ТРУДЫ МИНЕРАЛОГИЧЕСКОГО МУЗЕЯ им. А. Е. ФЕРСМАНА

Вып. 20

1971

Ответственный редактор д-р геол.-мин. наук Г. П. Барсанов

А. И. БОЛДЫРЕВ, Л. Н. ЕГОРОВА, А. С. ПОВАРЕННЫХ

ЗАКОНОМЕРНОСТИ ИК-СПЕКТРОВ ПОГЛОЩЕНИЯ НЕКОТОРЫХ ГИДРООКИСЛОВ И ОКСИГИДРАТОВ

Инфракрасные спектры поглощения гидроокислов и оксигидратов существенно отличаются от ИК-спектров соответствующих окислов и представляют собой весьма наглядный пример большого значения этого нового метода для идентификации и диагностики минералов.

Наличие гидроксильно-водородной связи в минералах этого класса главная причина усложнения их ИК-спектра, что выражается в появлении интенсивных полос поглощения в различных его областях. К настоящему времени уже установлены некоторые общие закономерности в ИК-спектрах соединений с гидроксильно-водородной связью (Колесова, Рыскин, 1959; Накамото, 1966; Dachille, Roy, 1959; Rundle, Parasol, 1952). Однако ИК-спектрам соответствующих минералов состава $R(OH)_n$ п $RO_m \cdot (OH)_n$ пока еще было уделено недостаточно внимания, особенно с точки зрения анализа взаимосвязи полос поглощения со структурными данными.

В задачу настоящей работы входило изучение ИК-спектров гидроокислов п оксигидратов, частью совсем не исследованных, с попыткой выяснения связи основных полос поглощения ИК-спектров с кристаллохимией этих минералов. Всего было изучено десять минеральных видов. Все подвергшиеся исследованию минералы были детально проверены рентгенографически; принадлежность их к соответствующим минеральным видам строго установлена.

Исследование проводили на двухлучевом автоматическом инфракрасном спектрофотометре UR-10 (Карл Цейс, ГДР). Образцы готовили прессованием порошков минералов с КВг в таблетки под давлением около 10—12 m/cm². ИК-спектр поглощения регистрировали в интервале длин волн 2.5—25 мк (4000—400 сm⁻¹) со скоростью 150 сm⁻² мин.

Начнем рассмотрение со слоистых гидроокислов — портландита, брусита и гибсита, в структуре которых расстояния Ме — ОН и О — Н — О постепенно уменьшаются, а прочность связи возрастает (Поваренных, 1966).

ИК-спектр синтетического портландита $Ca(OH)_2$, изоструктурного с бруситом, характеризуется большой и усложненной полосой поглощения в области 3700—3100 см⁻¹, а также полосами поглощения различной интенсивности в интервалах 1600—1400, 1200—700 и 540—400 см⁻¹ (рис. 1, *a*; табл. 1)¹. При высоком разрешении записи ИК-спектра портландита,

3 Заказ № 2206

¹ Довольно интенсивная полоса поглощения в области 1600—1400 см⁻¹ ИК-спектра портландита обусловлена, скорее всего, гидратированностью препарата. Для других минералов она заметно слабее и вызывается собственным поглощением KBr (Huang, Kerr, 1960).

Таблица 1

H TE CI ATO 11 (h)

Положение полос поглощения в ИК-спектрах гидроокислов и оксигидратов

	Положение полос поглощения, см-1								
Минерал, его формула и местонахождение	3600	3200	2100	1600	1100	900	700	600	450
Портландит Са(ОН) ₂ (ис- кусственный)	3710 3660 3540	3360 3310 3110	-	1640 1490 1420	1160 1090	960 885	750 730	540	450 430
Брусит Mg(OH) ₂ (Texac, США)	3820 3710	3460 3300	_	1630 1530 1400	1150	900	-	560	460 415
Гибсит Al(OH) ₃ (Ильмен- ские горы, Урал)	3750 3670 3630	3570 3495 3435	2050	1650 1530 1415 1395	1020 980	925	770	660 535	465 435 415
Диаспор АЮОН (Косой брод, Урал)	3700	3305 3100 3010 2940	2380 2130 1995	1640 1480 1430	1090 975	-	760 680	585 525	410
Гетит FeOOH (Ахтин- ское, Урал)	-	3300 3130	-	1640 1400	1080 980	895	797	$\frac{625}{540}$	$455 \\ 420$
Бемит AlO(OH) (Крас- ная шапочка, Урал)	3710	3295 3105	2100 1975	1650 1520 1400	1160 1085		750	640 570 510	410
Лепидокрокит FeO(OH) (Гарц, ГДР)	-	3150 2910	1980	$\frac{1660}{1420}$	1165 1026	910	755	$575 \\ 535$	405
Манганит МпООН (Гарц, ГДР)	-	3420	2650 2060	1650 1400	$ \begin{array}{r} 1290 \\ 1160 \\ 1125 \\ 1090 \end{array} $	975 880	_	600 515	455
Литиофорит (Li; Al) MnO ₂ (OH) ₂ (Шнесберг, Саксония)	_	3460	2120	1660 1450	1095 1010	930 890	740 720	555	490 420
Халькофанит ZnMn3O7 (H2O)3 (Стер- линг-хилл, США)	-	3410 3330	2370	$1630 \\ 1530 \\ 1425$	1190	980 885	780 660	625 540 505	480 445

как было получено Бьюзингом и Морганом (Busing, Morgan, 1958), выяв и ляется тонкая структура основной полосы поглощения (4100-3000 см⁻¹) .11 в которой намечается свыше десяти максимумов (рис. 2). Еще недави та считалось (Уэллс, 1948), что в портландите и брусите не существует гидро K ксильной связи. Иону ОН приписывалась цилиндрическая симметрия 11 а слоистые структуры минералов отождествлялись со структурами соо He ветствующих хлоридов и их аналогов. Как показали нейтронографически JE исследования (Busing, Levy, 1957), в портландите гидроксил расщенле ME на О и Н, причем расстояние О-H 0.936 Å. сп

В ИК-спектре брусита $Mg(OH)_2$ имеется очень узкая, но интенси 19 ная полоса поглощения с пиком 3710 см⁻¹ и несколько слабых сателли ко ных полос: небольшая полоса с пиком 1150 см⁻¹ и широкая полос поглощения в длинноволновой части спектра (700—400 см⁻¹; см. рис.) со б; табл. 1). Наши результаты очень близки к данным, полученным Бе неси (Benesi, 1959). Сателлитные пики в области главных полос поглощени свидетельствуют, вероятно, о небольшой деформации $Mg(OH)_6$ -октаэдро в слоистой структуре брусита.

ИК-спектр гибсита Al(OH)₃ при общем сходстве со спектрами пре дыдущих минералов имеет более сложный характер. Три главные полос поглощения у него несколько шире, чем у портландита и брусита, и с ставлены из почти равноправных по интенсивности дублетных и трипле

ных полос (рис. 1, в; табл. 1), что подтверждается и другими исследова телями (Колесова, Рыскин, 1959; Hartert, Clemser, 1956). В слоистой структуре гибсита, во многом отличной от структуры типа брусита, межатомные расстояния в октаэдрах Al(OH)₆, так же как и расстояния O - H - O, неодинаковы и колеблются в некоторых пределах (Уэллс, 1948; Megaw, 1934). Это и является главной причиной усложнения конфигурации соответствующих полос поглощения.

Кривые ИК-спектров поглощения изоструктурных диаспора AlOOH и гетита FeOOH заметно отличаются от спектральных кривых гидроокислов, но, пожалуй, еще больше различны между собой (рис. 1, г и д; табл. 1). Это обусловлено прежде всего тем, что оба минерала относятся к оксигидратам, т. е. к соединениям, промежуточным между окислами и гидроокислами. С другой стороны, их цепная структура приводит, как показало рентгенометрическое и нейтронографическое изучение минералов (Busing, Levy, 1958; Hoppe, 1940), к заметным искажениям правильных межатомных расстояний в октаэдрах MeO₆, чему в значительной мере способствуют асимметрично расположенные атомы водорода (Busing, Levy, 1958). Кривая ИК-спектра диаспора более богата полосами поглощения, которые к тому же значительно интенсивнее, чем у гетита. Полоса поглощения с дублетным пиком (2130 и 1995 см⁻¹), характерная для диаспора, совсем отсутствует у гетита, что пока не поддается удовлетворительному

Рис. 2. Тонкая структура валентных колебаний в ИК-спектре портландита(по Бьюзингу и Моргану)

35

3*

объяснению (White, Roy, 1964). Различие в местоположении аналогичны полос у обоих минералов обусловлено кристаллохимическими причинами, о которых будет сказано ниже.

Сходная картина в отношении кривых ИК-спектра наблюдается н изоструктурных слоистых оксигидратах — бемите AlO(OH) и лепидокрокит FeO(OH), что подтверждается также детальными исследованиями Уайт и Роя (White, Roy, 1964). Кривая ИК-сиектра бемита обладает тремя глав ными полосами поглощения, имеющими в основном дублетный и триплетны характер, которые расположены в диапазонах 3400—3000, 1200—100 и 750-550 см⁻¹ (рис. 1, е; табл. 1). На соответствующей кривой лени П докрокита (рис. 1, ж) почти совсем отсутствует полоса поглощения коротковолновой области спектра и значительно слабее интенсивност Б (и соответственно дублетность) двух остальных полос, расположении в области 1200—1000 и 750—550 см⁻¹. Дублетное и триплетное строеня главных полос поглощения этих минералов обусловлено, очевидно, замен Гт ным искажением октаэдров $Al(O, OH)_6$ и $Fe(O, OH)_6$, как это было деталь но установлено еще давно при расшифровке структуры лепидокрокии (Ewing, 1935) и позже подтверждено Р. Уайкоффом (Wyckoff, 1951).

Кривая ИК-спектра манганита MnOOH близка по конфигурацы Д и местоположению полос поглощения к кривой лепидокрокита, но с значительно более резко выраженными максимумами, особенно в длш новолновой части (рис. 1, з; табл. 1). Всестороннее исследование структу ры манганита, произведенное недавно Дахсом (Dachs, 1963), показало что октаэдры Mn(O, OH)₆ довольно существенно искажены, в связи с че расстояния Mn — (O, OH) находятся в пределах 1,87—2,33 Å, а рас Ле стояние O—H—O составляет 2,58 Å.

Кривая ИК-спектра литиофорита (Li; Al) $MnO_2(OH)_2$ также заклу чает три главные полосы поглощения, свойственные этим минерала (рис. 1, и; табл. 1). В его слоистой структуре чередуются пекеты, с стоящие из MnO_6 -и (Li, Al) $(OH)_6$ -октаэдров с расстояниями между ним **Ли** (O-H-O), равными 2,76 Å (Wadsley, 1952). Межатомные расстояния (Li октаэдрах почти совершенно одинаковы (Al-OH=1,95 и 1,93, а Mn-O=1=1,93 и 1,97 Å), что сказывается на узоре полос поглощения.

Имнерал со слоистой структурой — халькофанит ZnMn₃O₇(H₂O)₃ име характерные особенности. Он заключает молекулы координационной вод (Wadsley, 1955) вместо гидроксильных групп OH, что сказывается в местоположении полосы валентных и деформационных колебаний кривой ИК-спектра (Накамото, 1966; Lucchesi, Glasson, 1956). По конф гурации кривая ИК-спектра халькофанита (рис. 1, к) напоминает крив лепидокрокита и манганита с той лишь разницей, что у халькофани дет более четко выражен максимум области 3500—3000 см⁻¹, а также ш мот в области 1630 см⁻¹, свойственный всем водным соединениям (Load, Ме дер rifield, 1953; Lucchesi, Glasson, 1956).

Для того чтобы разобраться в особенностях кривых ИК-спектр рас рассмотренных гидроокислов и оксигидратов и найти в них какую-нибу обл закономерность, нужно не только их сравнить одну с другой, но, в перву очередь, с величинами тех кристаллохимических факторов, которые ок ных зывают непосредственное влияние на расположение главных полос в вий глощения. Наибольший интерес у этих минералов представляют полос В с поглощения, связанные с гидроксильно-водородными связями (табл. оки

Как недавно установлено, одним из важнейших факторов, влияющ сост на интенсивность и частоту колебаний гидроксильно-водородной свя а ми в ИК-спектре вещества, является длина этих связей, т. е. расстоян но О--H--O (Finch, Lippincott, 1956; Harter, Clemser, 1956; Nakamoto этом др., 1955). Рандл и Парасол (Rundle, Parasol, 1952), кажется, были не став выми, кто указал на обратную зависимость между длиной гидроксильн кой связей и длиной волны полосы валентных колебаний этих связей. Бо. масс волн

Таблица 2

Минерал, формула	Валентные колебания 0 — Н, см ⁻¹	Деформа- ционные колебания О — Н, см ⁻¹	Валентные колебания Ме — О, ОН, см ⁻¹	Межатомные расстояния О — Н — О, А	Межатомные расстояния Ме — 0, 0Н,	Электроотри- цательность	Атомный вес катио- на
Портландит Са(ОН) ₂	3660 3310 3110	1090 960 885	$540 \\ 450 \\ 430$	3,33	2,37	135	40,08
Брусит Mg(OH) ₂	3710 3460 3300	1150	$560 \\ 460 \\ 415$	3,22	2,09	175	24,31
Гибсит Al(OH) ₃	3630 3570 3495 3435	1020 980 925	770 660 535	3,10 2,96 2,79	1,73 1,87 1,98	220	26,98
Дпаспор AlOOH	2940	1090 975	760 585	2,65	1,85* 2,00*	220	26,98
Гетит FeOOH	3130	895 797	$\begin{array}{c} 625\\ 455 \end{array}$	(2,76) ****	1,98* 2,07*	2 3 5	55,85
Бемпт AlO(OH)	3295 3105	1160 1085	750 640 570	2,47	1,80 1,91 2,00	220	26,98
Ленидокрокит FeO(OH)	3150 2900	1165 1026	755 575 5 3 5	2,71	1,93 2,05 2,13	235	55,85
Манганит МпООН	3420	1160 1125 1090	600 515 455	2,58	1,87* 1,97* 2,26*	260	54,94
Литиофорит (Li; Al), MnO ₂ (OH) ₂	3460	1095 1010 930	720 555 490	2,76	1,93 1,95 1,97	241 **	71,90 ***
Халькофанит $Z_{11}Mn_{3}O_{7}(H_{2}O)_{3}$	3410 3330	$ \begin{array}{r} 1630 \\ 4530 \\ 1425 \end{array} $	$\begin{array}{c} 625 \\ 540 \\ 505 \end{array}$	(2,70) ****	1,90 1,95 2,14	280 **	230,19 ***

Положение максимумов валентных и деформационных колебаний в гидроокислах и оксигидратах

* Средние межатомные расстояния.

** Среднее значение электроотрицательности катионов.

*** Суммарный атомный вес катионов. **** В скобках — расчетные величины межатомных расстояний.

детально и на многих соединениях это положение было доказано Накамото с сотрудниками (Nakamoto a. o., 1955), а также Пиментелем и Седерхольмом (Pimentel, Sederholm, 1956). Таким образом, с постепенным переходом от гидроксильных к водородным связям (т. е. с уменьшением расстояний О—Н—О) полоса валентных колебаний О—Н смещается в область более длинных волн (или, иначе, меньших частот).

Однако приведенное положение справедливо только при прочих равных условиях. В конкретных случаях, где, как правило, равных условий нет, мы сталкиваемся с кажущимся несоответствием этому правилу. В самом деле, это легко проследить на примере указанных выше гидроокислов — портландита, брусита и гибсита, у которых расстояния О—Н—О 3,33-3,22-2,90 Å. следующий vменьшающийся ряд: составляют а максимумы полос валентных колебаний ему не отвечают и соответственно равны 3660-3710-3570 см⁻¹. Слеповательно, брусит составляет в этом ряду как бы исключение, да и для гибсита частота колебаний представляется (по сравнению со средней величиной 2,90 Å) слишком высокой (Nakamoto a. o., 1955). Но теперь хорошо известно, что увеличение массы катиона смещает полосы поглощения в область более длинных воли (Колесова, Рыскин, 1959; Накамото, 1966; White, Roy, 1964). Поэтому меньшая масса магния по сравнению с кальцием обусловливает д расположение полосы валентных колебаний О-Н брусита немного ле и вее, чем у портландита. С другой стороны, повышение валентности H электроотрицательности катиона увеличивает прочность связи Ме-О. K Это затрудняет растягивающие (валентные) колебания О-Н и приводи к смещению полосы поглощения в коротковолновую область ИК-спектра п что характерно для гибсита. B

Полосы валентных колебаний О-II в диаспоре и гетите расположены т в соответствии с расстояниями О-Н-О, хотя и сближены немноготогда как в бемите и лепидокроките это соответствие нарушено и уже и ранее отмечалось (White, Roy, 1964), но не было объяснено. Думается и что в последних двух минералах значительную роль играет слоисты тип структуры, в котором водородно-гидроксильные связи пространствен ал но четко отделены от связей Ме-О, ОН. Поэтому величины валентны в колебаний в бемите 3295 и 3105 см⁻¹ вполне соответствуют расстояния 2,47 Å (Reichertz, Yost, 1946) и находятся в закономерном нисходяще ряду: портландит — брусит — гибсит — бемит. В диаспоре и гетите гидро ксильно-водородные связи О-Н-О чередуются в структуре со связям к Ме-О и относительно ослаблены, что приводит к небольшому смещения полос валентных колебаний в область более длинных волн.

Полосы валентных колебаний О—Н у манганита и литиофорита ви пражены (как и у гетита и лепидокрокита) довольно слабо, но уже в соот ветствии с межатомными расстояниями О-Н-О, правда сильно сближев у ными из-за разницы в массе атомов. Мы полагаем, что в оксигидроокислах В состоящих из атомов с большой массой (Mn и Fe), валентные колебани Ви О-Н в значительной мере подавляются, в связи с чем их интенсивност Ви резко уменьшается. Высокие же электроотрицательность и валентност (З и 4) этих атомов, повышающие прочность связей (в том числе и ОН Ва связей) в структуре, способствуют смещению полосы валентных колеба De ний О-Н в коротковолновую область ИК-спектра. В халькофании это влияние сказывается особенно отчетливо; дублетные пики валентны De колебаний О-Н молекул воды у него значительно смещены против нор мы влево. Их значения 3410 и 3330 см⁻¹ заметно выше, чем у свободно Еш воды (Lucchesi, Glasson, 1956) или льда (Nakamoto a. o., 1955). F

Деформационные колебания О—II у рассматриваемых минералов м рактеризуются диапазоном в пределах 1200—900 см⁻¹ (Накамото, 1966 На Hartert, Glemser, 1956; White, Roy, 1964); обратная зависимость Чд стоты колебания от межатомных расстояний О-H-О здесь также ска на зывается, хотя и менее отчетливо. Влияние массы атомов для колебани этого рода немного более заметно, хотя оно и перекрывается изменение На прочности связей О-H-O за счет электроотрицательности и валентие сти катнонов. Так, в ряду портландит — брусит — гибсит брусит внов имеет пик полосы деформационных колебаний в наиболее коротковоли Lu вой части ИК-спектра. В парах диаспор — гетит и бемит — лепидокрг кит масса атомов также оказывает существенное влияние на колебани Ма и полосы поглощения оксигидроокислов алюминия находятся в боля Na коротковолновой части, чем у их железистых аналогов, несмотря в заметно большие расстояния О-Н-О у последних. Pi

У деформационных колебаний О-Н более четко проявляется свя Re с различием в межатомных расстояниях О-H-O, обусловленная искжением координационных полиздров. Из табл. 2, в которой сведены в Ru важнейшие характеристики по частотам различных колебаний ИК-спе W тра изучаемых минералов и их кристаллохимические данные, видно, ч каждому межатомному расстоянию в структуре минерала отвечает 🐠 W ределенная частота деформационных колебаний.

В заключение необходимо остановиться на валентных колебани W Ме-О и Ме-ОН, проявляющихся у гидроокислов и оксигидратов

38

47

W

диапазоне от 750 до 400 см⁻¹ (White, Roy, 1964). Здесь мы, естественно, имеем уже прямую зависимость между расстояниями Me-O(OH) и длиной волны полосы валентных колебаний, причем влияние массы катионов, как и других упомянутых кристаллохимических факторов, продолжает сказываться и в этом случае. Просмотр и сопоставление величин, помещенных в колонках 4 и 6 (табл. 2), легко доказывает эту монотонную зависимость. Для валентных колебаний Ме-О-Н, как следует из этой таблицы, еще более резко выражена связь длины волны с различием в межатомных расстояниях, обусловленных искажением полиздров Ме— (0, ОН). Эта особенность ИК-спектров — существенное подспорье при изучении минералов с еще не изученной структурой.

За предоставление образцов редких минералов для исследования авторы выражают глубокую признательность профессору Г. П. Барсанову и М. А. Смирновой.

ЛИТЕРАТУРА

Колесова В. А., Рыскин Д. И. Инфракрасный спектр поглощения гидраргиллита Al(OH)₃. — Оптика и спектроскопия, 1959, 7, вып. 2.

Накамото К. Инфракрасные спектры неорганических и координационных соединений. Изд-во «Мир», 1966. Поваренных А. С. Кристаллохимическая классификация минеральных видов. Киев,

изд-во «Наукова думка», 1966.

Узалс. А. Ф. Строение неорганических веществ. ИЛ, 1948. Benesi H. A. Infrared spectrum of $Mg(OH)_2$. — J. Chem. Phys., 1959, 30, N 3.

Busing W. R., Levy H. A. Neutron diffraction study of calcium hydroxyde. J. Chem. Phys., 1957, 26, N 3.
Busing W. R., Levy H. A. A single crystal neutron diffraction study of diaspore, AlO(OH). - Acta Cryst., 1958, 11, pt. 11.
Busing W. R., Morgan H. W. Infrared spectrum of Ca(OH)₂. J. Chem. Phys., 1958, 28, N 5.
Bashida F. Bay, R. The use of infra red absorption and molar refractivities to shock.

Dachille F., Roy R. The use of infra-red absorption and molar refractivities to check coordination. – Z. Krist., 1959, 111, H. 6.

Dachs H. Neutronen- und Röntgenuntersuchungen am Manganit. MnOOH.- Z. Krist., 1963, 118, N 3-4.

Ewing F. J. The crystal structure of lepidocrocite, FeOOH.-- J. Chem. Phys., 1935, 3,

Finch J. N., Lippincott E. R. Hydrogen bond systems: temperature dependence of OHfrequency shifts and OH-band intensities .- J. Chem. Phys., 1956, 24, N 4.

Hartert E., Glemser Q. Ultrarotspectroskopische Bestimmung der Merallsauerstoff-Abstände in Hydroxyden, basischen Salzen und Salzhydraten.- Z. Elektrochem., 1956,

60, N 7. Hoppe W. Kristallstruktur von AlOOH(Diaspor) und FeOOH (Nadeleisenerz).-Z. Krist., 1940, 103, H. 2.

Huang C. K., Kerr P. F. Infrared study of the carbonate minerals.— Amer. Min., 1960, 45, N 3-4.

Load R. C., Merrifield R. E. Strong Hydrogen Bonds in Crystals.— J. Chem. Phys., 1953, 21, N 1.

Lucchesi P. J., Glasson V. A. Infrared investigation of bond-water in hydrates. - J. Amer. Chem. Soc., 1956, 78, N 5.

Megaw H. D. The crystal structure of hydrargillite, Al(OH)₂.-- Z. Krist., 1934, 87, N 1-2.

Nakamoto K., Margoshes M., Rundle R. E. Stretching Frequences as a Function of Dis-

tances in Hydrogen Bonds. — J. Amer. Chem. Soc., 1955, 77, N 24.
 Pimentel G. C., Sederholm C. H. Correlation of infrared stretching frequences and hydrogen bond distances in crystals. — J. Chem. Phys., 1956, 24, N 4.
 Reichertz R. P., Yost W. Y. The crystal structure of synthetic boehmite. — J. Chem. Phys., 1966, 44, N 2

1946, 14, N 2.

Rundle R. E., Parasol M. O-H stretching frequencies in very short and possibly symmetrical hydrogen bonds. J. Chem. Phys., 1952, 20, N 9.
Wadsley A. D. The structure of lithiophorite (Al, Li)MnO₂(OH)₂. Acta Cryst., 1952,

5, pt. 5.

Wadsley A. D. The crystal structure of chalcophanite, ZnMn₃O₇·3H₂O.- Acta Cryst.,

1955, 8, pt. 3. White W. B., Roy R. Infrared spectra-crystal structure correlations. — II. Comparison of simple polymorphic minerals. - Amer. Min., 1964, 49, N 11-12.

Wyckoff R. W. C. Crystal Structures, v. I-II. N. Y., 1951-1955.