Р.А. ВИНОГРАДОВА

ДИАГНОСТИКА МИНЕРАЛОВ НИКЕЛЯ И КОБАЛЬТА В ПРОХОДЯЩЕМ СВЕТЕ

Определение минерального состава кобальт-никелевых руд и прежде всего минеральной формы нахождения Ni и Co в них — по-прежнему актуальная задача для работающих в области поисков, разведки, изучения и использования кобальт-никелевых месторождений.

Среди разнообразных методов, применяемых для диагностики минералов никеля и кобальта, доступным и, как показывает опыт, достаточно эффективным является оптический метод диагностики в отраженном и проходящем свете. Диагностика в отраженном свете освещена в предыдущих статьях [1, 2]. В этой статье приводятся материалы, которые могут оказаться полезными при определении минералов никеля и кобальта в проходящем свете (в шлифах и иммерсионных препаратах).

Минералы никеля и кобальта, диагностируемые в проходящем свете, относятся прежде всего к различным кислородным соединениям: силикатам, арсенатам, фосфатам, сульфатам, карбонатам, селенитам, боратам, гидроокислам, отчасти к окислам, — а также известны среди хлоридов и органических соединений. Эти минералы возникают преимущественно в экзогенных условиях и встречаются в корах выветривания ультраосновных, основных горных пород и серпентинитов или в зонах гипергенеза кобальтникелевых рудных месторождений. Некоторые из минералов широко распространены и имеют важное промышленное или поисковое значение. Отдельные минералы (либенбергит, люсакит, бонаккордит, бунзенит, треворит), вероятно, образовались в условиях метаморфизма или при магматической кристаллизации.

Рассматриваемые минералы обычно образуют землистые агрегаты, реже хорошо выраженные мелкие кристаллы призматической, игольчатой, волокнистой или пластинчатой формы. Им свойственна специфическая и достаточно яркая окраска. Никелевые минералы имеют различный по густоте и оттенкам зеленый цвет с переходом к желтозеленому или сине-зеленому. Кобальтовые минералы обладают розовой, розово-красной и розово-фиолетовой окраской. Реже окраска этих минералов может быть оранжевокрасной, красновато-бурой, бурой, охряно-желтой, лимонной, кремовой или синей. Перед оптической диагностикой подобных по окраске минералов, встреченных в соответствующей геологической обстановке, желательно провести простые и надежные микрохимические испытания капельным методом на присутствие Ni и Co [1].

В проходящем свете оптически охарактеризован 51 минерал никеля и кобальта. Все имеющиеся для них сведения по оптике обобщены и систематизированы в табл. 1, предназначенной для диагностики этих минералов в шлифах и иммерсионных препаратах. В таблице для каждого минерала, помимо названия, формулы, сингонии и степени распространения в природе, приводятся: осность, оптический знак, величины показателей преломления, двупреломления, угла 2V и угла погасания, ориентировка оптической индикатриссы, характер плеохроизма, а также особенности морфологии и характер спайности. Минералы в табл. 1 объединены в группы: изотропные и анизотропные (одноосные и двуосные соответствующего оптического знака и неизвестного оптического знака). Внутри этих подразделений минералы расположены по возрастанию наименьшего показателя преломления.

В качестве дополнения к оптическому методу диагностики, особенно в затрудительных случаях, можно использовать также метод рентгеновской дифрактометрии или порошкографии. В связи с этим табл. 2 представляет рентгеновские характеристики минералов, приведенных в табл. 1. Минералы в табл. 2 объединены в классы в соответствии с типом химического соединения, что удобно для случая, если рассматриваемые

Таблица 1 Сводная таблица диагностических признаков минералов никеля и кобальта в проходящем свете

LILI Na No	Название минерала, форму	ула Сингония	Показатели прелом- ления; двупрелом- ление
1	2	3	4
	Из	отропные	
1.	Заратит** Ni ₃ [CO ₃] (OH) ₄ · 4H ₂ O	Кубич.	n = 1,56-1,61
2.	Бунзенит*** NiO	к убич.	n = 2,23
3.	Треворит** NiFe ₂ O ₄	Кубич.	n =2,37 (?)
	Ани	зотропные е положительные	
4.	Жюльенит*** $ \text{Na}_2 \text{Co(CSN)}_4 \cdot 8\text{H}_2 \text{O} $	Тетрагон	$n_{o} = 1,556$ $n_{e} = 1,642$ $N_{e} - N_{o} = 0,086$
	Опноосны	е отрицательные	0,000
5.	Petrepcut** Ni[SO ₄]·6H ₂ O	Тетрагон	$n_e = 1,486$ $n_O = 1,510$ $N_O - N_e = 0,024$
6.	Хошмит*** (Mg, Ni)[CO ₃]	Тригон.	$n_e = 1,519 - 1,534$ $n_o = 1,711 - 1,728$ $N_O - N_e = 0,192 - 0,19$
7.	Каррбойдит*** $\operatorname{Ni}_{7}\operatorname{Al}_{4,5}\left[\left(\operatorname{SO}_{4}\right)_{2,30}\left(\operatorname{CO}_{3}\right)_{0,50}\right]_{2,80}$ (ОН	Гексагон.) _{2 2} · 3,7H ₂ O	$n_{\rm cp.} = 1,54-1,56$
8.	Сферокобальтит* Со[CO ₃]	Тригон.	$n_e = 1,600$ $n_O = 1,855$ $N_O - N_e = 0,255$
9.	Эрдлиит** $Ni_6 Al_2 [CO_3] (OH)_{1.6} \cdot 4H_2 O$	Гексагон.	$n_{\rm cp.} \simeq 1,600 \ N_{g} - N_{p}$ незначит.
10.	Джамборит*** (Ni, Co, Fe)(OH) ₂ (OH, S, H ₂ O)?	Гексагон.	$n_e = 1,602$ $n_o = 1,607$ $N_o - N_e = 0,005$
11.	Гаспеит*** (Ni, Mg, Fe)[CO ₃]	Тригон.	$n_e = 1,610$ $n_O = 1,830$ $N_O - N_e = 0,220$
12.	Метакирххеймерит*** $Co(UO_2)_2[AsO_4]_2 \cdot 8H_2O$	Тетрагон.	$n_e = 1,617$ $n_O = 1,644$ $N_O - N_e = 0,027$
13.	Ривесит*** $Ni_6 \text{ Fe}_2 [CO_3] (OH)_{16} \cdot 4H_2 O$	Тригон.	$n_e = 1,650$ $n_O = 1,735$ $N_O - N_e = 0,085$
	Двуосные	положительные	
14.	Биберит** Co[SO ₄] · 7H ₂ O	Монокл.	$n_p = 1,477$ $n_m = 1,483$ $n_g = 1,489$

Угол 2 V , угол погасания	Оптическая ориенти- ровка	Окраска в проходящем свете	Особенности морфо- логии, спайность	Ссылка на литератур
5	6	7	8	9
		Изотропные		1
		Зеленый, частично двупреломляющий и плеохроирующий		[3]
				[4]
				[5]
		Анизотропные		1
		Одноосные положительные		
			Игольчатый	[3]
		Одноосные отрицательные		
		Бледно-эеленый	Волокнистый; Сп. по (001)	*[3]
				[6]
		Голубовато-зеленый до желтовато-зеленого	Геленоподобный, войлокоподобный и тонкопластинча-	[7]
		Плеохроирует от лило- во-красного до розово- красного	Сп. сов. по (1011)	[3]
2 <i>V</i> — иногда до 10°		Плеохроирует от желто- вато-зеленого до голубо- вато-зелсного		[8]
	Пл. о.о. 1 пла- стинчатости		Волокнистый или пластинчатый	[9]
		Светло-зеленый	Сп. сов. по (1011)	[10]
Иногда аномально двуосный $(2V = 0-20^{\circ})$			Игольчатые и таблит- чатые кристаллы; Сп. сов. по (001)	[11]
		Светло-желтый	Пластинчатый	[12]
		Двуосные положительные		
$2V = (+)88^{\circ}$ $cN_g = 29^{\circ}$	$N_{\mathcal{L}} = b$	Бесцветный до бледно- розового	Сп. сов. по (001) и (110)	[3]

1	2	3	4
	Двуосные по	ложительные	
15.	Никельбуссенготит*** $(NH_4)_2 Ni[SO_4]_2 \cdot 6H_2 O$	Монокл.	$n_p = 1,490$ $n_m = 1,494$ $n_g = 1,501$ $N_g - N_p = 0,011$
16.	Албриттонит*** CoCl₂ ·6H₂O	Монокл.	$n_p = 1,525$ $n_m = 1,550$ $n_g = 1,576$ $N_g - N_p = 0,051$
17.	Никелистый роценит*** (Fe, Ni)[SO ₄] · 4H ₂ O	Монокл.	$n_p = 1,539$ $n_g = 1,545$ $N_g - N_p = 0,006$
18.	Никельбишофит*** NiCl₂ · 6H₂ O	Монокл.	$n_p = 1,589$ $n_m = 1,617$ $n_g = 1,644$ $N_g - N_p = 0,055$
19.	Смольяниновит* (структурные разности "желтого коб Fe ³⁺ Ca(Co, Ni, Mg) ₃ [AsO ₄] ₄ O · 11H ₂ C		$n_{\rm cp.} = 1,620-1,630$ $N_g - N_p = 0,007$
20.	Кегтигит** (Zn, Co, Ni) ₃ [AsO ₄] ₂ · 8H ₂ O	Монокл.	$n_p = 1,619-1,662$ $n_m = 1,645-1,683$ $n_g = 1,680-1,717$ $N_g - N_p = 0,061-0,055$
21.	Розелит-α** Ca ₂ Co[AsO ₄] ₂ ·2H ₂ O	Монокл.	$n_p = 1,694 - 1,725$ $n_m = 1,704 - 1,728$ $n_g = 1,719 - 1,735$ $N_g - N_p = 0,025 - 0,010$
22.	Розелит-β*** Ca ₂ Co[AsO ₄] ₂ · 2H ₂ O	Трикл.	$n_p = 1,705 - 1,723$ $n_m = 1,718 - 1,737$ $n_g = 1,737 - 1,756$ $N_g - N_p = 0,032 - 0,033$
	Двуосные	отрицательные	6 P
23.	Хеллиэрит*** Ni[CO ₃] · 6H ₂ O	Трикл.?	$n_p = 1,455$ $n_m = 1,503$ $n_g = 1,549$ $N_g - N_p = 0,094$
24.	Моренозит** Ni[SO₄] · 7H₂O	Ромбич. (псевдотетра- гон.)	$n_p = 1,467$ $n_m = 1,489$ $n_g = 1,492$ $N_g - N_p = 0,025$
25.	Никельгексагидрит** Ni[SO ₄] · 6H ₂ O	Монокл.	$n_m = 1,469$ $n_g = 1,494$
26.	Mypxaycuт** Co[SO ₄] · 6H ₂ O	Монокл.	$n_p = 1,470$ $n_g = 1,496$ $N_g - N_p = 0,026$
27.	Кашпарит*** (Mg, Co)Al ₃ [SO ₄] ₅ (OH) · 28H ₂ O	Триклин. (псевдо- монокл.)	$n_p = 1,481$ $n_m = 1,485$ $n_g = 1,487$ $N_g - N_p = 0,006$

5	6	7	8	9
		Двуосные положительные		
$cN_g = 0-4^{\circ}$		Плеохроирует: N_g — желтый, N_p — голубоватый	Призматический	[13]
$2V = (+)53^{\circ}$ $cN_g = 3^{\circ}$	$b = N_m$	Плеохроирует от розового до красноватофиолетового	Сп. сов. по (010)	[14]
		Бесцветный	Призматический	[13]
$2V = (+)87^{\circ}$ $cN_g = 8^{\circ}$	$b = N_m$	Слабо плеохроирует от светло-зеленого до зеле- ного	Сп. сов. по (001)	[15]
Угасание пря- мое	-	Тонковолокнистый		[16] [17, 18]
$2V = (+)77^{\circ}85^{\circ}$ $cN_g = 32^{\circ} -37^{\circ}$	$N_p = b$	Бледно-розовый, слабо плеохрирует	Призматические или волокнистые кристаллы Сп. по (010)	[3, 19]
$2V = (+)75^{\circ} - 60^{\circ}$ $aN_m = 12 - 20^{\circ}$	пл.о.о-(010)	Плеохроирует: N_p — темно-розовый; N_m — бледно-розовый; N_g — почти бесцветный	Пластинчатый Сп. сов. по (010)	[3, 18]
$2V = (+)80^{\circ} - 90^{\circ}$ $cN_g = 30^{\circ}$		Плеохроирует: N_p — ярко-розовый, N_m — светло-розовый, N_g — почти бесцветный	Полисинтетич. двойники и зональность; сп. сов. по (010)	[18, 20]
		Двуосные отрицательные		
$2V \simeq (-)85^{\circ}$		Слабый плеохроизм в зеленовато-голубых тонах	Сп. в 3-х направл.; тонкие полисинтетич. двойники	[21]
2 V = (-)42°	$N_g = a$ $N_p = b$		Игольчатый, волок- нистый	[3]
<i>cN_g</i> до 45°			Сп. сов. (010); пластинчатые кри-	[22]
2V = (7)10°		Плеохроирует в розовых тонах: $N_p \gg N_g$	сталны	[23]
	<i>N_m</i> ∧ спайн. = = 30°		Тонконгольчатый и волокнистый; характерны спайн., полисинтетич. двойники	[24, 3]

1	2	3	4
	Двуосные отрицате	льные	
28.	Никельблёдит (никельастраханит) *** Na $_2$ Ni[SO $_4$] $_2 \cdot 4\mathrm{H}_2\mathrm{O}$	Монокл.	$n_p = 1,513$ $n_m = 1,518$ $n_g = 1,520$ $N_g - N_p = 0,007$
29.	Никельвермикулит*** (Mg, Ca) _{0,3 5} (Mg, Ni, Al, Fe) ₃ [(Al, Si) ₄ O ₁₀] (OH) ₂ · 4H ₂ O	Монокл.	$n_p = 1,542$ $n_m = n_g = 1,573$ $N_g - N_p = 0,031$
30.	Пи мелит * (Ni-сапонит) (Ni, Mg) ₃ [Si ₄ O ₁₀] (OH) ₂ · nH ₂ O	Монокл.	$n_{\text{cp.}} = 1,595$ $N_g - N_p = 0,014 - 0,018$
31.	Виллемсент*** (Ni-тальк) (Ni, Mg) ₃ [Si ₄ O ₁₀] (OH) ₂	Монокл.	$n_p = 1,600$ $n_m = 1,652$ $n_g = 1,655$ $N_g - N_p = 0,055$
32.	Кабрерит кобальтовый *** * (Ni, Mg, Co) $_3$ [AsO $_4$] $_2 \cdot 8H_2$ O	Монокл.	$n_p' = 1,600$ $n_g' = 1,650$
33.	Кабрерит** (Ni, Mg) $_3$ [AsO $_4$] $_2 \cdot 8H_2$ O	Монокл.	$n_p = 1,620$ $n_m = 1,654$ $n_g = 1,689$ $N_g - N_p = 0,069$
34.	Аннабергит* Ni_3 [AsO ₄] ₂ · $8H_2$ O	Монокл.	$n_p = 1,622$ $n_m = 1,658$ $n_g = 1,687$ $N_g - N_p = 0,055$
35.	Эритрин* Co ₃ [AsO ₄] ₂ · 8H ₂ O	Монокл.	$n_p = 1,626$ $n_m = 1,661$ $n_g = 1,699$ $N_g - N_p = 0,073$
36.	Непуит* Ni ₆ [Si ₄ O ₁₀] (OH) ₈	Монокл.	$n_p = 1,625 - 1,629$ $n_g = 1,643 - 1,665$ $N_g - N_p = 0,018 - 0,036$
37.	Нимит*** (Ni — хлорит) (Ni, Mg, Fe, Al) ₆ [AlSi ₃ O ₁₀] (OH) ₈	Монокл.	$n_p = 1,637$ $n_m = n_g = 1,647$ $N_g - N_p = 0,010$
38.	Кобальтоменит*** Co[SeO ₃] · 2H ₂ O	Монокл.	$n_p = 1,681$ $n_m = 1,728$ $n_g = 1,769$ $N_g - N_p = 0,088$
39.	Альфельдит*** Ni{SeO ₃ } · 2H ₂ O	Монокл.	$n_p = 1,703$ $n_m = 1,744$ $n_g = 1,786$ $N_g - N_p = 0,083$
40.	Люсакит*** (Со — ставролит) (Fe, Co) Al ₄ [SiO ₄] ₂ O ₂ (OH) ₂	Ромбич.	$n_p = 1,739$ $n_m = 1,746$ $n_g = 1,753$ $N_g - N_p = 0,014$

5	6	7	8	9
 2V = (-) 60-70°		Двуосные отрицательные	Таблитчатые кри- сталны	[25]
2 V=(-) 8°-0°		Плеохроирует: $N_{\mathcal{D}}$ — светло-зелен., $N_{\mathcal{M}} = N_{\mathcal{G}}$ — светло-буро-зеленый	Сп. сов. — по (001)	[26]
2 V= (-) 30-80°			Сп. сов. по (001)	[27]
2 V = (-) 27°			Пластинчатый; сп. сов. по (001)	[28]
$cN_g = 35^{\circ}$		Не плеохроирует	Зерна удлиненной формы. Сп. по (010), ясная	[29]
$2V = (-)60^{\circ}$ $cN_g = 33^{\circ}$	$N_p = b$		Удлиненные зерна; сп. по (010) сов.	[3]
$2V = (-)84^{\circ}$ $cN_g = 35^{\circ}$	$N_p = b$	Спабо плеохроирует в зеленоватых тонах	Призматические или таблитчатые кристаллы, иногда зональные, сп. сов. по (010)	[3, 18, 30]
$2V = (-)89^{\circ}$ $cN_g = 31^{\circ}$	$N_p = b$	Плеохроирует: N_p — бледно-розовый, N_m — бледно-фиолетовый, N_g — красный	Призматические или таблитчатые кристал- пы, иногда зональные; сп. сов. по (010)	[3, 18, 30]
2V=(-) до 12°		Плеохронрует: N_p — зеленый, $N_m = N_g$ — желто-зеленый	Сп. сов. по (001)	[27]
2V = (-)15°		Слабо плеохроирует: N_g — яблочно-зеленый, N_p —зеленовато-желтый	Сп. сов. по (001)	[31]
$2V = (-)83^{\circ}$ $cN_g = 13^{\circ}$		Слабо плеохроирует в розовато-красных тонах	Зерна удлиненные или удлиненно-пластинча- тые	[32]
$2V = (-)87^{\circ}$ $cN_g = 12^{\circ}$	<i>N_m</i> = <i>b</i>	Слабо плеохроирует в зеленых тонах	Сп. сов. по (010) и (103) Зерна удлиненные или удлиненнопла- стинчатые	[32, 33]
$2V = (-) \sim 90^{\circ}$		Плеохроирует: N_D — кобальтово-синий, N_M — фиолетово-синий, $N_{\overline{Q}}$ — фиолетовый	Сп. по (010)	[27]
		-		19

1	2	3	4
	Двуосные отрицательны	ie	
41.	Либенбергит*** (Ni — оливин) (Ni, Mg, Fe) ₂ [SiO ₄]	Ромбич.	$n_p = 1,820$ $n_m = 1,854$ $n_g = 1,888$ $N_g - N_p = 0,068$
	Неизвестного оптического з	нака	
42.	Эплоуит (апловит) *** Co[SO ₄] · 4H ₂ O	Монокл.	$n_{\rm cp.} \sim 1,528-1,536$
43.	Фалькондоит*** (Ni — сепиолит) (Ni _{0,58} Mg _{0,42}) ₈ [Si ₆ O ₁₅] (OH) ₄ · 8H ₂ O	Ромбич.	$n_{\rm cp.} < 1.55$ $N_g - N_p = 0.01 - 0.02$
44.	Пекораит*** (Ni — клинохризотил) Ni ₆ [Si ₄ O _{1 0}] (OH) ₈	Монокл.	$n_{\rm cp.} = 1,565 - 1,603$
45.	Хонессит*** (водный основной сульфат Ni и Fe³+)	Синг.?	$n_{ m cp.} \sim 1,615 \ N_g - N_p - { m очен_b} \ $ низкое
46.	Отуэйит*** Ni ₂ [CO ₃] (OH) ₂ · H ₂ O	Ромбич.	$n_p = 1,650$ $n_g = 1,720$ $N_g - N_p = 0,070$
47.	Кассидиит*** Ca ₂ (Ni, Mg)[PO ₄] ₂ · 2H ₂ O	Триклин.	$n_p = 1,64-1,65$ $n_g = 1,67-1,68$ $N_g - N_p = 0,030$
48.	Ховахсит (''бурый кобальт'') * $\operatorname{Fe}_{2-4}^{3+}\operatorname{Co}_{0-3}(\operatorname{Co},\operatorname{Ni},\operatorname{Mg})_{4-1+5}[\operatorname{AsO}_4]_4\operatorname{O}_{1-4}\cdot (16-6\operatorname{H}_2\operatorname{O})$	Синг.?	<i>n</i> _{cp.} =1,660-1,730
49.	Глаукосферит*** (Cu, Ni) ₂ [CO ₃] (OH) ₂	Монокл.	$n_p = 1,69-1,71$ $n_m = n_g = 1,83-1,85$ $N_g - N_p = 0,140$
50.	Гидроокисел никеля*** (Уильямса) Ni(OH) ₂	Тригон.	$n_{\rm cp.} = 1,88$
51.	Боннакордит*** Ni ₂ Fe[BO ₃]O ₂	Ромбин.	n _p = 1,9 (вычисл. 2,2)

Таблица 2 Рентгеновская характеристика минералов никеля и кобальта

Класс соединений	Название минерала	№ минерала в табл. 1	Сингония
1	2	3	4
	Виллемсеит***	31	Монокл.
Силикаты			
	Либенбергит***	41	Ромбич.

5	6	7	8	9
		Двуосные отрицательны	e	
2 V=(-) 88°		Плеохроирует: $N_m \approx$ бесцветный до блед зеленого; N_g — зеле вато-желтый	но- ено-	[34]
	Her	известного оптического зн	нака	
		Слегка розоватый		[23]
	Удлинение положит.		Волокнистый	[35]
				[36]
Угол погасания 12°	Удлинение положит.		Неясно волокии- стый	[37]
Погасание пря- мое		Светло-зеленый, слабо плеохроирует	Волокнистый	[38]
		Бесцветный	Сп. сов. по (001)	[12]
			Гелевидный, тонко- дисперсный	[18, 39]
$cN_g = 7^{\circ}$	Удлинение положит.	Плеохроирует: Np — зеленый, $Ng \sim N_m$ — желто-зеленый	Волокнистый, сферо- литовый	[40]
			Пластинчатый	[5]
		Красновато-бурый	Тонкопризматиче- ский, игольчатый	[41]

.*

Пространственная группа	Параметры элемен- тарной ячейки	Интенсивные линии порошко- граммы	Ссылки на лите- ратуру
5	6	7	8
$C_2^6 - C2/c$	$a_0 = 5,138$ $b_0 = 9,149$ $c_0 = 18,994$ $\beta = 99^{\circ}59'$	9,30(100); 4,57(16); 3,12(28); 2,503(23)	[28]
$D_{2h}^{7}-Pbnm$	$a_0 = 4,727$ $b_0 = 10,191$ $c_0 = 5,955$	2,759 (90); 2,503 (80); 2,442 (100); 1,738 (90)	[34]

1	2	3	4
	Люсакит***	40	Ромбич.
			romon4.
Силикаты	Непуит*	36	Монокл.
	Никельвермикулит***	29	Монокл.
	Нимит***	37	Монокл.
	Пекорант***	44	Монокл.
	Пимелит**	30	Монокл.
	Фалькондоит***	43	Ромбич.
			- 1
A	. 2 .		(
Арсенаты, фосфаты	Аннабергит*	34	Монокл.
	Аэругит***	Оптически не	Монокл.
	Ni ₉ As ₃ O ₁₆	охарактеризован	10.
	Кабрерит**	33	Монокл.
	Кабрериг кобальтовый***	32	Монокл.
	Кассидинт***	47	Триклин.
	Ксантиозит***	Оптически не	Монокл.
	Ni ₃ [AsO ₄]	охарактеризован	
	Кёттигит**	20	Монокл.

5	6	7	8
$D_{2h}^{i,7}$ – Cemm	$a_0 = 7.88$ $b_0 = 16.65$ $c_0 = 5.66$		[44]
$C2-C_{2}^{3} Cm-C_{S}^{3} C2/m-C_{2}^{3}h$	$a_0 = 5,29$ $b_0 = 9,18$ $c_0 = 14,55$ $\beta = 93^{\circ}$	7,26; 3,61: 2,480; 2,425; 1,527; 1,494	[27]
$C_{g}^{4}-Cc$			[26]
$C_{2h}^1 - P2/m$	$a_0 = 5,320$ $b_0 = 9,214$ $c_0 = 14,302$ $\beta = 97^{\circ}06'$	14,2 (25); 7,10 (100); 4,74 (6); 3,55 (45)	[31]
		7,43 (8); 4,50 (5); 3,66 (6); 2,620 (5); 1,529 (6)	[36]
$C_S^4 - Cc$	0.0		[27]
	$a_0 = 13.5$ $b_0 = 29.9$ $c_0 = 5.24$	12,07 (100); 3,36 (30); 3,19 (25); 2,61 (30); 2,57 (35); 2,44 (30)	[35]
$C_{2h}^3 - C2/m$	$a_0 = 10,14$ $b_0 = 13,31$ $c_0 = 4,71$ $\beta = 104^{\circ}45'$	7,77 (5); 6,62 (7); 6,29 (6); 3,19 (10); 2,998 (9); 1,680 (8); 1,649 (8); 1,557 (9); 1,077 (7)	[18, 30]
$C2-C_2^3$ $Cm-C_3^3$ или $C2/m-C_{2h}^3$	$a_0 = 10,29$ $b_0 = 5,95$ $c_0 = 9,79$ $\beta = 110^{\circ}19'$	5,05; 3,76; 2,862; 2,492; 2,329; 2,060; 1,485	[42]
		9,20(3); 8,91(4); 6,73(10); 3,19(8); 2,989(8); 2,711(6); 1,666(9); 1,637(9)	[43]
		7,68 (8); 6,63 (10); 3,43 (10); 3,18 (8); 2,98 (9); 2,69 (8); 1,656 (9); 1,632 (8)	[29]
$C_{i}^{1}-P\overline{1}$	$a_0 = 5.71$ $b_0 = 5.73$ $c_0 = 5.41$ $\alpha = 96^{\circ}49.5'$	3,23 (65); 3,13 (48); 3,03 (90); 2,70 (100); 2,67 (79)	[12]
	$\beta = 107^{\circ} 21,5'$ $\gamma = 104^{\circ} 35'$		*
$C_{2h}^{5}-P2_{1}/c$	$a_0 = 10,17$ $b_0 = 9,558$ $c_0 = 5,77$ $\beta = 92^{\circ}58'$	4,32; 3,46; 2,61; 2,529; 1,544; 1,527; 1,492; 1,436	[42]
$C_{2h}^3 - C_2/m$	$a_0 = 10,240$ $b_0 = 13,401$ $c_0 = 4,752$ $\beta = 105,07^{\circ}$	3,220 (50); 3,006 (50); 2,994 (90); 2,734 (60); 2,462 (50)	[19]
$D_{4h}^{\gamma} - P4/nmm$	$a_0 = 7.15$ $c_0 = 8.62$	8,55 (10); 5,07 (6); 4,30 (6); 3,56 (10); 3,41 (5); 3,00 (6); 2,52 (5)	[11]

1	2	3	4
	Розелит-α**	21	Монокл.
Арсенаты, фосфаты	Розелит-β***	22	Триклин.
	Смольяниновит*	19	Ромбич.
	Ховахсит*	48	* /
			4.
	Эритрин*	35	Монокл.
Сульфаты	Биберит**	14	Монокл.
	Каррбойдит***	7	Гексагон.
	Каштарит***	27	Триклин. (псевдо-
	Моренозит **	24	монокл.) Ромбич. (псевдо- тетрагон.)
	Мурхаусит***	26	Монокл.
	Никельблёдит*** (никельастраханит)	28	Монокл.
	Никельбуссенгетит***	15	Монокл.
	Никельгексагидрит***	25	Монокл.
	Ретгерсит**	5	Тетрагон.

5	6	7	8
$C_{2h}^s - P2_1/c$	$a_0 = 5,61$ $b_0 = 12,83$ $c_0 = 5,61$ $\beta = 100^{\circ}45'$	6,32; 3,66; 3,11; 2,73; 2,07; 1,79	[18]
$C_{i}^{1}-P\overline{1}$	$\alpha = 90^{\circ} 21'$ $\beta = 91^{\circ}$ $\gamma = 89^{\circ} 20'$	3,55 (4); 3,07 (10); 2,77 (8); 1,92 (4)	[18, 20]
	$a_0 = 6,40$ $b_0 = 11,72$ $c_0 = 21,9$	21,94; 11,58; 3,20; 2,92; 1,642; 1,486	[16, 17, 18]
		Обычно рентгеноаморфен. Иногда фиксируется 4 слабых отражения, близких к смольяниновиту: 11,9-12,1; 3,27-3,30; 2,7; 2,5	[18, 39]
$C_{2h}^3 - C2/m$	$a_0 = 10,20$ $b_0 = 13,37$ $c_0 = 4,74$ $\beta = 105^{\circ} 01'$	8,52 (4); 6,85 (7); 3,23 (9); 3,010 (10); 2,729 (8); 2,319 (7); 1,679 (6); 1,485 (6); 1,041 (6)	[18, 30]
$C_{2h}^5 - P2_1/c$	$a_0 = 14,13$ $b_0 = 6,55$ $c_0 = 11,00$ $\beta_0 = 105^{\circ}05'$	4,87 (100); 4,82 (55); 3,76 (75); 3,71 (20); 2,725 (25)	[44, 45]
	$a_0 = 9,14$ $c_0 = 10,34$	10,5 (оч. сильн.); 5,25 (сильн.); 3,48 (средн.); 2,55 (средн.); 1,51 (средн.)	[7]
		4,83 (100); 4,25 (90); 4,12 (80); 3,48 (70); 1,92 (60)	[24]
$D_2^4 - P2_1 2_1 2_1$	$a_0 = 11.8$ $b_0 = 12.0$ $c_0 = 6.81$	5,3 (6); 4,20 (10); 2,85 (4); 2,65 (3)	[43]
$C_{2h}^6 - C_2/c$	$a_0 = 10.0$ $b_0 = 7.2$ $c_0 = 24.3$ $\beta = 98^{\circ} 22'$	4,39 (10); 4,01 (6); 2,91 (5)	[23]
$C_{2h}^{5}-P2_{1}/a$	$a_0 = 10,87$ $b_0 = 8,07$ $c_0 = 5,46$ $\beta = 100^{\circ}43^{\circ}$	4,466(9); 4,193(7); 3,720(6); 3,223(10); 3,290(8); 2,589(6)	[25]
$C_{2h}^5 - P2_1/a$	$a_0 = 9.21$ $b_0 = 12,46$ $c_0 = 12,50$ $\beta = 106^{\circ}52'$	2,076 (4); 1,859 (3); 1,806 (6); 1,493 (3)	[13]
$C_{2h}^6 - C_2/c$	$a_0 = 9,84$ $b_0 = 7,17$ $c_0 = 24,0$ $\beta = 97^{\circ}30'$	4,35 (10); 3,98 (9); 3,89 (7); 2,89 (9); 2,27 (7); 1,990 (7)	[22]
$D_4^{\alpha} - P4_1 2_1 2$	$a_0 = 6,79$ $c_0 = 18,28$	4,26 (10); 2,96 (8); 2,72 (9); 2,57 (9); 2,34 (8); 2,13 (10)	[44, 45]

Таблица 2 (продолжение)

1	2	3	4
	Роценит никелистый***	17	Монокл.
	Хонессит***	45	?
	Эплоуит***	42	Монокл.
Карбонаты	Гаспеит***	11	Тригон.
	Глаукосферит***	49	Монокл.
	Заратит**	1	Кубич.
	Никелькарбонат***	Оптически не охарактеризован	Тригон.
	Отуэйит***	46	Ромбич.
	Ривесит***	13	Тригон.
	Сферокобальтит*	8	Тригон.
	Хеллиэрит***	23	Триклин. (?)
	Хошиит***	6	Тригон.
	Эрдлиит**	9	Гексагон.
Бораты	Бонаккордит***	51	Ромбич.
Селениты	Альфельдит***	39	Монокл.

5	6		7	8
	$a_{o} = 5.87$ $b_{o} = 13.48$ $c_{o} = 8.03$ $\beta = 91^{\circ}5'$		2,112(7); 1,961(3); 1,937(3); 1,881(3)	[13]
			8,7 (10); 4,33 (2); 2,67 (2); 1,542 (2)	[37]
$C_{2h}^5 - P2_1/n$	$a_0 = 5,94$ $b_0 = 13,56$ $c_0 = 7,90$ $\beta = 90^{\circ}30'$		5,44 (9); 4,46 (10); 3,95 (8); 3,39 (6); 2,95 (7)	[23]
	$a_0 = 4,621$ $c_0 = 14,93$ или $a_{rh} = 5,65$ $\alpha = 48^{\circ}18^{\circ}$	•	3,543 (36); 2,741 (100); 2,098 (36); 1,692 (45)	[10]
	$a_0 = 9,368$ $b_0 = 11,99$ $c_0 = 3,387$ $\beta = 92,12^\circ$		5,04 (3); 3,68 (7); 2,587 (10); 2,516 (4); 2,124 (3)	[40, 46]
	$a_0 = 6.16$		9,4 (10); 6,06 (10); 3,65 (7); 3,40 (6); 3,11 (4)	[43]
$D_{3d}^{6}-R3c$	$a_{rh} = 5.85$ $\alpha = 103^{\circ} 40'$		3,512 (50); 2,708 (100); 2,086 (35); 1,681 (45); 1,673 (35)	[47]
	$a_0 = 10,18$ $b_0 = 27,40$ $c_0 = 3,22$		6,84 (10); 5,67 (8); 3,022 (5); 2,737 (6); 2,529 (5)	[38]
$D_{3d}^5 - R\overline{3}m$ или $C_{3v}^5 - R\overline{3}c$	$a_0 = 6,15$ $c_0 = 45,61$		7,63(100); 3,80(73); 2,60(81); 2,30(61); 1,946(48)	[12]
$D_{1d}^6 - R\overline{3}c$	$a_{rh} = 5.92$ $\alpha = 103^{\circ} 22'$		3,64 (6); 2,76 (10); 1,71 (10); 1,50 (4); 1,415 (4)	[43]
			9,4 (10); 6,06 (10); 3,65 (7); 3,40 (6); 3,11 (4); 2,38 (5)	[21]
$D_{3d}^6 - R\overline{3}c$	$a_0 = 4,637$ $c_0 = 5,004$ или $a_{rh} = 5,673$ $\alpha = 48^{\circ}15'$		2,739 (10); 2,103 (9); 1,698 (8)	[6]
	$a_0 = 3,018$ $c_0 = 22,58$		7,53(10); 3,763(8); 2,546(8); 2,262(7); 1,918(7); 1,509(5); 1,479(5)	[8] Установлено, что по составу и свойствам эрдлиит аналоги- чен таковиту [48]
$D_{2h}^9 - Pbam$	$a_0 = 9,213$ $b_0 = 12,229$ $c_0 = 3,001$		5,100 (50); 4,61 (40); 2,548 (100); 2,514 (100); 1,898 (50)	[41]
$C_{2h}^5 - P2_1/n$	$a_0 = 7,53$ $b_0 = 8,76$ $c_0 = 6,43$ $\beta = 99^{\circ}05'$		5,69 (100); 3,426 (80); 3,772 (60); 2,992 (75); 2,719 (60)	[33]

Таблица 2 (окончание)

1	2	3	4
	Кобальтоменит***	38	Монокл.
Гидроокислы	Бунзенит***	2	Кубич.
	Гидроокисел никеля*** (Джамбора и Бойла) 4Ni(OH) ₂ · NiOOH	Оптически не охарактеризован	Тригон. (?)
	Гидроокисел никеля	50	Тригон.
	(Уильямса) Джамборит***	10	Гексагон.
	Никельсодер жащая гидро- окись магния*** 4Mg(OH) ₂ · (Ni, Me) OOH	Оптически не охарактеризована	Тригон.
Окислы	Треворит***	3	Кубич.
Клориды	Албриттонит***	16	Монокл.
	Никельбишофит***	18	Монокл.
Органические соединения	Абелсонит*** С _{э 2} Н _{э 6} N ₄ Ni	Оптически не охарактеризован	Триклин.
	Жюльенит***	4	Тетрагон.

Примечание: * распространенные; ** мало распространенные; *** редкие.

минералы будут диагностироваться и по химическому составу. Внутри каждого класса минералы располагаются по алфавиту с указанием порядкового номера минерала в табл. 1.

Таким образом, табл. 2 одновременно можно использовать и как своеобразный указатель минералов к табл. 1. По сравнению с табл. 1, табл. 2 дополнительно содержит еще шесть минералов, относящихся к рассматриваемым соединениям, но не вошедших в табл. 1 из-за отсутствия в литературе их оптической характеристики.

5	6	7	8
$C_{2h}^{s} - P2_{1}/n$	$a_0 = 7,615$ $b_0 = 8,814$ $c_0 = 6,499$ $\beta = 98°51'$	5,72(100); 3,46(70); 3,80(50); 3,017(55); 2,738(45); 2,378(40)	[32]
$O_h^5 - Fm3m$	$a_0 = 4,171$	2,42 (8); 2,085 (9); 1,476 (9); 1,261 (9); 1,208 (9); 1,045 (7)	[4]
	$a_0 = 3,07$ $c_0 = 22,74$	7,58 (10); 3,79 (6); 2,585 (6); 2,296 (5); 1,946 (4)	[5]
$D_{3d}^3 - P\overline{3}m1$	$a_0 = 3.08$ $c_0 = 4.62$	4,63 (10); 2,71 (6); 2,34 (10); 1,757 (8)	[5]
	$a_0 = 3,07$ $c_0 = 23,3$	7,78 (10); 3,89 (4); 2,592 (6); 1,530 (5); 1,500 (3)	[9]
	$a_0 = 3,198$ $c_0 = 23,190$	7,75 (100); 3,86 (55); 2,330 (25); 1,975 (25)	[49]
$O_h^7 - Fd 3m$	$a_0 = 8,32$ $-8,34$	2,50 (10); 1,598 (5); 1,473 (7); 1,087 (4)	[5, 50]
$C_{2h}^3 - C_2/m$	$a_0 = 8,899$ $b_0 = 7,065$ $c_0 = 6,644$ $\beta = 97,25^{\circ}$	5,637 (10); 5,521 (6); 4,827 (8); 2,934 (5); 2,758 (3); 2,411 (3); 2,219 (3); 2,206 (3)	[14]
$C_{2h}^3 - C2/m$	$a_0 = 10,318$ $b_0 = 7,077$ $c_0 = 6,623$ $\beta = 122,37^{\circ}$	5,59 (100); 5,49 (40); 4,82 (30); 2,924 (40); 2,747 (30); 2,180 (3)	[15]
	$a_0 = 8,51$		[51]
	$b_0 = 11,18$		
	$c_0 = 7.29$ $\alpha = 90^{\circ} 53'$ $\beta = 114^{\circ} 08'$		
	$\gamma = 79^{\circ} 59^{\circ}$ $a_0 = 19,00$ $c_0 = 5,47$		[44, 52]

ЛИТЕРАТУРА

- 1. Боришанская С.С., Виноградова Р.А. Диагностика минералов никеля и кобальта в отраженном свете (1). В кн.: Новые данные о минералах СССР, 1980, вып. 29.
- 2. Боришанская С.С., Виноградова Р.А. Диагностика минералов никеля и кобальта в отраженном свете (2). В кн.: Новые данные о минералах СССР, 1981, вып. 30.
- 3. Ларсен Е., Берман Г. Определение прозрач-
- ных минералов под микроскопом. М.: "Недра". 1965.
- Минералы. Справочник, Изд-во АН СССР, 1965, т. 2, вып. 2.
- Минералы. Справочник, Изд-во АН СССР, 1967, т. 11, вып. 3.
- Chu-siang Y., Kuo-fun F., Chen-ea S. Hoshiite (a new mineral). — "Acta geol. sinika", 1964, vol. 44, N 2.

- 7. Nickel E.H., Clarke R.M. Carrboydite, a hydrated sulfate of nickel ad aluminium: a new mineral from Western Australia. Amer. Miner., 1976, vol. 61, N 5-6.
- Nickel E.H., Davis Ch.E.S., Bussel M. et al. Eardleyite as a product of the supergene alteration of nickel sulfides in Western Australia. — Amer. Miner., 1977, vol. 62, N 5-6.
- Morandi N., Dalrio G. Jamborite: a new nickel hydroxide mineral from the northern Apennince, Italy. — "Amer. Miner.", 1973, vol. 58, N 9-10.
- Kohls D. W., Rodda J.L. Gaspeite, a new carbonate from the Gaspe peninsule, Quebec. - Amer. Miner., 1966, vol. 51, N 5-6.
- Бонштедт-Куплетская Э.М. Новые минералы.
 VIII. Запис. Всесоюзн. минералог. об-ва, 1959, вып. 3, с. 316.
- 12. White J.S., Henderson J.E.P., Mason B. Secondary minerals of the Wolf Creek meteorite. Amer. Miner., 1967, vol. 52, N 7-8.
- 13. Яхонтова Л.К., Сидоренко Г.А., Столярова Т.И., Плюснина И.И., Иванова Т.Л. Никельсодержащие сульфаты из зоны окисления Норильских месторождений. Запис. Всесоюзн. минер. об-ва, 1976, вып. 6.
- Crook W.W., Marcotty L.A. Albrittonite, a new cobalt chloride hydrate from Oxford, Llano
 Country, Texas. Amer. Miner., 1978, vol. 63, N 3-4.
- Crook W.W., Jambor J.L. Nickelbischofite, a new nickel chloride hydrate. — Canad. Miner., 1979, vol. 17, N 1.
- 16. Яхомтова Л.К. Новый минерал смольяниновит. ДАН СССР, 1956, т. 109, № 4.
- Яхонтова Л.К., Сидоренко Г.А., Сергеева Н.Е., Рыбакова Л.И. Новые данные о смольяниновите. – Конституция и свойства минералов, 1973, вып. 7.
- 18. Яхонтова Л.К. Минералогия и генезис зоны окисления арсенидных никель-кобальтовых месторождений (на примере Ховуаксинского рудного поля). Автореф. докт. диссертации. Изд-во МГУ, 1972.
- Sturman B.D. New data for kottigite and parasymplesite. "Canad. Miner.", 1976, vol. 14, N 4.
- Frondel C. Neomesselite and beta-rosellite: two new members of the fairfieldite group. – "Amer. Miner.", vol. 40, N 9-10.
- Williams K.L., Threadgold J.M., Hounslow A.W. Hellyerite, a new nickel carbonate from Heazlewood, Tasmania. – "Amer. Miner.", 1959, vol. 44, N 5-6.
- 22. Олейников Б.В., Шварцев С.Л., Мандрикова Н.Т., Олейникова Н.Н. Никельгексагидрит новый минерал. Зап. Всесоюзн. минерал. о-ва, 1965, вып. 5.
- Jambor J.L., Boyle R.W. Moorhouseite and aplowite, new cobalt minerals from Walton, Nova Scotia. - Canad. Miner., 1965, vol. 8, N 2.
- 24. Dubanský A. Přispěvky k poznaní geochimie sokundárnich sulfátu. III. Sulfáty z Dubniky u Prešova. – Cem. Listy, 1956, vol. 50, N 9.
- Nickel E.H., Bridge P.J. Nickelblödite, a new mineral from Western Australia. — "Miner. Mag.", 1977, vol. 41, N 317.

- 26. Дир У.А., Хаури Р.А., Зусман Дж. Породообразующие минералы. М.: Мир, 1966, т. 3.
- 27. Фекличев В.Г. Диагностические спектры минералов. М.: Недра, 1977.
- Waal S.A. de. Nickel minerals from Barberton, South Africa, III. Willemseite, a nickel-rich talc. – Amer. Miner., 1970, vol. 55, N 1-2.
- 29. Яхонтова Л.К., Столярова Т.И. Находка кобальтового кабрерита. Тр. Минерал. музея АН СССР, 1972, т. 21.
- Яхонтова Л.К. Вопросы состава и свойств минералов группы эритрина. – Тр. Минерал. музея АН: СССР, 1961, т. 11.
- Hiemstra S.A., Waal S.A. de. Nickel minerals from Barberton. II. Nimite, a nickelian chlorite. (по реферату М. Флейшера в "Amer. Miner.", 1969, vol. 54, N 11-12).
- Sturman B.D., Mandarino J.A. The ahlfeldite cobaltomenite series. "Canad. Miner.", 1974, vol. 12, N 5.
- Aristarain L.F., Hurlbut C.S. Jr. Ahlfeldite from Pacajake, Bolivia: a restudy. — "Amer. Miner.", 1969, vol. 54, N 3-4.
- 34. Waal S.A. de, Calk L.C. Nickel minerals from Barberton, South Africa. IV. Liebenbergite, a nickel olivine. — "Arner. Miner.", 1973, vol. 58, N 8.
- Springer G. Falcondoite, nickel analogue of sepiolite. "Canad. Miner.", 1976, vol. 14, N 4.
- 36. Faust C.T., Fahey J.J., Mason B., Dwornik E.J. Pecoraite, nickel analogue of clinochrysotile, formed in the Wolf Creek meteorite. – "Science", 1969, vol. 165, N 3888.
- 37. Heyl A. V., Milton Ch., Axelrod J.M. Nickel minerals from near Linden, Jowa Country, Wisconsin. - "Amer. Miner.", 1969, vol. 44, N 9-10.
- Nickel E.H., Robinson B.W., Davis Ch.E.S., MacDonald R.D. Otwayite, a new nickel mineral from Western Australia. – "Amer. Miner.", 1977, vol. 62, N 9-10.
- 39. Яхонтова Л.К., Сидоренко Г.А. Минеральный состав охр из зоны окисления арсенидных месторождений. Тр. Минерал. музея АН СССР, 1974, вып. 23.
- Pryse M.W., Just J. Glaukosphaerite, a new nickel analogue rosasite. — Miner. Mag., 1974, vol. 39, N 307.
- Яковлевская Т.А. Новые минералы. XXXI. Запис. Всесоюзн. минерал. об-ва, 1977, вып. 1, с. 76.
- Davis R.J., Hey M.H., Kingsbury A.W.G. Xanthiosite and aerugite. Miner. Mag., 1965, vol. 35, N 269.
- 43. *Михеев В.И.* Рентгенометрический определитель минералов. М.: Госгеолтехиздат, 1957.
- Strunz H. Mineralogische Tabellen. Leipzig, 1970.
- 45. Костов И. Минералогия. М.: Мир, 1971.
- Jambor J.L. A possible unit cell for glaucosphaerite. - Can. Miner., 1976, vol. 14, N 4.
- 47. Mariano A.N., Poissek W.J., Bender S.L. Canad. Miner., 1969, vol. 10, N 1.
- 48. Bish D.L., Brindley G.W. A reinvestigation of takovite, a nickel-aluminium hydroxy-carbonate

of the pyroaurite group. – Amer. Miner., 1977, vol. 62, N 5-6.

49. Lapham D.M. A new nickeliferous magnesium hydroxide from Lancaster country Pensylvania. – Amer. Miner., 1965, vol. 50, N 10.

50. Waal S.A.de. Nickel minerals from Barberton, South Africa. V. Trevvorite, redescribde. – Amer. Miner., 1972, 57, N 9-10. 51. Pabst A., Ester R.A., Dwornik E.J., Finkelman R.B., Milton C. Crystallized nickel porphyrin from the Creen River Formation, Utah. (по реферату М. Флейшера в Атег. Miner., 1976, vol. 61, N 5-6).

52. Крутов Г.А. Месторождения кобальта. М.:

Госгеолтехиздат. 1959.

УДК 549.1:549.642

В.С. ГАЙДУКОВА, Г.А. СИДОРЕНКО

О СТАБИЛЬНОСТИ И ФАЗОВЫХ ПРЕВРАЩЕНИЯХ ПИРОХЛОРА

При изчучении минералов группы пирохлора выявляются как метамиктные, так и кристаллические разности. Первые диагностируются по продуктам прокаливания, в которых наряду с пирохлоровой фазой наблюдается луешит (NaNbO₃), либо другие минералы группы перовскита, ферсмит (CaNb₂O₆). и другие фазы типа сложных окислов. Это явление связывалось с нарушением стехиометрии первичного пирохлора в период пребывания его в метамиктном состоянии [1]. А.И. Комков [2] полагает, что многофазность и тип новообразования несут информацию о составе метамиктного минерала. Собственно большинство работ по изучению продуктов прокаливания пирохлора посвящено именно метамиктным его разновидностям, так как термическая обработка, в данном случае, необходима для диагностики минерала.

В обстоятельной работе, посвященной изучению пирохлора, Ван-дер-Вином [3] сделана попытка объяснить появление в пирохлорах (как метамиктных, так и кристаллических) после прокапивания наряду с пирохлоровой фазой дополнительных ферсмитовой и перовскитоподобной фаз. Он приходит к выводам: (I) если после стандартного нагревания пирохлора ферсмитовая фаза преобладает, вакансий в группе А должно быть около половины. Чтобы появились другие фазы, дефицит должен быть больше; (2) если после стандартного нагревания наблюдается пишь пирохлоровая фаза, дефицит в группе А возможен от 20—0%; (3) если после стандартного нагревания получается дополнительная перовскитоподобная фаза, определенное количество (?) вакансий должно иметь место в группе А пирохлора. Ван-дер-Вин предполагает, что перовскитоподобная фаза скорее всего является NaNbO3 или Na TaO3 в зависимости от исходного материала — пирохлора или микролита.

Авторами проводилось нагревание и исследование стабильности кристаллического пирохлора при температурах 1000—1200°С (на воздухе), которое также обнаружило появление дополнительных новообразованных фаз. Это позволяет внести коррективы в интерпретацию данных рентгеноструктурного анализа продуктов прокаливания пирохлоров метамиктных, но вместе с тем требует объяснения наблюдаемого явления

фазового распада кристаллического пирохлора.

В предпагаемой работе исследовалось поведение кристаллических пирохлоров из карбонатитов Восточного Саяна, по составу приближающихся к собственно пирохлору NaCaNb $_2$ O $_6$ (OH, F) с незначительным количеством других элементов. В табл. 1-3 даны результаты химического анализа и рассчитанных по нему кристаллохимических формул ряда изученных минералов.

Изучение исходных пирохлоров и продуктов их прокаливания в электронном микроскопе дало дополнительный фактический материал о стабильности минерала и пре-

терпеваемых им фазовых превращениях.

При нагревании кристаллических пирохлоров на воздухе до 1200° С в течение 1-2 часов (иногда до 1000° С) в продуктах прокаливания были обнаружены наряду с пирохлоровой фазой луещит, лопарит [(Ca, Ce)(J, Nb,)O₃], ферсмит (табл. 4). Количество