надиевое оруденение карбонатно-настурановых жил. – В кн.: Месторождения урана: зональность и парагенезисы. М.: Атомиздат, 1973.

- Дымков Ю.М. Природа урановой смоляной руды. Вопросы генетической минералогии. М.: Атомиздат, 1973.
- 5. Минералы. Справочник, т. І.Изд-во АН СССР, 1965.
- 6. Синдеева Н.Д. Геохимия и минералогия се-

лена. – В кн.: Геохимия, минералогия и генетические типы месторождений редких элементов. М.: Наука, 1964, т. 1, 2.

- 7. Коваленкер В.А., Бойцов В.Е., Вяльсов Л.Н., Кудрявцева Г.Н., Басова Г.В. Новые данные по минералогии селенидов Моравии (ЧССР). – Изв. АН СССР, Сер. геол., 1976, № 5.
- Clark A., Sillitoe R.H. Cuprum galena solid solution. Zibillir mining district, Abacama. – Amer. Miner., 1961, vol. 56, N 11–12.

УДК 549.514.8: (543.226+542.422.8)

Г.А. ДЫМКОВА, П.В. ПРИБЫТКОВ, Н.Г. НАЗАРЕНКО, Ю.М. ДЫМКОВ, И.И. ШИЛЯКОВА, В.Д. КОЗЫРЬКОВ

ИССЛЕДОВАНИЕ ГЕТЕРОГЕННОСТИ НАСТУРАНОВ И ПРОДУКТОВ ИХ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ

Обширные материалы по минералогии и кристаллохимии природных окислов урананастурана и уранинита неоднократно обсуждались в печати; в последние годы – Е.С. Макаровым [1], В.А. Киркинским [2], Ю.М. Дымковым [3], Г.А. Сидоренко [4] и др. Тем не менее ряд важных представлений до сих пор надежно не обоснован. Так, все еще недостаточно доказательств существования в природе самостоятельной фазы U_4O_9 , хотя она и положена Г.Б. Наумовым [5] в основу термодинамических расчетов при построении модели гидротермального процесса уранового рудообразования. Установленная В.А. Киркинским [6] пропорциональность изменения (при прокаливании) параметра решетки окислов урана и содержания свинца в них, по-видимому, недостаточна для подтверждения "принудительного" изоморфизма Pb²⁺ → U⁴⁺. Вместе с тем зависимость размера кристаллической решетки от содержания свинца в настуранах, которая могла бы служить прямым подтверждением изоморфизма, по мнению В.М. Ершова и др. [7], отсутствует. Многие вопросы, в том числе и положение свинца в кристаллической решетке настурана и уранинита, пытаются решить путем прокаливания минералов. Надо сказать, что здесь также еще далеко не все ясно. Так, например, В.И. Жукова (цит. по [3]) сомневается в правильности отнесения появляющейся при прокаливании фазы с a₀ = 5,38 Å к окислу урана UO_{2,6}. Ею высказано предположение в том, что продукты прокаливания настуранов с $a_0 = 5,38$ Å принадлежат уранату кальция — CaU₂O₆. В этом плане проведена ревизия материалов.

Больщое значение для генетической и технологической минералогии окислов урана имеют сведения о гетерогенности настуранов. Расшифровка неоднородности сферолитов и сферокристаллических зерен настурана помогает восстановить онтогенические и парагенетические особенности первичных руд, в частности, установить скрытые признаки преобразования и изменения настурана¹. Данные о растворении отдельных фаз настурана и коффинита могут быть использованы для качественной оценки технологических свойств руд в отношении подземного выщелачивания и переработки [10].

В процессе минералого-технологических исследований урановых смолок были получены новые данные о гетерогенности (многофазности) настуранов, которые существенно дополняют ранее опубликованные [3, 11, 12] материалы.

В ранее проведенных работах исследовались выделения настурана из жил пятиметальной формации Рудных гор, из кальцит-настурановых и доломит-настурановых жил U-Pb-Zn-формации Судет и Богемского массива. В настоящей работе полученные данные дополнены результатами изучения образцов настурана из железоурановой (обр. 1204, 001, 430, 533, 370), уран-молибденовой (обр. 221, А-3) и пятиметальной формации

¹ Примеры можно найти в работах [8, 9].

(обр. 4262, 133, 147). Настураны из указанных формаций представляют серию существенно разновозрастных минералов, с параметрами кристаллической решетки a_0 от 5,37 до 5,489 Å и микротвердостью от 300 до 1100 кгс/мм².

Такой широкий диапазон колебаний свойств настурана позволяет более четко выявить некоторые неясные особенности его природы и генезиса.

Фазовый состав настуранов

Образцы настурана исследовались минераграфическими, рентгенографическими и химическими методами. Все настураны при детальном изучении оказались в той или иной мере гетерогенными, состоящими из двух и более фаз UQ_{2+x} , отличающихся значениями x, размерами элементарной ячейки и микротвердостью. Кроме того, во многих образцах настурана обнаружена небольшая примесь неизмененного коффинита. Многие фазы UO_{2+x} в настуранах представляют собой продукты распада или замещения коффинита.

При изучении полированных шлифов микротвердость определяли по известной схеме [13] на приборе ПМТ-3 методом вдавливания квадратной алмазной пирамиды в течение 10с при оптимальной нагрузке 100 г. Отражение настурана исследовано в области спектра 420—760 нм на трех приборах разными аналитиками: на двух приборах ПООС-1 (в ЦНИГРИ, эталон кремний, а в ИМГРЭ эталон СТФ-2) Дымковой Г.А., а также на экспериментальной установке ПИОР [14] в ИГЕМ (аналитик Вяльсов Л.Н.). Измерения дали сходные результаты.

Параметр кристаллической решетки основной фазы в образцах настуранов определялся рентгенографически, главным образом, в порошках. Для определения параметров решетки "второстепенных" фаз с полированной поверхности образца высверливались фазы с различными отражениями и микротвердостью. Дифрактограммы природных образцов настурана снимались на аппарате ДРОН-1,5, с использованием Си-излучения с Ni фильтром. Точность определения 0,001–0,005 Å в зависимости от диффузности линий.

Результаты измерения твердости, отражения и параметра кристаллической решетки настуранов приведены в табл. 1. В нее включены, помимо новых определений (табл. 2), ранее опубликованные [11, 15], но уточненные данные², а также материалы исследований образцов В.В. Казанцева [16] (обр. 20,21, 24 в табл. 1).

Общее содержание урана определялось объемным феррифосфатнонитратным методом [17], свинец — полярографически, щелочные металлы — методом пламенной фотометрии, двуокись углерода — весовым методом (табл. 2). Анализ проводился из отобранного под стереомикроскопом MEC-1 материала весом 300 мг.

Как известно, при рентгенографическом исследовании образцов настурана определяется лишь параметр главной фазы, обычно минимально окисленный³. Фазы, присутствующие в пробе в количестве менее, чем 10%, рентгенографически не всегда улавливаются без специальной для этого подготовки (высверливание с поверхности аншлифа непосредственно самих фаз). Химический состав дается суммарно для фаз, присутствующих в исследуемом образце настурана. В связи с этим рентгенографические и химические определения кислородного коэффициента О : U настурана в многофазовых образцах часто не соответствуют друг другу. При наличии в образцах неокисленного коффинита (обр. 4262, 6708 и др.) в химических анализах наблюдается занижение кислородного коэффициента.

Для ряда образцов настурана сделан расчет кислородного коэффициента (отношение O: U) с учетом поправки на двухвалентное железо, так как известно, что 1 мг Fe²⁺ вос-

² Полные анализы образцов (в табл. 1): 22, 23, 25, 27, 29 приведены в работе [15].

³ В графе 6 табл. 1 приводится отношение О: U, определяемое химически суммарно для всех фаз настурана в образце; здесь же в скобках приведено значение О: U с поправкой на содержание Fe³⁺. В графе 7 – взятое по графику зависимости $x = f(a_0)$ для каждой фазы настурана, определенной рентгенографически.

			Минаралара		Кислородны циент О:U	й коэффи-		Отраже-
№ п/п	Образец	Минералы ура- на, % (площадь)	микротвер- дость, H, кгс/мм ²	Параметр а ₀ , Å кристал. решетки	определен- ный хими- чески	рентге- ногра- фически	Содер- жание Рь, %	ние R, % для λ= 580 мм
1	2	з	4	5	6	7	8	9
	A 14	а карбонатно-наступ	AHOBPIX MAL	уран-сульфилн	ой и пятиметал	+	<u>н</u>	
1	1009	Настипан	412 200	5 275	2 63 (2 71)	2 74	1.06	
2	1008	Настуран Настуран I (10%)	412-300	5,575	2,03 (2,71)	2,74	1,00	-
2	4202	Hactypan I (10%)	650-600	5 375		2.74	-	12.2
		Изотропиз. коф-	420-350	_	2,26 (2,29)	_	2	5,2
3	11	Наступан I (60%)	760-620	5.40		2.54	-	12.6
5	11	Настуран II (30%)	500-460	_	2.56(2.59)		1.47	15,0
		Изотропиз. коф-	450-400	5,39		2,6	-	_
4	477	Настуран (50%)	750-650	5.405		2.55	_	
	477	Изотропиз. коф- финит (50%)	450-400	5,39	2,66 -	2,6	-	
5	3416	Настуран I (70%)	750-650	5,406		2,55	_	14.7
		Настуран II (30%)	650-600	_	2,32 (2,38)	_	5,73	13.8
6	10	Настуран I (70%)	750-600	5,41		2,48	-	14.7
		Гидронасту-	580-500	5,39	2,75 -	2,6	1,75	_
		ран (30%)	420-400	-		-	-	_
7	133	Настуран I (80%)	750-700	5,41		2,48	-	15,3
		Настуран II (10%)	680-500	-		-	-	14,9
		Настуран по коф- финиту (10%)	430	5,39	2,34 (2,37)	2,6	-	13,1
8	6708	Настуран I (70%)	800-720	5,41		2,48		13.6
		Настуран II (25%)	680-580	5,40		2,55	_	10.2
		Коффинит (5%)	300-250		2,30(2,32)	-	3,11	
9	4725	Настуран (60%)	820-730	5,410		2,5	_	11,6
		Настуран II (20%)	420	-		-	-	9,8
		Гидронастуран (15%)	-	-	2,37 (2,40)	-	4,78	-
		Коффинит (5%)	-	-		-	-	-
10	5	Настуран (50%)	750-700	5,42		2,40	-	10,6
		Настуран II по коффиниту (50%)	450-400	5,39		2,6	-	8,9
11	15	Настуран I (70%)	980-860	5,42		2,4	-	15,4
		Настуран II по	-	-	2,22 (2,27)	-	4,75	-
		коффиниту (20%)	-	-			-	12,6
		Коффинит	420-400	-		-		7,9
12	100	Настуран I (60%)	750-700	5,426		2,38	-	13,4
		Настуран П (30%) Настуран по коф-	420-400		2,35 (2,43)	2,6	_ 3,08	
13	147	финиту (10%) Настуран I трещин	. 1000900	5,425		2,38	-	-
		(30%) Настуран II монол (10%)	. 950–780	-	2,20 (2,22)	-	3,22	-
14	31	Настуран I (70%)	850-750	5,42		2,4	_	_
		Настуран II (30%)	700-600	5,405	2,31 (2,35)	2,53	3,0	14.3
15	9	Настуран I (90%)	900-800	5,429		2,37	-	14.3
		Настуран II (10%)		-	2,38 -	_	10,0	14.6
16	202	Настуран I (60%)	900-800	5,43		2,34	-	_
		Настуран II (40%)	550-400	5,40	2,43 -	2,55	4,0	_
17	233	Настуран I (90%)	1100-900	5,43		2,34	-	16,8
		Настуран II (10%)	800-700	5,42	2,26 (2,31)	2,4	2,71	-
18	25	Настуран I (90%)	1000 - 900	5.43		2.34	-	

Таблица 1 Физические и химические свойства настурана

10

Таблица 1 (окончание)

	1 1		·						
1	2	3	4	5		6	7	8	9
	А,Из	карбонатно-настур	ановых жил	уран-сульфидно	й и пят	иметалы	ной форма:	ции	<u> </u>
		Haamman II (200/)	800 700		2.20	(0.25)	A - F		
		настуран П(20%)	800-700	-	2,30	(2,35)		6,30	-
		настуран по коф- финиту (10%)	300220	5,39	- 1	-	2,60	-	-
19	32	Настуран I (70%)	850-800	5,44	- 1	-	2.28	-	-
		Настуран II (20%)	700-680	5,42	-	_	2.40	_	-
		Коффинит (10%)	420-350	_	2,35	L	_	9.49	_
		Б. Из рудных те	л месторожд	ений уран-моли	бденов	ой форм:	ации	- ,	
20		Настуран	382-330	5,395		-	2,57	_	(10-12)
		(главная фаза)		0,000					(10-12)
		Настуран (по	_	5.375	2.48	_	2,74	_	_
		коффиниту)		0,010	2,10				•
21		Настуран	603-548	5.39-5.38	2.37	-	2,65	-	(12-14)
22	105	Настуран	_	5.40-5.39	-,	_	2.55	_	(12 11)
	100	(главная фаза)		0,10 0,07	2.46			4.1	
		Наступан	_	5.44 (лиф.)	2.40	_	2.28	4,1	
23	105-130	Настуран	575	5 416	_		2 4 5		
	105 150	(тиавная фаза)	-	-	2 186	_	-	2.05	-
		(Главная фаза) Настипан	910	5.436	2,100		2 30	2,05	_
24		Haciypan	910 925	5,430	-	_	2,30	_	_
2.		(плариад фара)	870-825	3,42	- 40	_	2,40	-	-
		(Гланная фаза)			2,49	-	-	-	
25		Настуран	_	5,39-5,38	-	-	2,65	-	(13 - 17)
23	3-89	Настуран	789-730	5,42	-		2,40	-	- 1
		(главная фаза)			2,47	-	-	3,1	-
		Настуран	-	5,43	-	-	2,34	-	-
26	111	Настуран I (70%)	800-750	5,425	-	-	2,38	_	_
		Настуран II (20%)	700-650	5,40	-	-	2,54	_	_
		Коффинит (10%)	420-400	~	2,15	_	-	2.71	
27	14-18	Настуран (главная фаза)	945	5,43	-	_	2,34	-	-
		Настипан	840	5.42	-		2 40	2.14	
28	3	Hactypan I (60%)	850-750	5 / 25		-	2,40	3,14	-
20	3	Hacrypan I (00%)	720 650	5,455	-	_	2,34	-	-
		Hacrypan H (30%)	130-030	_	-	-	-	-	-
20	73	Коффинит (10%)	420-550	-	2,34	(2,36)	-	1,88	_
29	13	настуран	-	5,446	-	-	2,25	-	_
		(тлавная фаза)		5 42 5 40	0.000		0.00		
		Антраксолит	-	5,43-5,42	2,369	-	2,38	1,72	-
		Настуран	-	(диф.)	-	-		-	
30	221	Настуран (60%)	800-750	5,45	-	-	2,15	-	-
		Настуран II (15%)	700-650	-	-	-	-		-
		Коффинит (25%)	420-400	-	2,19	-	-	1,08	-
		В. Из прожилковь	іх руд место	рождения желез	о-рудн	ой форма	ации		
31	001	Настуран I (70%)	700-600	5,445	-	-	2,25		-
		Настуран II (20%)	600-550	5,48	-	-	-	_	_
		Уранинит (10%)			0.16	(2.10)			
		Коффинит	-	-	2,10	(2,19)	_	11,88	
32	430	Настуран (70%)	700-650	5,445	-	_	2.25	_	15.3
		Уранинит (20%)	700-650	-	2.29	(2.34)	-,	11 99	
		Коффинит (10%)	450-400	_		_	_		_
33	1204	Настран I (70%)	750-650	5.45	_	_	22		107
55	1204	Hacrypan I (70%)	600 550	5,45	2.20	(2 25)	2,2	12 70	17,1
		Kabdurum (10%)	000-330		2,29	(2,33)	_	13,79	-
24	270	Коффинит (10%)		- A7	2.20	_	2.1	-	1.5.1
34	370	пастуран (100%)	600-550	5,47	2,30	-	2,1	15,48	15,1
35	533	Настуран (100%)	555-533	5,489	2,21	-	-	14,42	15,8
36		Настуран	947-845	5,495	2,24	-	-	15,77	19,69
При	мечание.	Цифры в графах 6	и 8 относят	ся не к отдельнь	гм фаза	ам, ак п	робе в цело	M.	

Образец	147 (2)	15	4725	32	6708	3416	233	133	
Плотность	7,8	6,7	7,3	6,9	7,2	5,9	8,5	H/o	
UO,	17,03	17,10	29,09	28,04	26,43	30,56	20,23	26,01	+
UO ₂	64,26	56,35	47,01	51,76	59,35	52,34	54,55	48,20	
SiO ₂	1,78	2,54	2,82	2,21	3,18	1,04	2,13	3,99	
Fe ₂ O ₃	0,94	2,07	1,84	2,50	1,22	0,90	2,64	4,98	
Al ₂ O ₃	1,44	1,44	0,92	H/o	0,66	0,51	1,13	1,18	
ΣРЗЭ	0,11	0,32	0,1	H/o	H/o	0,08	1,91	0,95	
CaO	5,74	5,84	6,42	4,96	3,11	5,31	7,12	6,18	
MgO	0,16	0,81	0,28	0,28	0,16	0,36	0,41	- *	
PbO	3,48	5,13	6,16	10,25	3,46	6,17	3,01	3,58	
Na ₂ O	0,16	0,12	0,16	0,17	0,06	0,09	0,25	-	
K ₂ O	- '	0,05	0,63	-	0,02	H/o	0,19		
H20100-110°	0,08	0,06	0,58	0,044	0,59	0,11	0,20	0,38	
S	1,31	3,28	0,78	0,55	0,77	0,64	1,85	0,61	
CO ₂	2,58	3,70	4,80	0,80	1,05	1,39	6,10	2,11	
Сумма	99,07	98,81	100,69	101,76	101,06	99,5	101,72	98,17	

Таблица 2 Состав настуранов по данным химического анализа, в %

станавливает 2,12 мг U⁶⁺. В среднем завышение суммарного кислородного коэффициента для настуранов (табл. 1) колеблется в пределах 0,03-0,08.

Выявление связей между физическими свойствами и химическим составом настурана представляет определенный практический интерес, поскольку такие его свойства, как микротвердость, отражение, размер ребра элементарной ячейки, а также кислородный коэффициент и содержание свинца являются основными типоморфными признаками настурана и служат основой для выявления его гетерогенности.

Изменение микротвердости и отражения в различных частях одного и того же сферолита настурана свидетельствует о проявлении в нем процессов окисления или восстановления.

При исследовании в настуранах зависимости между микротвердостью и параметром кристаллической решетки выявилось, что наименьшей микротвердостью (360–420 кгс/мм²) обладают псевдоморфозы настурана ($a_0 = 5,37-5,39$ Å) по кристаллам коффинита. Далее по мере увеличения параметра решетки у настуранов наблюдается увеличение их микротвердости. Повышение микротвердости в соответствии с возрастанием параметра решетки происходит лишь до определенной величины (рис. 1). Наивысшее значение микротвердости (1000–1100 кгс/мм²) характерно для настуранов с параметром $a_0 = 5,43$ Å. Предполагается, что такое высокое значение микротвердости настурана U4O₉, отличающимся упорядочением избыточного кислорода в решетке UO_{2,25} [12].

При дальнейшем увеличении параметра кристаллической решетки a_0 от 5,44 до 5,49 Å у исследуемых нами настуранов наблюдается заметное понижение микротвердости до 550–600 кгс/мм². Можно полагать, что основную роль в понижении микротвердости при повышении параметра настуранов играют возрастные изменения минерала, и прежде всего количество накопленного радиогенного свинца, "растягивающего" тем или иным способом кристаллическую решетку настурана и уранинита [8, 19, 2].

Высокое содержание свинца (до 16,68%) характерно для настуранов из железоурановой формации; радиологический возраст их, по А.В. Тарханову и В.И. Жуковой, достигает 1,8 миллиардов лет [20]. Часть радиогенного свинца со временем выносится

4262	221	001	3	1008	1204	430	370	533
 Не опр.	5,5	5,8	4,5	4,3	6,0	Не опр.	Не опр.	Не опр.
 21.14	14,83	8,62	18,10	30,06	16,62	16,49	21,42	13,74
56.27	61.21	43,64	49.64	19,70	36,40	38,40	47,82	49,20
3.54	3.72	8.08	15.70	3,82	6.27	12,06	2.20	0.93
2.42	3.84	0.99	3.33	2.45	3.14	1,56	0.30	0,88
2.50	2,26	1,70	3.07	4,19	6.09	3,83	0,06	H/o
H/o	0,07	0,15	H/o	0,32	H/o	Не опр.	Не опр.	H/o
3.91	6,94	9,85	5.56	13,89	6,50	5,94	5,61	7,90
1.52	1,48	3,94	3,37	1,26	1,68	1,39	1.00	4,23
3.29	1,20	12,29	2.03	1,14	14,89	12,92	16,68	15,53
0,05	1,24	0,15	0,49	0,01	0,78	1,62	0,53	0,09
_	H/o	0,19	0.65	0,014	0,23	0,26	0,01	0,05
0,53	0,56	0,29	0,82	1,37	0,05	0,36	H/o	0,90
1.37	0,53	0.85	1.41	5,90	3,84	1,90	1,02	2,44
2,20	4,19	9,00	2,64	4,70	1,51	4,71		
98,74	102,07	99,74	106,81	100,58*	98,00	101,44	96,65	95,89

из настурана, но значительное количество остается в решетке UO_{2+x} или в образовавшемся на месте галените.

Минералографически в изученных образцах из железо-урановой формации, помимо галенита, в небольшом количестве встречен пирит, поэтому какая-то часть серы (табл. 2) должна быть связана железом. При больших увеличениях в иммерсии в образце местами можно видеть тончайшую сетку коффинита, развивающегося в виде пленок по контакту между кристаллическими волокнами сферокристаллов настурана. С таким, едва уловимым замещением, по-видимому, связано снижение микротвердости до 600 кгс/мм².

По трем образцам настурана из железо-урановой формации В.И. Жукова установила прямую зависимость между изменением микротвердости и параметра кристаллической решетки от 802 кгс/мм² при $a_0 = 5,45$ Å и до 926 кгс/мм² при $a_0 = 5,495$ Å [21]. Такая же зависимость обнаружена ею и для уранинита.

В отличие от этого в изученных нами пяти образцах микротвердость настурана даже с $a_0 = 5,48$ Å не превышает 600 кгс/мм² (рис. 1), т.е. не достигает максимального значения, характерного для фазы с $a_0 = 5,43$ Å. По-видимому, для выяснения зависимости между свойствами древних настуранов и параметрами кристаллической решетки количество замеров и в том и в другом случае еще недостаточно.

Вместе с тем имеющиеся данные позволяют говорить о существовании определенной зависимости значения параметра кристаллической решетки настурана от количества содержащегося в нем свинца. С увеличением содержания свинца в настуранах наблюдается и увеличение размеров элементарной ячейки (рис. 2). Естественно, эта зависимость характеризует преобладающую, главную фазу (U, Pb) O_{2+x}, а в целом затушевана примесями, гетерогенностью настурана и формой нахождения свинца⁴.

Из анализа двух графически установленных связей ($H - a_0$ и $a_0 - Pb$) можно предпо-

⁴ Помимо структурной примеси, в дефектной решетке UO_{3+x} и широко распространенного галенита свинец в небольшом количестве может входить в состав уранатов типа PbUO₄ или находится в свободном, металлическом состоянии (самородный свинец) [22].

Рис. 2. Соотношение между размерами кристаллических решеток настуранов и содержанием свинца, определенного суммарно для всех фаз, присутствующих в исследуемых настуранах

A-B – главная фаза UO_{2+x1}; Γ – сопутствующая фаза UO_{2+x2}; Формации: A – U-Bi-Co-Ni-Ag и U-Pb-Zn; B – U-Mo; B – Fe-U

№ п/п	Образец	Размер блоков, Д, А	O : U	<i>a</i> ₀ , A
1	12(2	70	2.20	
1	4262	70	2,20	6 9 8 6
			(2,74)	5,375
2	9	70	2,36	5,429
3	10	80	2,76	5,39
				5,41
4	У-1	90	2,66	5,45
				5,467
5	1204	100	2,29	5,45
6	233	100	2,26	5,43
				5,42
7	15	105	2,22	5,40
				5,42
8	111	105	2,15	5,40
				5,425

Таблица 3 Размер кристаллитов исследуемых настуранов*

*Размеры кристаллитов определялись по уширениям дифракционных максимумов и проведением гармонического анализа профиля линий по методу Стокса [24].

10

ложить, что на изменение микротвердости в окислах урана влияют различного уровня и вида дефекты, связанные с окислением основной фазы настурана и, возможно, с вхождением свинца в его решетку. Это ведет в обоих случаях к снижению микротвердости, к снижению параметра решетки при окислении настурана и к увеличению параметра при вхождении свинца в его решетку (см. рис. 1 и 2).

Данные измерения отражений окислов урана (см. табл. 1) показали удовлетворительную сходимость результатов, полученных в разных лабораториях. Кривые отражения настурана обладают небольшой тенденцией к повышению в области спектра 450-460 нм.

Гетерогенность настурана, наличие нескольких фаз UO_{2+x} в аншлифах определяется прежде всего по отражению минерала. Отражение минералов, так же как микротвердость и параметр кристаллической решетки, может меняться в пределах одного и того же сферолита (рис. 3), где в различно измененных зонах с уменьшением отражения происходит уменьшение параметра a_0 и микротвердости.

Настураны, входящие в состав радиогенных псевдоморфоз по коффиниту и характеризующиеся низким параметром кристаллической решетки ($a_0 = 5,37-5,40$ Å), в этой части спектра имеют плавно повышающиеся кривые дисперсии (без пика). На осталь-

ных интервалах кривые дисперсии идентичны по форме и отличаются только значениями R (рис. 4). Такой же характер дисперсии носят и настураны, не указанные на графике. Для главной фазы UO_{2+x} в настуранах отчетливо обнаруживается зависимость величины отражения от размеров элементарной ячейки (рис. 4), за исключением некоторых настуранов, содержащих повышенное количество свинца (см. 25 и 26 на рис. 4).

Для ряда образцов получены данные о размерах кристаллитов настурана (табл. 3). Новые данные в основном подтверждают ранее установленную [23] зависимость между размерами блоков когерентного рассеяния и кислородным коэффициентом у настурана. Чем больше кислородный коэффициент настурана, тем больше размер кристаллитов в нем. Исключение составляет настуран 4262, исследованию которого посвящена специальная работа [9]. Для него характерно резкое несоответствие между значениями кислородного коэффициента определенными по химическим и рентгенографическим данным.

Продукты прокаливания настуранов

При прокаливании на воздухе настуран ведет себя по-разному, образуя новые фазы в различных сочетаниях и соотношениях (табл. 4). В настуранах, имеющих большую степень окисленности (обр. 1008, 4262, 11, 10), структура типа флюорита сохраняется до 600° С, а затем образуется ромбическая фаза U_3O_8 . В менее окисленных образцах настурана (111, 147, 221 и др.). температура образования ромбической U_3O_8 повышается до 800° С, а в настуране 9 закись-окись фиксируется на дебаеграммах только начиная с температуры 1300° С.

Известно, что окисленность природных окислов урана в частицах размером менее 1 мкм почти параболически возрастает с увеличением дисперсности кристаллических волокон и зерен⁵.

Сравнение размеров кристаллитов настуранов (табл. 3) с температурой образования закись-окиси в продуктах их прокаливания (табл. 4) показывает, что температура образования ромбической закись-окиси снижается по мере увеличения дисперсности спекаемых продуктов. Часть анализов отклоняется от этой закономерности, что можно объяснить наличием в образцах настуранов большого количества примеси. За счет них в продуктах прокаливания образуются новые фазы, такие как уранаты свинца и кальция, линии которых на дебаеграммах могут забивать линии образующейся закисиокиси, вследствие чего температура начала ее образования может быть не всегда точно установлена.

Возможно, что при прокаливании настуранов в решетку образующейся закиси-окиси входит и свинец. Если исключить (табл. 5) из рассмотрения два образца с наименьшим объемом элементарной ячейки (15 и 4725), то для остальных образцов настурана параметры образовавшейся закись-окиси (*a*, *b*, *c* или один из них, особенно *c*) увеличиваются по мере уменьшения количества свинца в исходных настуранах, установленных до прокаливания.

Это в какой-то мере подтверждает предположение В.А. Киркинского [6] о том, что в полученной при прокаливании природных образцов закись-окиси имеет место изоморфная примесь свинца. Отметим, что это предположение было высказано им на основании прокаливания лишь одной пробы.

Что касается прокаливания аномальных образцов, то здесь мы, по-видимому, имеем образование каких-то новых соединений со строго фиксированным количеством в них свинца, равным 4,75—4,78%.

В некоторых образцах, начиная с 600°С, при дальнейшем повышении температуры начинает формироваться вторая кубическая фаза с параметром 5,60 Å, принадлежащая соединению $PbUO_{4-x}$.

При дальнейшем увеличении температуры прокаливания появляется ромбический

⁵ См. рис. 26 в работе [3].

Таблица 4

Продукты прокаливания настуранов на воздухе (результаты фазового рентгеновского анализа, (аналитик Назаренко Н.Г.)

10.00

Образец	T°, C	Фазовый состав	Параметр кубичес- кой фазы, А
	1.	Закись-окись в продуктах прокаливания	
6708	Исх.	UO _{2+r}	5,41 (5,42)
0100	400 - 500	UO2+x	5,38
	600-1200	U. O.	ромб.
147	Man	UO	5 425
147	A00 600	UO_{2+x}	5 41
	700-1200	U_{2+x}	ромб.
	700-1200		5 406. 5 40
111	Иcx.	$UO_{2+x} - 2 фазы$	5,420; 5,40
	400	UO_{2+x}	5,40; 5,575
	500-600	UU_{2+x}	3,333
	800-1200	$U_3 U_8$	ромо.
25	Исх.	UO_{2+x}	5,433
	400	UO_{2+x}	5,41
	500	UO _{2+x} дифф.	_
	600-1200	$U_3 O_8$	ромб.
	2. У	ранаты свинца в продуктах прокаливани	я
9	Исх.	UO2+x	5,42
,	400-500	UO_{2+r}	5,41
	600-1200	U, O, UO2+rPbUO4-r, PbUO4	
	1300	U ₃ O ₈	ромб.
117	Mox		5 405: 5.39
447	400 500	$UO_{2+x} = 2 \psi ask$	5 38
	600-1200	$U_{1}O_{2}$ UO ₂ $U_{1}O_{2}$ PbUO ₄ v_{1} PbUO ₄	0,00
	000 1200	$0_{3}0_{8}, 0_{2+x}, 10004_{-x}, 1000_{4}$	5.40
3416	Исх.	UO_{2+x}	5,40
	400-500	UO_{2+x}	5,395
	600-1200	$00_{2+x}, 0_{3}0_{8}, P000_{4-x}, P000_{4}$	
133	Исх.	UO _{2 +х} – 2 фазы	5,41; 5,39
	400	UO_{2+x}	5,40
	500-600	UO_{2+x}	5,39
	800-1200	$UO_{2+x}, U_{3}O_{8}, PbUO_{4-x}, PbUO_{4}$	
202	Исх.	UO _{2+x} – 2 фазы	5,40; 5,42
	400	UO_{2+x}	5,39
	500	UO_{2+x}	5,38
	600-1200	$U_3 O_8$, UO_{2+x} , $PbUO_{4-x}$, $PbUO_4$	
4725	$M_{\rm CX} = 500$	UO	5.41
4725	600	UO_{2+x}	5,395
	800-1200	UO_{a+x} , $U_{a}O_{a}$, PbUO ₄ - x, PbUO ₄	,
001			5 18. 5 115
001	ИСХ.	$UO_{2+x} - 2 \varphi a351$	5 475 5 445
	400-500	$UO_{2+\chi} - 2 \psi a_{35}$	3,473, 3,443
21	000-1200 Mov	$U_{3}O_{8}, U_{2+\chi}, U_{0}O_{4-\chi}, U_{0}O_{4}$	5.421: 5.405
51	400 600	$UO_{2+\chi} = 2 \psi assi}$	5,395
	400-000	U_{2+x}	0,070
	000-1150	$0_3 0_8, 0 0_2 + \chi, 1 0 0 0_4 - \chi, 1 0 0 0_4$	
	3. 5	ранаты кальция в продуктах прокаливан	ия
1008	Исх	UO	5,375
1000	400	UO	5,37
	400	2 + X	

61

Таблица 4 (окончание)					
1	2	3	4		
	а. Ура	наты кальция в продуктах прокаливания	1		
	600-800 1050-1200	U ₃ O ₈ U ₃ O ₈ , CaU ₂ O ₆	ромб. 5,37		
4262	Исх. 600-800 1000-1150	$UO_{2} + x$ $U_{3}O_{8}$ $U_{3}O_{8}, Ca U_{2}O_{6}$	5,375 ромб. ромб. + 5,36		
100	Исх. 400 500 600–1100 1150	$UO_2 + x$ $UO_2 + x$ $UO_2 + x$ $U_3 O_8$ $CaU_2 O_6$, сл. $U_3 O_8$	5,42; 5,39 5,41 5,40 ромб. 5,38		
10	Исх. 400–500 600–1200 1150	$UO_{2+x} - 2 фазы$ UO_{2+x} U_3O_8 CaU_2O_6 , сл. U_3O_8	5,41; 5,39 5,40 ромб. 5,38		
15	Исх. 400 500-600 800-1000 1150	$UO_{2+x} - 2 фазы$ UO_{2+x} UO_{2+x} $U_{3}O_{8}$ $CaU_{2}O_{6}$, сл. $U_{3}O_{8}$	5,42; 5,39 5,385 5,38 ромб. 5,37		
221	Исх. 400-500 600 700-1000 1150	UO _{2+x} UO _{2+x} UO _{2+x} , сл. U ₃ O ₈ U ₃ O ₈ CaU ₂ O ₆ , сл.U ₃ O ₈	5,45 5,415 5,41 ромб. 5,37		
11	Исх. 400-500 600-700 800-1100 1200-1300	$UO_{2+x} - 2 фазы$ UO_{2+x} $U_3 O_8$ $U_3 O_8, PbUO_{4-x}, PbUO_4$ $CaU_2 O_6, сл. U_3 O_8$	5,37; 5,40 5,36 ромб.		
32	Исх. 400 500-600 800-1000 1150	$UO_{2+x} - 2 фазы$ UO_{2+x} UO_{2+x} $U_3 O_8, UO_{2+x}, PbUO_4 - x, PbUO_4$ $CaU_2 O_6, cn. U_3 O_8$	5,44; 5,42 5,425 5,415		

уранат свинца $PbUO_4$. В некоторых образцах увеличение температуры прокаливания до 1150°C приводит к образованию нового соединения — ураната кальция CaU_2O_6 . Рентгенографические данные подтвердили предположение В.И. Жуковой о том, что при прокаливании настурана выше 1000°C возникают уранаты кальция.

Настураны, в которых образуются уранаты кальция, претерпели метаморфизм и имеют сложное строение. В них отчетливо заметны следы диффузионных процессов, которые привели к образованию интенсивно окисленных участков и накоплению продуктов изменения в сферолитах настурана. Например, настуран 211, несмотря на сравнительно высокий параметр главной фазы ($a_0 = 5,45$ Å), неоднороден. Совместно со сферокристаллами здесь наблюдается измененный настуран, параметр которого не удалось определить. Малоизмененные участки представляют собой сравнительно плотные сферолитовые агрегаты с микротвердостью 800-700 кгс/мм² и находятся в мас-

05	Т прокали-	Пара	метры реше	Объем ячей-	Содержание	
Образец	вания, °С	a	b	с	ки, А ³	Рb, вес. %
111	1000	11,594	6,98	8,407	673,14	2,71
	1150	11,954	6,698	8,407	673,14	
4262	1150	11,920	6,600	8,252	649,20	3,00
133	800	11,915	6,604	8,247	648,60	2.22
	1150	11,912	6,610	8,230	646	5,22
3416	1150	11,908	6,605	8,271	650	5,73
32	1150	11,974	6,653	8,180	650	9,49
001	1100	11,902	6,600	8,180	643	11,88
15	1000	11,809	6,665	8,124	639	4,75
4725	1000	11,834	6,703	8,06	639	4,78

Гаолица 5					
Параметры решетки	11.0	обизруженной в пропуктах врокалирания настиранов			

се тонкозернистого агрегата, состоящего из смеси сильно окисленных окислов урана с изотропизированным коффинитом, гидроокислами урана и неизвестного силиката урана. В этом образце настурана, как и во многих других, определены не все фазы, а отношение О : U, очевидно, занижено в связи с примесью коффинита. Таким образом, судя по минералогическим данным, мы имеем дело с довольно окисленными (в целом) образцами урановой смолки.

Чем более окислен настуран, тем выше его дисперсность и, следовательно, интенсивней при прочих равных условиях происходит взаимодействие при прокаливании между окислами урана и присутствующими в них механическими примесями. Такими примесями могут быть CaO, образующийся в результате диссоциации кальцита при нагревании выше 700°С и, что более вероятно, какие-то уранаты кальция (во всех исследованных настуранах имеется избыток кальция, не связанного с CO₂), образующиеся в природе в процессе изменения настурана.

Из 16 проанализированных продуктов прокаливания настуранов 8 содержали только уранат свинца, 6 – только уранат кальция и лишь 2 – оба ураната совместно. Здесь, как и в исследованном французами [25] уранините из природного ядерного реактора Окло (Габон), мы видим определенный антагонизм между кальцием и свинцом. Поскольку свинец в основном образуется в процессе радиоактивного распада, появление в окислах урана кальция – свидетельство влияния внешних факторов. Естественно, в продуктах прокаливания отражены первичное состояние минерала и содержание в нем привнесенного кальция.

Равномерное распределение кальция в зернах уранинита, обнаруженное при микрозондовом исследовании урановых минералов [26], не может служить доказательством изоморфного вхождения кальция в решетку UO_{2+x} . Вопрос об изоморфизме решается на другом уровне.

В связи с изучением гетерогенности настурана необходимо выяснить роль продуктов изменения коффинита и ненадкевита в обогащении настурана кальцием. Известно, например, что в метамиктном коффините и ненадкевите из железо-урановой формации содержится⁶ 3,9-4,3 вес. % кальция [27], и при неоднократных замещениях UO_{2+x} \subseteq USiO₄ кальций может в виде тонкой примеси оставаться в настуране.

Вопрос этот требует дальнейшего изучения.

⁶ Согласно рентгенографическим [23] и микродифрактометрическим [27] исследованиям, ненадкевит относится к моноклинной модификации USiO₄ (коффинит в неизмененном состоянии тетрагональный).

Псевдокристаллы ненадкевита с вогнутыми гранями содержат 4,0 вес.% СаО (микрозондовый анализ: $U_3 O_8 53\%$, SiO₂ – 4,0%, Fe₂O₃ – 0,36%, PbO – 1,3%, ThO₂ – 1,48%).

Выводы. 1. Проведенные минераграфические исследования отражения различных частей сферолитов настурана в аншлифах подтвердили их гетерогенность, а также прямую зависимость увеличения отражения отдельных фаз от параметра кристаллической решетки и микротвердости.

2. В гетерогенных образцах настурана рентгенографические и химические определения кислородного коэффициента не всегда соответствуют друг другу, однако размеры кристаллитов главной фазы в исследованных примерах находятся в обратной зависимости от общего кислородного коэффициента.

3. Дефекты, связанные с окислением настурана, ведут к снижению микротвердости и параметра кристаллической решетки; дефекты, связанные с вхождением свинца в решетку настурана, ведут к увеличению параметра кристаллической решетки; данные о микротвердости окислов урана, содержащих в своей решетке свинец, противоречивы.

4. Получены дополнительные доказательства в пользу существования в природе окисла урана типа $U_4 O_9$: наивысшее значение микротвердости $1000-1100 \text{ кгс/мm}^2$ соответствует параметру кристаллической решетки $a_0 = 5,43 \div 5,44 \text{ Å}$, близкому к. параметру ячейки $U_4 O_9$ (5,44 Å).

5. В процессе прокаливания настуранов с $a_0 = 5,42 \div 5,43$ Å образуется (при 600°С) лишь ромбическая фаза U_3O_8 ; уранаты до конца прокаливания (1100°С) не появляются. Температура образования U_3O_8 снижается по мере увеличения дисперсности настуранов.

6. Уранаты свинца образуются начиная с 600° С и выше преимущественно в настуранах, где кроме "негаленитного" свинца до прокаливания фиксируется окисел урана с $a_0 = 5,41$ Å в молодых отложениях и окисел урана с $a_0 = 5,45 \div 5,48$ Å в древних. В образцах с высоким содержанием "негаленитного" свинца помимо кубического ураната образуется ромбический уранат свинца.

7. Уранаты кальция образуются преимущественно при прокаливании настуранов с $a_0 = 5,37 \div 5,39$ Å выше 1150°C. Близость параметров решеток исходных и конечных продуктов прокаливания позволяет предполагать возможность существования в природных урановых чернях дисперсного ураната кальция.

ЛИТЕРАТУРА

- Макаров Е.С. Кристаплохимия минералов урана. – В кн.: Основные черты геохимии урана. М.: Изд-во АН СССР, 1963, с. 27–45.
- Киркинский В.А. О кристаллохимии природных и искусственных окислов урана. – В кн.: Материалы по генетической и экспериментальной минералогии, Новосибирск, 1967, т. V, с. 90.
- Дымков Ю.М. Природа урановой смоляной руды. Вопросы генетической минералогии. М.: Атомиздат, 1973.
- 4. Сидоренко Г.А. Кристаллохимия минералов урана. М.: Атомиздат, 1978, с. 216.
- Наумов Г.Б. Основы физико-химической модели уранового рудообразования. М.: Атомиздат, 1978, с. 216.
- Киркинский В.А. Природа продуктов прокаливания уранинитов и настуранов. – В кн.: Материалы по генетической и экспериментальной минералогии. Новосибирск, 1966, т. 17, с. 30.
- Ершов В.М., Первухина К.И., Ивонина Т.Ю.
 О радиогенном свинце в настуранах. В
 сб.: Минералогия и петрография Урала. Вып.
 106, Свердловск, СГИ, с. 110–118.
- Дымкова Г.А., Дымков Ю.М. Влияние строения индивидов настурана на процессы карбонатного и кислотного растворения. — В кн.:

Текстуры и структуры урановых руд эндогенных месторождений. М.: Атомиздат, 1977, с. 168.

- 9. Дымков Ю.М., Дымкова Г.А., Павлов Е.Г. Диффузионная текстура агрегатных псевдоморфоз по сферолитам настурана. – В кн.: Текстуры и структуры урановых руд эндогенных месторождений. М.: Атомиздат, 1977, с. 36.
- Несмеянова Г.М., Прибытков П.В., Дымкова Г.А. и др. Физико-химические исследования компактных образцов урановых минералов в растворах серной кислоты и соды. – Доклад на Менделеевском съезде, Алма-Ата, 1975.
- 11. Дымков Ю.М., Дымкова Г.А., Назаренко Н.Г. Минераграфическое и рентгеноструктурное изучение продуктов прокаливания и восстановления природных окислов урана. – В кн.: Месторождения урана. Зональность и парагенезис. М.: Атомиздат, 1970, с. 274.
- 12. Дымкова Г.А., Кузьмина Л.Н., Несмеянова Г.М., Прибытков П.В. Исследование растворения настурана в компактных образцах растворами серной кислоты. – Атомная энергия, 1973, т. 35, вып. 1, с. 48.
- Лебедева С.И. Микротвердость минералов. М.: Недра, 1977. 118 с.

- 14. Вяльсов Л.Н. Спектры от уажения рудных минералов. М.: Изд-во АН СССР, 1973.
- 15. Дымков Ю.М., Волков Н.И., Шилякова И.И. и др. Настуран из уран-молибденового месторождения. – Атомная энергия, 1974, т. 36, вып. 6.
- 16. Казанцев В.В. Минералогия и текстурноструктурные особенности руд уран-молибденового месторождения в фельзит-порфирах. – В кн.: Текстуры и структуры урановых руд эндогенных месторождений. М.: Атомиздат, 1977.
- Алимарин Н.П., Фрид В.Н. Количественный анализ минералов и руд. М.: Госхимиздат, 1961.
- Леонова В.А. К минералогии и кристаллохимии уранинитов Северной Карелии. – Зап. Всес. Минер. об-ва, 88, вып. 1, 21, 1959.
- 19. Киркинский В.А., Макаров Е.С. Форма нахождения свинца в уранинитах и настуранах по экспериментальным данным. – В кн.: Проблемы геохимии. М.: Наука, 1965.
- Тарханов А.В., Жукова В.И. Генезис ореолов радиогенного свинца докембрийских месторождений. - Атомная энергия, т. 34, вып. 6, 1973.

- 21. Жукова В.И. Минералогия и первичная зональность гидротермально-метасоматического месторождения урана и железорудной формации докембрия. – В кн.: Месторождения урана. Зональность и парагенезисы. М.: Атомиздат, 1970.
- Атлас электронно-микроскопических фотографий урановых и урансодержащих минералов. М.: Недра, 1978.
- 23. Сидоренко Г.А. Рентгенографическое изучение природных окислов урана. – Геохимия, 1958, № 1, с. 22–37.
- 24. Русаков А.А. Рентгенография металов. М., 1969.
- Branche G.R. at al. Donnels chimiques et mineralogiques sur le gisement d'Oklo. – In: The Oklo Phenomen, ZAEA. Vienna, 1975.
- 26. Стрельцов В.А., Воронихин В.А., Тишкин А.И. О составе уранинита из месторождений пегматитового и уран-молибденового типов. – Атомная энергия, 1974, т. 37, вып. 4, с. 306.
- 27. Павлов Е.Г., Жукова В.И., Дымков Ю.М. Структура распада коффинита и ненадкевита – В кн.: Текстуры и структуры урановых руд эндогенных месторождений. М.: Атомиздат, 1977.

УДК 549.623.7.:552.323.6 (571.56)

н.н. зинчук, а.д. харькив, д.д. котельников, а.д. дзюбло

ОСОБЕННОСТИ СЕРПЕНТИНА ИЗ КИМБЕРЛИТОВ И АССОЦИИРУЮЩИХ С НИМИ ПОРОД ЯКУТИИ

Серпентин относится к одному из наиболее распространенных минералов в кимберлитах и в ксенолитах родственных с ними пород Якутии. Он, как и другие вторичные минералы, систематически изучался, начиная с момента открытия якутских кимберлитов. Результаты этих исследований опубликованы в монографиях А.П. Бобриевича с соавторами [1, 2], с также В.М. Милашева и др. [3]. Позднее основное внимание ученых было сосредоточено на изучении первичных минералов кимберлитов и включений глубинных пород — пиропа, пикроильменита, хромшпинелидов, оливина, клино- и ортопироксенов, а вторичные минералы, составляющие 95–98% объема кимберлитовых пород, практически не исследовались. В то же время слабая изученность серпентина из кимберлитов в значительной мере затрудняет решение ряда научных и практических задач.

К настоящему времени опубликовано лишь около двух десятков химических анализов серпентинов, слагающих псевдоморфозы по оливину первой генерации, основную массу кимберлитов и включения серпентинизированных ультраосновных пород. Наибольшее число химических анализов относится к серпентину из прожилков и гнезд, так как в этой позиции он представляет собой наиболее удобный материал для отбора на анализы. Выполнено также небольшое число термических анализов серпентина, а также сделаны замеры показателей преломления многочисленных выделений этого минерала, что позволило получить основные представления о характере локализации и химическом составе серпентина из кимберлитов. Процесс серпентинизации кимберлитов и образование серпентина рассматривается в работах А.А. Лебедева [4, 5], по данным которого серпентинизация кимберлитов происходила на глубине до формирования