The Structure of Vivianite and Symplesite

By H. Mori and T. Ito
Mineralogical Institute, University of Tokyo, Japan

(Received 26 May 1949 and in revised form 30 June 1949)
The crystal structure of vivianite, $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$, and symplesite, $\mathrm{Fe}_{3}\left(\mathrm{AsO}_{4}\right) \cdot 8 \mathrm{H}_{2} \mathrm{O}$, has been determined using Weissenberg and oscillation photographs (Mo $K \alpha, \lambda=0.710 \mathrm{~A}$.). The unit cells have dimensions:

$$
\begin{aligned}
& \text { Vivianite } a=10.08, b=13 \cdot 43, c=4.70 \mathrm{~A} ., \beta=104^{\circ} 30^{\prime} \text {, } \\
& \text { Symplesite } a=10.25, b=13 \cdot 48, c=4.71 \mathrm{~A} ., \beta=103^{\circ} 50^{\prime} \text {, }
\end{aligned}
$$

with two molecules in each cell. The space group is $C_{2}^{3} h-C 2 / m$. The structure is built up of single and double octahedral groups of oxygen and $\mathrm{H}_{2} \mathrm{O}$ around Fe . The double group, $\mathrm{Fe}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$, is linked to two neighbouring similar groups and four other single groups, $\mathrm{FeO}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$, by P (or As) which is in the middle of a tetrahedron of oxygen, forming a complex band extended parallel to (010). Parallel bands are held to each other by $\mathrm{H}_{2} \mathrm{O}$ molecules which, lying on both sides of the band, are again grouped together tetrahedrally. The electrostatic balance of the component atoms and atom groups are almost ideally maintained.

Introduction

Vivianite and symplesite belong to the group of minerals whose chemical composition is expressed by the formula $A_{3}\left(\mathrm{XO}_{4}\right)_{2} .8 \mathrm{H}_{2} \mathrm{O}$, where A is $\mathrm{Mg}, \mathrm{Zn}, \mathrm{Ni}$, Co or Fe and X is P or As. They are all similar crystallographically, but isomorphous replacement is rather rare. We present in the following the result of a study undertaken to find the structural type of this welldefined mineral family.

Experimental

The vivianite and symplesite crystals used were respectively from Ashio and Kiura, Japan. They were both slender prisms about 5 mm . in length. A number of Weissenberg-Buerger as well as oscillation photographs were taken (Mo $K \alpha, \lambda=0.710 \mathrm{~A}$.). In view of strong absorption care was taken in estimating intensities of reflexions, comparing visually only adjacent spots in the photographs.

Unit cell and space group

The dimensions of the unit cells measured in the photographs are as follows:

	a	b	c	β
Vivianite	10.08 A.	$13 \cdot 43 \mathrm{~A}$.	$4 \cdot 70 \mathrm{~A}$.	$104^{\circ} 30^{\prime}$
Symplesite	10.25 A.	13.48 A.	4.71 A.	$103^{\circ} 50^{\prime}$

There are two molecules respectively of $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2} .8 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Fe}_{3}\left(\mathrm{AsO}_{4}\right)_{2} .8 \mathrm{H}_{2} \mathrm{O}$ in the cell.

The space group $C_{2}^{3} h-C 2 / m$ of vivianite has been determined by Barth (1937) and by Takané \& Omori (1936 a, b). We have found the same group also for symplesite.

Analysis

The general trends of X-ray spectra of the two minerals are, except for minor differences, very similar and suggest that their structures may be based on the same general plan. We have observed, further, regularities of spectra which provided a clue to their structure, certain strong or weak reflexions occurring invariably in pairs. ($3 n, k, 0$) reflexions ($n=0,2,4, \ldots$) are strong when $k=8 m$ or $8 m+2$, and weak when $k=8 m+4$ or $8 m+6(m=0,1,2, \ldots)$; and ($3 n, k, 0$) reflexions ($n=1$, $3,5, \ldots$) are strong when $k=8 m+3$ or $8 m+5$, and weak when $k=8 m+1$ or $8 m+7(m=0,1,2, \ldots)$ (see Table 2). This would be roughly explained by placing one of the heavy atoms, say A, at $\frac{1}{3}, 0, z$ and the other, say B, at $0, \frac{3}{8}, 0$. Similar regularities found regarding ($h k 1$) and ($h k \overline{\mathrm{I}}$) reflexions further narrow down the range of the z parameter of A atom to around $\frac{1}{3}$.

Out of six Fe in the cell we may accordingly place two at the centres of symmetry, $0,0,0$ and $\frac{1}{2}, \frac{1}{2}, 0$, and the remaining four Fe and four P (or As) either in the A or B positions. A preliminary calculation indicated

Table 1. Co-ordinates of atoms in symplesite

Table 2. Intensity of X-ray spectra of vivianite and symplesite
Intensities were estimated visually in Weissenberg-Buerger photographs (Mo $K \alpha$ radiation; camera radius $34 \cdot 1 \mathrm{~mm}$.; coupling 1 mm . to $\left.1^{\circ}\right) . Q=\left(4 \sin ^{2} \theta\right) / \lambda^{2}$, where θ is Bragg angle and $\lambda=0.710 \mathrm{~A} . Q$ values are given only for symplesite.

	Symplesite			Vivianite	
hkl	$\longdiv { Q \times 1 0 ^ { 4 } }$	$I_{\text {obs }}$	$F_{\text {calce }}$	$I_{\text {obs }}$	$F_{\text {calc. }}$
060	1981	m	56	-	-3
080	3522	vvs	230	vs	177
0,10,0	5503	$v s$	218	vs	174
0,12,0	7924	$m w$	76	w	37
0,14,0	10786	w	45	-	9
0,16.0	14088	$m s$	71	w	38
0.18 .0	17830	ms	129	m	98
0,20,0	22012	w	82	w	54
150	1477	-	21	m	47
170	2797	-	26	$m w$	47
190	4558	m	-75	$m w$	-56
1,11,0	6759	-	-10	-	6
1.13,0	9401	-	24	$v w$	25
1,15,0	12483	-	26	w	40
260	2384	$m w$	-81	w	-41
280	3925		27	m	61
2,10,0	5906	-	30	$m w$	60
2,12,0	8328	2w	-47	vw	-21
2,14,0	11189	vw	-65	w	-41
2,16,0	14491	-	-18	-	4
330	1403	s	134	s	72
350	2284	s	153	s	98
370	3605	$m w$	78	$v w$	31
390	5366	w	53	-	12
3,11,0	7567	$m w$	77	w	40
3,13,0	10208	m	117	m	84
3,15.0	13290	w	87	w	55
400	1613	w	-47	w	-42
420	1833	-	23	w	27
440	2495	-	-36	$v w$	-32
460	3594	-	14	-	16
480	5135	-	30	$v w$	31
4.10,0	7116	-	16	-	19
4,12,0	9537	-	-5	-	-4
510	2575	s	-117	m	-68
530	3015	-	-4	m	44
550	3896	$m w$	64	s	108
570	5217	w	-67	$v w$	-27
590	6977	w	-64	w	-34
5.11.0	9179	$v w$	-46	-	-13
5.13.0	11820	-	30	w	61
5.15.0	14902	-	-3		25
600	3629	s	110	s	72
620	3849	s	124	s	87
640	4509	-	42	-	6
660	5610	$m w$	73	-	39
680	7151	m	108	m	73
6.10.0	9132	$m w$	97	m	70
6.12,0	11553	-	61	w	35
6.14,0	14415	-	26		1
710	4994	-	-7	-	-19
730	5435	m	101	$m s$	88
750	6315	$m s$	146		124
770	7636	-	46	w	35
790	9397	-	5	-	-5
7,11,0	11598	-	25	-	15
7,13.0	14249	w	88	$m w$	80
7,15.0	17321	$v w$	67	w	58

Table 2 (a) (cont.)

	Symplesite			$\underbrace{\text { Vivianite }}$	
hkl	$Q \times 10^{4}$	$I_{\text {obs }}$	$F_{\text {calce }}$	$I_{\text {obs. }}$	$F_{\text {cala }}$.
800	6451	-	29	m	70
820	6671	-	-33	-	7
${ }_{880}$	7332	$m w$	-90	${ }^{w}$	-49
860	${ }^{8432}$		-75	$v w$	-36
880 8.10 .0	9973	-	-1	$v w$	32
$8,10,0$ 8,120	11954 13110	${ }^{2} w$	8 -47	$\stackrel{w}{-}$	42
910	8220		2		
930	8660	w	77	w	
950	9541	${ }_{w}$	85	${ }_{\text {wo }}$	${ }_{65}$
970	10861	vw	49	-	31
990	12622	-	-12		-30
9,11.0	14823	vo	34	-	17
9,13,0	17465	vw	70	vw	55
10,0,0	10080	m	124	ms	103
10,2,0	10300	vw	58	vw	34
10,4,0	11680	-	22		1
10,6.0	12781	-	28	-	8
10,8.0	14322	${ }^{w}$	87	$m w$	68
10,10,0	16303	vo	86	w	68
11,1,0	12252	vw	-61	-	-27
11,3.0	12692	-	-23		10
${ }_{111.50}^{11.0}$	13573 14893	二	-25 -37	-	7 -6
11,9,0	16654	\bar{w}	${ }_{-87}$	$\overline{v w}$	-57
11,11,0	18855	-	-32	-	-1
12,0,0	14515	${ }^{\text {w }}$	58	w	52
12,2,0	14735	$v w$	37	-	31
$\begin{aligned} & 13,1,0 \\ & 13,3,0 \end{aligned}$	17090 17531	\bar{w}	43 79	\bar{w}	18 54

(b) Symplesite. Rotation axis [001]; 1st level

hkl	$Q \times 10^{4}$	$I_{\text {obs }}$.	$F_{\text {calc, }}$	hkl	$Q \times 10^{4}$	$I_{\text {obs }}$.	$F_{\text {calc }}$.
061	2459	$m s$	-129	481	6033	-	42
081	4000	w	7	4,10,1	8014	-	36
0.10.1	5981	-	12	4.12.1	10435	-	-22
0,12.1	8402	m	-58				
0.14 .1	11264	m	-81	531	4018	s	141
0.16.1	14566	-	-27	551	4899	s	146
				571	6220	m	92
151	2060	m	59	591	7980	w	60
171	3380	$v w$	24	5.11.1	10182	$m w$	80
191	5141	$v w$	-28	5.13.1	12823	$m w$	120
1,11.1	7342	-	-15				
1,13.1	9984	w	39	661	6788	$v w$	-32
1,15.1	13066	-	43	681	8329	w	34
241	1972	m	-73	151	1850	vs	172
261	3072	w	-5	171	3170	s	89
281	4613	s	155	191	4931	w	32
2,10.1	6594	$m s$	153	T.11,1	7132	s	83
2.12.1	9016	vw	63	1,13,1	9774	s	121
2.14.1	11877	$v w$	1	T,15,1	12856	$m w$	80
2.16.1	15179	m	70				
2.18.1	18921	m	95	$\overline{2} 61$	2652	w	60
				281	4193	$m w$	96
331	2196	-	3	$\overline{2} .10 .1$	6174	w	79
351	3077	w	28	$\overline{2}, 12.1$	8096	-	8
371	4398	-	12				
391	6159	-	29	$\overline{3} 31$	1566	-	8
3.11.1	8360	-	28	$\overline{3} 51$	2447	-	40
3,13.1	11001	-	16	$\overline{3} 71$	3768	\boldsymbol{w}	-85
3.15.1	14083	-	18	$\overline{3} 91$	5529	$m s$	-130
				3,11.1	7730	-	-42
441	3391	$m w$	-86	$\overline{3}, 13.1$	10371	-	24
461	4492	-	-55				

Table 2 (b) (cont.)

hkl	$Q \times 10^{4}$	$I_{\text {obs }}$	$\boldsymbol{H}_{\text {calc. }}$	$h k l$	$Q \times 10^{4}$	$I_{\text {obs }}$.	$F_{\text {calc. }}$
$\overline{4} 01$	1671	$v s$	162	$\overline{6} 61$	5459	m	-121
421	1891	s	85	681	7000	-	-19
441	2551	$m s$	80	6,10,1	8981	-	-4
$\overline{4} 61$	3652	w	49	$\overline{6} .12 .1$	11402	$v w$	-55
481	5193	$m s$	102				
$\overline{4} .10 .1$	7174	m	100	711	4738	w	26
4,12.1	9595	$v w$	44	731	5179	m	72
				751	6059	m	102
511	2528	w	-34	771	7380	vw	59
531	2968	$m s$	117	791	9141	-	8
551	3849	s	164	$\overline{7} 11.1$	11342	-	13
$\overline{5} 71$	5170	-	47				
591	6930	-	-25	$\overline{8} 01$	6090	m	126
5,11.1	9032	-	27	$\overline{8} 21$	6310	w	108
$\overline{5} .13 .1$	11773	w	98	841	6971	-	8
				$\overline{8} 61$	8071	-	27
$\overline{6} 01$	3478	-	-11	881	9612	w	111
621	3698	$v w$	-39	$\overline{8} .10 .1$	11593	$v w$	103
641	4358	s	-141				
(c) Symplesite. Rotation axis [102]; zero level							
$h k l$	$Q \times 10^{4}$	$I_{\text {oba }}$.	$F_{\text {calc }}$.	$h k l$	$Q \times 10^{4}$	$I_{\text {obs }}$	$F_{\text {calc }}$.
$\overline{2} 41$	1553	s	134	603	6054	$m w$	68
$\overline{2} 61$	2654	w	75	623	6274	-	2
$\overline{2} 81$	4195	m	90	643	6935	-	38
2.10,1	6176	-	76	663	8035	-	19
				$\overline{6} 83$	9576	$v w$	41
402	2692	s	100	$\overline{6.10 .3}$	11557	-	28
422	2912	-	24				
442	3573	s	78	$\overline{8} 04$	10768	m	120
462	4673	m	78	824	10998	$m w$	76
482	6214	-	18	$\overline{8} 44$	11649	-	32
4.10,2	8195	-	32	$\overline{8} 64$	12749	-	40
4,12,2	10616	$v w$	45	$\overline{884}$	14290	w	91

Table 3. Interatomic distances in symplesite

Atom	Neighbour		Distance (A.)	Atom	Neighbour	Distance (A.)
Fe_{I}	$\underset{\left(\mathrm{H}_{2} \mathrm{O}\right)}{\mathrm{H}_{2}}$	(2)	$\begin{aligned} & 2 \cdot 00 \\ & 2.01 \end{aligned}$	$\mathrm{O}_{\text {III }}$	$\mathrm{O}_{\left(\mathrm{H}_{2} \mathrm{O}\right.} \mathrm{O}_{\text {r }}$	2.69 2.73
$\mathrm{Fe}_{\text {II }}$	$\mathrm{O}_{\text {II }}$	(2)	2.02		$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {II }}$	$2 \cdot 89$
	$\mathrm{O}_{\mathrm{III}}$	(2)	2.01		$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {II }}$	$2 \cdot 92$
	$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {Ir }}$	(2)	$2 \cdot 02$		$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {II }}$	$2 \cdot 84$
As	O_{I}		$1 \cdot 60$		$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {II }}$	$3 \cdot 53$
	$\stackrel{\text { O}}{\text { II }}^{\mathrm{O}_{\mathrm{IHI}}}$	(2)	1.63 1.69	$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {I }}$	$\begin{aligned} & \left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{I}} \\ & \left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{I}} \end{aligned}$	$\begin{aligned} & 2 \cdot 96 \\ & 3 \cdot 09 \end{aligned}$
P	O_{I}		1.57	$\mathrm{H}_{2} \mathrm{O}$ tetrahedron:		
	O_{II}		$1 \cdot 62$	$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {I }}$	$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {I }}$.	2.71
(vivianite)	$\mathrm{O}_{\mathrm{III}}$	(2)	1.68		$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {II }}$	$3 \cdot 00$
$\mathrm{O}_{\text {I }}$	O_{II}		2.75		$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{II}^{\prime}}$	$3 \cdot 04$
	$\mathrm{O}_{\text {III }}$	(2)	$2 \cdot 69$	$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{I}^{\prime}}$	$\begin{aligned} & \left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{II}} \\ & \left(\mathrm{H}_{0} \mathrm{O}\right)_{\mathrm{Tr}} \end{aligned}$	3.04
	$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {I }}$	(2)	$2 \cdot 84$			$3 \cdot 00$
	$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {r }}$	(2)	2.82 2.89	$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\text {II }}$	$\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{II}^{\prime}}$	$2 \cdot 72$
$\mathrm{O}_{\text {II }}$	$\begin{aligned} & \mathrm{O}_{\mathrm{III}} \\ & \mathrm{O}_{\mathrm{III}} \\ & \mathrm{O}_{\mathrm{III}} \\ & \mathrm{O}_{\mathrm{II}} \\ & \left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{III}} \\ & \left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{I}} \end{aligned}$	(2)	$2 \cdot 69$			
		(2)	2.75			
		(2)	2.78			
		(2)	2.79			
		(2)	$2 \cdot 96$			
		(2)	3.64			

that Fe in the B and P (or As) in the A positions furnish a more adequate explanation of experimental data than conversely Fe in the A and P (or As) in the B positions.

The final positions of atoms (Table l) have been determined by trial and error, guided as usual by the possibilities that \mathbf{P} (or As) may be surrounded tetra-
hedrally by four oxygen and Fe octahedrally by six oxygen (or $\mathrm{H}_{2} \mathrm{O}$). We have obtained the parameters using the intensity data of symplesite and tested them later on those of vivianite. The agreement between experiment and calculation, as shown in Table 2, is satisfactory, accounting simultaneously for the differences as well as similarities that exist between the
observed spectra of vivianite and symplesite. The effect of replacement of As by P appears to be not so much on the parameters of atoms as on the lattice dimensions.
regular tetrahedron formed of four oxygen. The linkage repeats indefinitely, making up a complex band extended parallel with (010) (Fig. 2). A band is joined to a similar band only by the weak $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$ bonds. It is

Fig. 1. The structure of vivianite and symplesite, projected along the c direction on to (001). Numbers give in decimal fractions of c the height of atoms from (001). The accompanying projection on (010) shows only half the b length of the cell.

Fig. 2. The structure of vivianite and symplesite shown as linked polyhedra of O or O and $\mathrm{H}_{2} \mathrm{O}$ around P (or As) or Fe , as viewed from the b direction. Two $\mathrm{O}-\mathrm{H}_{2} \mathrm{O}$ octahedra are joined together to form a double group with the composition $\mathrm{Fe}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$, while the single octahedral group has the composition $\mathrm{F}^{\mathrm{H}} \mathrm{O}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$.

Description of the structure

The bulk of the structure (Fig. 1) is built up, as expected, of the octahedral groups of oxygen and $\mathrm{H}_{2} \mathrm{O}$ around Fe . Of these, two identical ones are grouped together holding an $\mathrm{O}-\mathrm{O}$ edge in common. Such a double group, $\mathrm{Fe}_{2} \mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$, is linked to two neighbouring similar groups and to four other single octahedral groups, $\mathrm{FeO}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}$, by P (or As) which is at the centre of a

Fig. 3. The electrostatic balance around the tetrahedra formed of $\mathrm{H}_{2} \mathrm{O}$, which link the single octahedral group to the double octahedral group. Note that two $\mathrm{H}_{2} \mathrm{O}$ molecules of a tetrahedron are equally but oppositely polarized to the other two.
to be noted that four $\mathrm{H}_{2} \mathrm{O}$ are combined to form a nearly regular tetrahedron. Two constituent $\mathrm{H}_{2} \mathrm{O}$ of the tetrahedron each form part of the single octahedral group and the other two each of the double octahedral group. The balance of valency is such that the former two $\mathrm{H}_{2} \mathrm{O}$ are to match each a residual bond of $\frac{1}{8}$ and the latter each a bond of $-\frac{1}{8}$, making them equally but oppositely polarized (Fig. 3). The grouping in tetra-
hedra of $\mathrm{H}_{2} \mathrm{O}$ molecules in the structure seems to be well stabilized. The extremely perfect (010) cleavage of vivianite and symplesite may presumably take place across these $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$ bonds. Interatomic distances calculated are given in Table 3.

References

Barth, T. F. W. (1937). Amer. Min. 22, 325.
Takané, K. \& Omori, K. (1936a). J. Jap. Ass. Mineralog. 16, 235.
Takané, K. \& Omori, K. (1936b). J. Jap. Ass. Mineralog. 16, 263.

Acta Cryst. (1950). 3, 6

The Hydrogen Bond in Crystals. VIII. The Isotope Effect in $\mathbf{K H}_{2} \mathrm{AsO}_{4}$

By D. H. W. Dickson and A. R. Ubbelohde
The Queen's University, Belfast, Northern Ireland

(Received 25 May 1949 and in revised form 18 July 1949)

Abstract

The axial lengths of tetragonal $\mathrm{KH}_{2} \mathrm{AsO}_{4}$ are found to be $a=7 \cdot 609 \pm 0 \cdot 001, c=7 \cdot 148 \pm 0.001 \mathrm{kX}$. at $18^{\circ} \mathrm{C}$. X-ray measurements on $\mathrm{KH}_{2} \mathrm{AsO}_{4}$ show that the isotope effect when deuterium is substituted for hydrogen involves a lattice expansion in the direction of the short hydrogen bonds. On the basis of certain assumptions, the isotope effect (D for H) involves an expansion of 0.0080 kX . in $\mathrm{KH}_{2} \mathrm{AsO}_{4}$ which compares with 0.0097 kX . in $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and 0.0100 kX . in $\left(\mathrm{NH}_{4}\right) \mathrm{H}_{2} \mathrm{PO}_{4}$.

Various evidence indicates that the protons are less strongly bonded to the AsO_{4} complex than to the PO_{4} complex. Experiments are described which show (a) that, unlike $\mathrm{KD}_{2} \mathrm{PO}_{4}, \mathrm{KD}_{2} \mathrm{AsO}_{4}$ shows no evidence of a tendency to crystallize spontaneously in a monoclinic form; and (b) that, when heated, $\mathrm{KH}_{2} \mathrm{AsO}_{4}$ loses water fairly readily to form KAsO_{3}. When KAsO_{3} is dissolved in water it undergoes the reaction $\mathrm{KAsO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{KH}_{2} \mathrm{AsO}_{4}$ practically instantaneously. On the other hand, $\mathrm{KH}_{2} \mathrm{PO}_{4}$ is much more resistant to heat. When the KPO_{3} is dissolved in water, the PO_{3}^{\prime} is at first largely polymerized and hydrates only with difficulty.

The free energies of transfer and heats of transfer of the proton in the reactions

$$
\begin{gathered}
2 \mathrm{H}_{2} \mathrm{PO}_{4}^{\prime} \rightleftharpoons \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{HPO}_{4}^{\prime \prime}, \quad \Delta G=6 \cdot 5, \quad \Delta H=3 \cdot 8 \text { Cal. mole }{ }^{-1}, \\
2 \mathrm{H}_{2} \mathrm{AsO}_{4}^{\prime} \rightleftharpoons \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{HAsO}_{4}^{\prime \prime}, \quad \Delta G=5 \cdot 2, \quad \Delta H=2 \cdot 2 \mathrm{Cal} . \mathrm{mole}^{-1},
\end{gathered}
$$

are briefly discussed in relation to the theory of the hydrogen bond in these crystals.

Introduction

From the isomorphism and from recent determinations of crystal structure (Helmholz \& Levine, 1942), it may be inferred that $\mathrm{KH}_{2} \mathrm{AsO}_{4}$ contains short hydrogen bonds similar to those in $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and in a number of other crystals. $\mathrm{KH}_{2} \mathrm{AsO}_{4}$ also shows a continuous transition to the ferro-electric state, analogous to that in $\mathrm{KH}_{2} \mathrm{PO}_{4}$, but at $95 \cdot 6^{\circ} \mathrm{K}$. instead of at $122^{\circ} \mathrm{K}$. (Stephenson \& Zettlemoyer, 1944). It was of particular interest to study the isotope effect in $\mathrm{KH}_{2} \mathrm{AsO}_{4}$ in view of these similarities, and also in view of the fact that $\mathrm{KD}_{2} \mathrm{PO}_{4}$ crystallizes spontaneously in a structure distinct from $\mathrm{KH}_{2} \mathrm{PO}_{4}$ (Ubbelohde, 1939b). In the course of experiments on the isotope effect, significant differences between $\mathrm{H}_{2} \mathrm{AsO}_{4}^{\prime}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{\prime}$ were observed, which were further investigated because of their bearing on the behaviour of hydrogen bonds in crystals.

So far as the evidence goes, the hydrogen bonds in crystals of $\mathrm{KH}_{2} \mathrm{AsO}_{4}$ appear to be somewhat weaker than in $\mathrm{KH}_{2} \mathrm{PO}_{4}$. The origin of this difference may be tentatively related with the ionic sizes of the $\mathrm{H}_{2} \mathrm{AsO}_{4}^{\prime}$ and $\mathrm{H}_{2} \mathrm{PO}_{4}^{\prime}$ complexes.

Experimental procedure

Preparation of $\mathrm{KH}_{2} \mathrm{AsO}_{4}$
$\mathrm{KH}_{2} \mathrm{AsO}_{4}$ was prepared by neutralizing ignited $\mathrm{K}_{2} \mathrm{CO}_{3}$ ('Analar' grade) with the equivalent amount of $\mathrm{As}_{2} \mathrm{O}_{5}$ in hot distilled water according to the equation

$$
\begin{equation*}
\mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{As}_{2} \mathrm{O}_{5}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KH}_{2} \mathrm{AsO}_{4}+\mathrm{CO}_{2} \tag{i}
\end{equation*}
$$

Owing to impurities of silicate in the $\mathrm{As}_{2} \mathrm{O}_{5}$ the solution had to be filtered; the amounts of $\mathrm{As}_{2} \mathrm{O}_{5}$ corresponding to the weight of insoluble residue were then added in a second neutralization. The $\mathrm{KH}_{2} \mathrm{AsO}_{4}$ was recrystallized three times. In the final sample, analysis of the arsenic content by precipitation as $\mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{AsO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and ignition to $\mathrm{Mg}_{2} \mathrm{As}_{2} \mathrm{O}_{7}$ gave 41.48% as the mean of four observations (theory 41.61%). When the crystals were dehydrated at $400^{\circ} \mathrm{C}$. according to the reaction

$$
\begin{equation*}
\mathrm{KH}_{2} \mathrm{AsO}_{4} \rightarrow \mathrm{KAsO}_{3}+\mathrm{H}_{2} \mathrm{O} \tag{ii}
\end{equation*}
$$

the yield of potassium metarsenate was 99.7% of theory, which gave a further check on the purity.

Preparation of $\mathrm{KD}_{2} \mathrm{AsO}_{4}$

As is detailed below, special tests showed that the reaction

$$
\begin{equation*}
\mathrm{AsO}_{3}^{\prime}+\mathrm{D}_{2} \mathrm{O} \rightarrow \mathrm{D}_{2} \mathrm{AsO}_{4}^{\prime} \tag{iii}
\end{equation*}
$$

