel bands are held to each other by H_2O molecules which, lying on both sides of the band, are again grouped together tetrahedrally. The electrostatic balance of the component atoms and atom groups are almost ideally maintained.

Introduction

Vivianite and symplesite belong to the group of minerals whose chemical composition is expressed by the formula $A_3(XO_4)_2$. 8H₂O, where A is Mg, Zn, Ni, Co or Fe and X is P or As. They are all similar crystallographically, but isomorphous replacement is rather rare. We present in the following the result of a study undertaken to find the structural type of this welldefined mineral family.

Experimental

The vivianite and symplesite crystals used were respectively from Ashio and Kiura, Japan. They were both slender prisms about 5 mm. in length. A number of Weissenberg-Buerger as well as oscillation photographs were taken (Mo $K\alpha$, $\lambda = 0.710$ A.). In view of strong absorption care was taken in estimating intensities of reflexions, comparing visually only adjacent spots in the photographs.

Unit cell and space group

The dimensions of the unit cells measured in the photographs are as follows:

	a	b	с	β
Vivianite	10·08A.	13·43A.	4·70A.	104° 30′
Symplesite	10·25A.	13·48A.	4·71A.	103° 50′

There are two molecules respectively of $Fe_3(PO_4)_2 \cdot 8H_2O$ and $Fe_3(AsO_4)_2 \cdot 8H_2O$ in the cell.

The space group C_2^3h-C2/m of vivianite has been determined by Barth (1937) and by Takané & Omori (1936 a, b). We have found the same group also for symplesite.

Analysis

The general trends of X-ray spectra of the two minerals are, except for minor differences, very similar and suggest that their structures may be based on the same general plan. We have observed, further, regularities of spectra which provided a clue to their structure, certain strong or weak reflexions occurring invariably in pairs. (3n k 0) reflexions (n=0,2,4,...) are strong when k=8m or 8m+2, and weak when k=8m+4 or 8m+6 (m=0,1,2,...); and (3n.k.0) reflexions (n=1, $(3, 5, \ldots)$ are strong when k = 8m + 3 or 8m + 5, and weak when k = 8m + 1 or 8m + 7 (m = 0, 1, 2, ...) (see Table 2). This would be roughly explained by placing one of the heavy atoms, say A, at $\frac{1}{3}$, 0, z and the other, say B, at $0, \frac{3}{2}, 0$. Similar regularities found regarding (*hk*1) and $(hk\overline{I})$ reflexions further narrow down the range of the z parameter of A atom to around $\frac{1}{3}$.

Out of six Fe in the cell we may accordingly place two at the centres of symmetry, 0, 0, 0 and $\frac{1}{2}$, $\frac{1}{2}$, 0, and the remaining four Fe and four P (or As) either in the A or B positions. A preliminary calculation indicated

	~	7• ·			•		
'l'abla I	10 000	innatoo	Δt	atoma	0.00	0010000	nonta
Lame I	1 ///-////	L'UNINE A	()((LIATINA)	1.11.	SHULIN	PARA INT
	0000000		~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		gnop	000000

(These co-ordinates are applicable also to the structure of vivianite to a first approximation.)

Atom	equiv. points	x/a	y/b	z/c
Fer	2	0	0	0
Fen	4	0	0.390	0
As (or P)	4	0.312	0	0.410
Or`´	4	0.155	0	0.350
0 _{rr}	4	0.400	0	0.750
0,,,	8	0.365	0.100	0.245
(H _o O) _r	8	0.085	0.110	0.820
$(H_2O)_{11}$	8	0.400	0.220	0.750
				I

Table 2. Intensity of X-ray spectra of vivianite and symplesite

Intensities were estimated visually in Weissenberg-Buerger photographs (Mo $K\alpha$ radiation; camera radius 34·1 mm.; coupling 1 mm. to 1°). $Q = (4 \sin^2 \theta) / \lambda^2$, where θ is Bragg angle and $\lambda = 0.710$ A. Q values are given only for symplectie.

(a) Symplesite and vivianite. Rotation axis [001]; zero level

	Symplesite		Vivianite		
hkl	$Q imes 10^4$	I _{obs.}	F _{calc.}		F _{calc.}
060	1981	m	56		-3
080	3522	vvs	230	vs	177
0.10.0	5503	vs	218	vs	174
0.12.0	7924	mw	76	w	37
0,14,0	10786	w	45	—	9
0,16,0	14088	ms	171	w	38
0.18.0	17830	ms	129	m	98
0,20,0	22012	w	82	w	54
150	1477	—	21	m	47
170	2797		20	mw	41
1 1 1 0	4008	m	70	mw	- 50
1,11,0	0709		- 10	412.02	95
1,15,0	12483		24	w	40
960	0904		01	<i>an</i>	41
200	2004	<i>mw</i>	- 31	m	61
2.10.0	5925		30	110	60
2.12.0	8328	29211	- 47	11000	-21
2.14.0	11189	2711	- 65	10	-41
2,16,0	14491		- 18		4
330	1403	8	134	8	72
350	2284	8	153	8	98
370	3605	mw	78	vw	31
390	5366	w	53		12
3,11,0	7567	mw	77	w	40
3,13,0	10208	m	117	m	84
3.15.0	13290	w	87	w	55
400	1613	w	-47	w	-42
420	1833		23	w	27
440	2495		-36	vw	-32
460	3594	-	14	—	16
480	5135		30	vw	31
4,10,0	7116 9537		-5^{10}	_	-4
					40
510	2575	8	-117	m	68
530	3015		-4	m	44
570	3890 5917	mw	67	8	108
590	6077	w	-64	20	- 27
5.11.0	9179	2001	- 46	<i>w</i>	- 13
5.13.0	11820		30	917	61
5,15,0	14902	—	-3	<u> </u>	25
600	3629	8	110	8	72
620	3849	8	124	s	87
640	4509		42		6
660	5610	mw	73		39
680	7151	m	108	m	73
6,10,0	9132	mw	97	m	70
6,12,0	11553		61	w	35
6,14,0	14415	—	26		1
710	4994	—	- 7		-19
730	5435	m	101	ms	88
750	6315	ms	146	8	124
770	7636		46	w	35
790	9397		5		-5
7.11.0	11598		25		15
7 15 0	14249	w	88	mw	80
111010	1/341	vw	V/	w	99

Table 2(a) (cont.)

¥

,

,

,

,

			Symplesite			Vivianit	;e
hkl		$Q \times 10^4$	I _{obs} ,	F _{calc.}			F _{calc}
800		6451		29	m		70
820		6671		- 33			7
840		7332	mw	- 90	w		- 49
860		8432	w	- 75	vw		-36
880		9973		-1	vw		32
8,12,0		11994		8	w		42
0/12/0		13110	vw	-41			-15
910		8220		2			-18
930		8660	w	77	w		58
950		9541	w	85	vv		65
970		10861	vw	49			31
9.11.0		12022		- 12			- 30
9,13,0		17465	vw	70	vw		55
10.0.0		10080	m	124	ms		103
10,2,0		10300	vw	58	vw		34
10.4.0		11080	_	22	—		1
10.8.0		14322	117	20 87			68
10,10,0		16303	$\tilde{v}w$	86	w		68
11.1.0		12252	vw	-61	—		-27
11,3,0		12092	_	- 23			10
11.7.0		14893	_		_		6
11,9,0		16654	w	-87	vw		-57
11.11.0		18855		- 32			-1
10.0.0				-			
12,0,0		14515	w	58	w		52
14/4/0		14755	vw	57	_		91
13.1.0		17090		43	_		18
13,3,0		17531	w	79	w		54
		(b) Sym	plesite. Rotati	on axis [001]; 1s	t level		
hkl	$Q \times 10^4$	La	- F	hkl	$Q \times 10^4$	La	F
061	9450	- 008.	- calc,	491	6033	- obs.	- calc
081	4000	1118	-129	4.10.1	8014		44 36
0,10,1	5981		12	4,12,1	10435		-22
0,12,1	8402	m	- 58				
0.14.1	11264	m	-81	531	4018	8	141
0,10,1	14566		- 27	551	4899	8	146
151	2060	m	59	591	7980	110	92 60
171	3380	vw	24	5,11,1	10182	mw	80
191	5141	vw	-28	5,13,1	12823	mw	120
1,11,1	7342		-15				
1,13,1	9984	w	39	661	6788	vw	- 32
1,10,1	12000		40	081	8329	w	34
241	1972	m	- 73	T 51	1850	vs	172
261	3072	w	-5	171	3170	8	89
281	4613	8	155	T91	4931	w	32
2,10,1	6594	ms	153	1,11,1	7132	8	.83
2,12,1	9016	vw	63 1	1,13,1	9774	8	121
2.16.1	15179	vw m	70	1,19,1	12850	mw	80
2,18,1	18921	m	95	$\overline{2}61$	2652	w	60
				281	4193	mw	96
331	2196	—	3	2,10,1	6174	w	79
351	3077	w	28	2,12,1	8096	_	8
371 301	4398 6150		12	251	1566		o
3,11,1	8360		28	351	2447	_	40
3,13,1	11001		16	$\overline{\overline{3}71}$	3768	w	- 85
3,15,1	14083	—	18	391	5529	ms	-130
443	0001		~~	$\frac{3}{2}$,11,1	7730		-42
441	3391	mw	- 86	3,13,1	10371		24
401	4492		- 99				

THE STRUCTURE OF VIVIANITE AND SYMPLESITE

hkl	$Q imes 10^4$	$I_{\rm obs.}$	$F_{\rm calc.}$	hkl	$Q imes 10^4$	$I_{\rm obs.}$	$F_{\rm calc.}$
401	1671	118	162	661	5459	m	-121
421	1891	8	85	681	7000		-19
4 1	2551	ms	80	6.10.1	8981		-4
461	3652	10	49	6.12.1	11402	1711	- 55
4 81	5193	ms	102	011212			
4.10.1	7174	m.	100	711	4738	11)	26
4.12.1	9595	110	44	731	5179	m.	$\overline{72}$
	0000	0.0		751	6059	m	102
511	2528	11)	-34	771	7380	9717	59
531	2968	ms	117	791	9141		8
551	3849	8	164	7.11.1	11342		13
571	5170		47		11012		10
591	6930		-25	801	6090	m	126
5111	9032	—	27	821	6310	10	108
5.13.1	11773	11)	98	841	6971		8
0,10,1				861	8071		27
601	3478	_	-11	881	9612	11)	111
621	3698	1711	- 39	8.10.1	11593	1711	103
641	4358	8	-141	0.10.1		0.00	100
		(c) Sym	plesite. Rotatio	on axis [102]; 2	ero level		
hkl	$Q \times 10^4$	I obs.	$F_{\rm calc.}$	hkl	$Q imes 10^4$	$I_{\rm obs.}$	$F_{ m calc}$
$\overline{2}41$	1553	8	134	603	6054	mw	68
$\overline{2}61$	2654	w	75	623	6274		2
$\overline{2}81$	4195	m	90	643	6935		38
2,10,1	6176	. —	76	663	8035	<u> </u>	19
				683	9576	vw	41
$\overline{402}$	2692	8	100	6,10,3	11557		28
$\overline{4}22$	2912		24				
$\overline{4}42$	3573	8	78	804	10768	m	120
$\overline{4}62$	4673	m	78	824	10998	mw	76
$\overline{4}82$	6214		18	844	11649	_	32
4,10,2	8195		32	864	12749		40
4.12.2	10616	412/2	45	884	14200	217	01

Table 2(b) (cont.)

Table 3. Interatomic distances in symplesite

Atom	Neighbo	our	Distance (A.)	Atom	Neighbour	Distance (A.)
F_{Θ_I}	${\mathop{\rm O_I}\limits_{ m (H_2O)}}$	(2) (4)	2·00 2·01	OIII	${\mathop{\mathrm{O}_{\mathrm{III}}}\limits_{(\mathrm{H}_{2}\mathrm{O})_{\mathrm{I}}}}$	2·69 2·73
$F_{\Theta_{II}}$	$\begin{array}{c} \mathbf{O}_{\mathrm{II}} \\ \mathbf{O}_{\mathrm{III}} \\ (\mathbf{H_2O})_{\mathrm{II}} \end{array}$	(2) (2) (2)	2·02 2·01 2·02		$(H_2O)_{II}$ $(H_2O)_{II}$ $(H_2O)_{II}$ $(H_2O)_{II}$	2·89 2·92 2·84 3·53
As	$\begin{array}{c} O_{I} \\ O_{II} \\ O_{III} \end{array}$	(2)	$1.60 \\ 1.63 \\ 1.69$	$(\mathbf{H_2O})_{\mathbf{I}}$	$\begin{array}{c} (\mathrm{H}_{2}\mathrm{O})_{\mathrm{II}} \\ (\mathrm{H}_{2}\mathrm{O})_{\mathrm{I}} \\ (\mathrm{H}_{2}\mathrm{O})_{\mathrm{I}} \end{array}$	2·96 3·09
Р	OI		1.57	H_2O tetrahedr	on:	
(vivianite)	O _{II} O _{III}	(2)	$\begin{array}{c} 1 \cdot 62 \\ 1 \cdot 68 \end{array}$	$(\mathrm{H_{2}O})_{\mathrm{I}}$	$({\rm H_{2}O})_{\rm I'}$ $({\rm H_{2}O})_{\rm II}$	2·71 3·00
OI	O_{II}	(0)	2.75		$(\mathbf{H}_{2}\mathbf{O})_{\mathbf{II}'}$	3.04
	$(\mathbf{H}_{2}\mathbf{O})_{\mathbf{I}}$	(2) (2)	2.69 2.84	$(H_2O)_{I'}$	$(H_2O)_{II}$ $(H_2O)_{II'}$	$3 \cdot 04$ $3 \cdot 00$
	$(\mathrm{H_{2}O})_{\mathrm{I}}$ $(\mathrm{H_{2}O})_{\mathrm{I}}$	(2) (2)	2.82 2.89	$(\mathrm{H_2O})_\mathrm{II}$	$(\mathrm{H_{2}O})_{\mathrm{II'}}$	2.72
OII	O _{III}	$\binom{(2)}{(2)}$	2.69 2.75			
	\tilde{O}_{III}	(2)	2.78			
	011	(2)	2.79			
	$(\mathbf{H}_{2}\mathbf{O})_{\mathbf{II}}$	(2)	2.96			
	$(H_2O)_I$	(2)	3.64			

that Fe in the B and P (or As) in the A positions furnish a more adequate explanation of experimental data than conversely Fe in the A and P (or As) in the Bpositions.

The final positions of atoms (Table 1) have been determined by trial and error, guided as usual by the possibilities that P (or As) may be surrounded tetrahedrally by four oxygen and Fe octahedrally by six oxygen (or H_2O). We have obtained the parameters using the intensity data of symplesite and tested them later on those of vivianite. The agreement between experiment and calculation, as shown in Table 2, is satisfactory, accounting simultaneously for the differences as well as similarities that exist between the observed spectra of vivianite and symplesite. The effect of replacement of As by P appears to be not so much on the parameters of atoms as on the lattice dimensions.

regular tetrahedron formed of four oxygen. The linkage repeats indefinitely, making up a complex band extended parallel with (010) (Fig. 2). A band is joined to a similar band only by the weak H_2O-H_2O bonds. It is

Fig. 1. The structure of vivianite and symplesite, projected along the c direction on to (001). Numbers give in decimal fractions of c the height of atoms from (001). The accompanying projection on (010) shows only half the b length of the cell.

Fig. 2. The structure of vivianite and symplesite shown as linked polyhedra of O or O and H_2O around P (or As) or Fe, as viewed from the *b* direction. Two $O-H_2O$ octahedra are joined together to form a double group with the composition $Fe_2O_6(H_2O)_4$, while the single octahedral group has the composition FeO₂(H₂O)₄.

Description of the structure

The bulk of the structure (Fig. 1) is built up, as expected, of the octahedral groups of oxygen and H_2O around Fe. Of these, two identical ones are grouped together holding an O-O edge in common. Such a double group, $Fe_2O_6(H_2O)_4$, is linked to two neighbouring similar groups and to four other single octahedral groups, $FeO_2(H_2O)_4$, by P (or As) which is at the centre of a

Fig. 3. The electrostatic balance around the tetrahedra formed of H_2O , which link the single octahedral group to the double octahedral group. Note that two H_2O molecules of a tetrahedron are equally but oppositely polarized to the other two.

to be noted that four H_2O are combined to form a nearly regular tetrahedron. Two constituent H_2O of the tetrahedron each form part of the single octahedral group and the other two each of the double octahedral group. The balance of valency is such that the former two H_2O are to match each a residual bond of $\frac{1}{8}$ and the latter each a bond of $-\frac{1}{8}$, making them equally but oppositely polarized (Fig. 3). The grouping in tetrahedra of H_2O molecules in the structure seems to be well stabilized. The extremely perfect (010) cleavage of vivianite and symplesite may presumably take place across these H_2O-H_2O bonds. Interatomic distances calculated are given in Table 3.

References

BARTH, T. F. W. (1937). Amer. Min. 22, 325.

- TAKANÉ, K. & OMORI, K. (1936*a*). J. Jap. Ass. Mineralog. 16, 235.
- TAKANÉ, K. & OMORI, K. (1936b). J. Jap. Ass. Mineralog. 16, 263.

Acta Cryst. (1950). 3, 6

The Hydrogen Bond in Crystals. VIII. The Isotope Effect in KH₂AsO₄

BY D. H. W. DICKSON AND A. R. UBBELOHDE

The Queen's University, Belfast, Northern Ireland

(Received 25 May 1949 and in revised form 18 July 1949)

The axial lengths of tetragonal KH_2AsO_4 are found to be $a = 7 \cdot 609 \pm 0 \cdot 001$, $c = 7 \cdot 148 \pm 0 \cdot 001$ kX. at 18° C. X-ray measurements on KH_2AsO_4 show that the isotope effect when deuterium is substituted for hydrogen involves a lattice expansion in the direction of the short hydrogen bonds. On the basis of certain assumptions, the isotope effect (D for H) involves an expansion of $0 \cdot 0080$ kX. in KH_2AsO_4 which compares with $0 \cdot 0097$ kX. in KH_2PO_4 and $0 \cdot 0100$ kX. in $(\text{NH}_4)\text{H}_2\text{PO}_4$.

Various evidence indicates that the protons are less strongly bonded to the AsO₄ complex than to the PO₄ complex. Experiments are described which show (a) that, unlike KD₂PO₄, KD₂AsO₄ shows no evidence of a tendency to crystallize spontaneously in a monoclinic form; and (b) that, when heated, KH₂AsO₄ loses water fairly readily to form KAsO₃. When KAsO₃ is dissolved in water it undergoes the reaction KAsO₃ + H₂O \rightarrow KH₂AsO₄ practically instantaneously. On the other hand, KH₂PO₄ is much more resistant to heat. When the KPO₃ is dissolved in water, the PO'₃ is at first largely polymerized and hydrates only with difficulty.

The free energies of transfer and heats of transfer of the proton in the reactions

$$2H_2PO'_4 \rightleftharpoons H_3PO_4 + HPO''_4$$
, $\Delta G = 6.5$, $\Delta H = 3.8$ Cal. mole⁻¹,

 $2H_2AsO'_4 \rightleftharpoons H_3AsO_4 + HAsO''_4$, $\Delta G = 5.2$, $\Delta H = 2.2$ Cal. mole⁻¹,

are briefly discussed in relation to the theory of the hydrogen bond in these crystals.

Introduction

From the isomorphism and from recent determinations of crystal structure (Helmholz & Levine, 1942), it may be inferred that KH_2AsO_4 contains short hydrogen bonds similar to those in KH_2PO_4 and in a number of other crystals. KH₂AsO₄ also shows a continuous transition to the ferro-electric state, analogous to that in KH₂PO₄, but at 95.6°K. instead of at 122°K. (Stephenson & Zettlemoyer, 1944). It was of particular interest to study the isotope effect in KH₂AsO₄ in view of these similarities, and also in view of the fact that KD₂PO₄ crystallizes spontaneously in a structure distinct from KH_2PO_4 (Ubbelohde, 1939b). In the course of experiments on the isotope effect, significant differences between $H_2AsO'_4$ and $H_2PO'_4$ were observed, which were further investigated because of their bearing on the behaviour of hydrogen bonds in crystals.

So far as the evidence goes, the hydrogen bonds in crystals of $\rm KH_2AsO_4$ appear to be somewhat weaker than in $\rm KH_2PO_4$. The origin of this difference may be tentatively related with the ionic sizes of the $\rm H_2AsO_4'$ and $\rm H_2PO_4'$ complexes.

Experimental procedure

Preparation of KH₂AsO₄

 $\rm KH_2AsO_4$ was prepared by neutralizing ignited $\rm K_2CO_3$ ('Analar' grade) with the equivalent amount of $\rm As_2O_5$ in hot distilled water according to the equation

$$K_2CO_3 + As_2O_5 + 2H_2O \rightarrow 2KH_2AsO_4 + CO_2$$
 (i)

Owing to impurities of silicate in the As_2O_5 the solution had to be filtered; the amounts of As_2O_5 corresponding to the weight of insoluble residue were then added in a second neutralization. The KH_2AsO_4 was recrystallized three times. In the final sample, analysis of the arsenic content by precipitation as $Mg(NH_4)AsO_4.6H_2O$ and ignition to $Mg_2As_2O_7$ gave 41.48 % as the mean of four observations (theory 41.61 %). When the crystals were dehydrated at 400° C. according to the reaction

$$KH_2AsO_4 \rightarrow KAsO_3 + H_2O_1$$
 (ii)

the yield of potassium metarsenate was 99.7 % of theory, which gave a further check on the purity.

Preparation of KD₂AsO₄

As is detailed below, special tests showed that the reaction $AsO'_3 + D_2O \rightarrow D_2AsO'_4$ (iii)