УДК 549.676 (470.21)

А.В. ВОЛОШИН, Я.А. ПАХОМОВСКИЙ, Ф.Н. ТЮШЕВА, С.В. ТУМАНОВ

НОВЫЕ РАЗНОВИДНОСТИ ГАРРОНИТА ИЗ КОЛЬСКОГО ПОЛУОСТРОВА

Минералы обнаружены на Кольском полуострове в зоне контакта кварцевых альбитофиров и толщи переслаивания кордиерит-андалузитовых роговиков с порфироидами. Установлены они в керне скважины на глубине 65 м от дневной поверхности. В зоне контакта указанных пород проявлена интенсивная хлоритизация и развита система мелких параллельных трещин. Стенки этих трещин покрыты корочками ромбоэдрических бесцветных кристаллов шабазита и тонкоигольчатых кристаллов актинолита. Среди кристаллов шабазита наблюдаются редкие сферолиты цеолитов (рис. 1).

Сферолиты цеолитов проявляют зональное строение: основную часть сферолита слагает лучистый минерал светло-коричневого или желто-коричневого цвета, а тонкую краевую зону — бесцветный минерал без выраженного лучистого строения. Размеры сферолитов от 0,1 до 0,5 мм, толщина краевой зоны бесцветного минерала 0,01—0,02 мм.

Под микроскопом минералы анизотропны, с небольшим значением двупреломления, одноосные, положительные. Для лучистого минерала измеренные показатели преломления составляют: $n_e = 1,507$, $n_o = 1,503$. По оптическим характеристикам минералы не различаются. В ультрафиолетовом свете и катодных лучах свечением не обладают. Плотность лучистого минерала, измеренная в микробюретке, 2,21 г/см³.

По рентгенограмме порошка лучистый минерал изоструктурен с гарронитом [1,2] и полностью аналогичен синтетическим цеолитам Ca-P_T[3] и Cash — 11 [4]. Последний, как это показано А. Тейлором и Р.Роем [3], изоструктурен с Ca-P_T. О пространственной группе гарронита и синтетических цеолитов сведений в литературе нет. По аналогии с Ca-P_T минерал отнесен к тетрагональной сингонии. Вычисленные параметры элементарной ячейки составляют: $a_0 = 9,96 \pm 0,02$, $c_0 = 10,37 \pm 0,02$ Å, z = 1. С этими параметрами рентгенограмма порошка проиндицирована полностью. Многократные попытки полученные рентгенограммы его содержат только небольшое число слабых отражений, полностью соответствующих сильным линиям гарронита и изоструктурных синтетических цеолитов (табл. 1). Это свидетельствует, что оба минерала, образующие сферолиты, являются гарронитом.

ИК-спектр лучистого цеолита, записанной О.А. Залкиндом (Институт химии КФ АН СССР), содержит широкую полосу поглощения в области 3200—3600 см⁻¹, обусловленную валентными колебаниями H₂O, и соответствующую ей полосу с частотой 1650 см⁻¹, связанную с деформационными колебаниями молекулярной воды в минерале. Положение и характер этих полос поглощения аналогичен таковым большинства цеолитов. На ИК-спектре четко выделяются полосы поглощения, обусловленные колебаниями полиэдров AlO₄ и SiO₄: 1100, 1005, 775, 745, 695, 665, 600 и 440 см⁻¹.

Изучение химического состава показало существенное различие в соотношении катионов (Са, Na и K) лучистого минерала и бесцветной краевой зоны. Последний минерал характеризуется высоким содержанием калия, благодаря чему на растровых картинах краевая зона сферолитов четко выделяется в характеристическом излучении калия (рис. 2).

Химический состав обоих разновидностей гарронита приведен в табл. 2, где для сравнения также даны анализы гарронита из Сибири [5], Ирландии и Исландии [1].

Рис. 1. Сферолитовые выделения гарронита среди ромбоздрических кристаллов шабазита. РЭМ фотография, увел. 60

Расчет формул разновидностей гарронита, исходя из 32 атомов кислорода в безводной части формулы, приведены в табл. 3. В эту таблицу помещены расчеты согласно идеализированных формул гарронита, определяющих этот минеральный вид в минералогических справочниках.

Сравнение соотношения катионов Ca, Na и K в кольских образцах и гарронита, по литературным данным, а также с идеализированным составом гарронита, позволяет считать, что рассматриваемые цеолиты сферолитов представляют собой новые разновидности: лучистый минерал — Са-гарронит, бесцветный минерал краевой зоны — К-гарронит.

Для цеолитов характерно замещение в катионной части по схеме AlCa→Si(Na, K). В частности, этой схемой замещения объяснено Дж. Уолкером [7] изменение состава в жисмондинах. Этот тип замещения виден из сравнения формульных коэффициентов Са- и К-гарронита, но в составе гарронитов, по литературным данным, несмотря на высокое содержание натрия, четко не устанавливается.

Исследования по катионному обмену [3] говорят о том, что в ассоциации с гарронитом должны существовать натриевые кубические или калиевые тетрагональные (К—Р_T) типы цеолитов. Это действительно подтверждается в наших образцах, когда лучистый Са-гарронит обрастается тонкой зоной калиевой разновидности с незначительным количеством натрия.

Содержание воды в цеолитах уменьшается с увеличением объема катионов, при замене одних другими. Такая корреляция устанавливается в шабазите [8]. Однако для тетрагональных цеолитов Р-типа в пределах структурной группы с увеличением объема катиона увеличивается объем элементарной ячейки и на содержание воды большого влияния не оказывает. Некоторый эффект оказывает ионный потенциал катиона. Наименьшее количество молекул воды отмечается в тетрагональных Ртипа цеолитах с катионами K, Rb и Cs [3]. К-Р_т цеолит был синтезирован с 10,8%

Гарронит [2]		Цеолит Са-Р _т [3]			Са-гарронит			К-гарронит	
1	d	i	d	hki	1	d _{изм.}	d _{выч.}	hki	d
80	7,15	80	7,13	101	10	7,2	7,18	101	7,3
80	4,95	60	4,95	200	9	4,99	4,98	200	5.05
00	4,12	70	4,15	112	10	4,18	4,18	112	4.15
60	4,07	50	4,07	211	5	4,09	4,09	211	, -
60	3,22	40	3,24	103	5	3,28	3.27	103	3.26
00	3,14	100	2,14	301	10	3,16	3.16	301	3.18
20	2,88	4	2,893	222					2.94
					2ш	2,76	2,76	320	
10	2,68	10	2,708	213			2,73	213	
00	2,66	60	2,674	312	10	2,694	2,692	312	2.70
10	2,54	8	2,573	004	3	2,595	2,593	004	-,
20	2,34	8	2,334	411	3	2,349	2,348	411	
20	2,22	4	2,211	420	lp	2,227	2,227	420	•
10	2,12	4	2,125	332	lp	2,137	2.139	332	
10	2,05	6	2,072	224	4	2,086	2,088	224	
6	2.03	2	2.030	422			,		
20	1,970	6	1,985	314	1	2,005	2.002	314	
20	1,938	6	1,940	431;501	1	1,950	1,953	510:501	
20	1,805	4	1,811	512;521	2ш	1,823	1.821	521:512	
40	1,770	6	1,782	404	5	1,791	1.787	225:404	
10	1,745							,	
10	1,730	6	1,746	30.5	3	1.756	1.759	30.5	
40	1.705	4	1,713	503;433	4ш	1.723	1.726	503:433	
10	1,665	2	1,674	244	2p	1.684	1.685	531	
40	1,645	4	1,647	600	2	1,654	1,659	325:600	
40	1,605	2	1,612	523;532	lp	1,615	1,617	611:523	
		2	1,505	316	4	1,512	1,515	316	
		4	1,463	613;631	3p	1,475	1,480	613:631	
		4	1,387	604	4ш	1,395	1.396	711:604	20
		4	1,367	525	3	1,375	1.372	702	
		2	1,353	633	2ш	1.360	1.359	552:633	
					2p	1,329	1.334	544	
					1p	1,313	1,316	703	
					2	1,281	1,283	643	
					3p	1,270	1.268	732	
					3p	1,262	1.263	526	
					lp	1,212	1.211	802	
					2	1,196	1 196	653	

Таблица 1 Межплоскостные расстояния разновидностей гарронита [Å]

Примечание. Условия съемки: камера РКУ 114.6 мм, Fe-излучение без фильтра, внутренний стандарт — NaCl. ш — широкая линия, р — размытая линия.

H₂O. В цеолитах с катионами Mg, Ca, Ba, Cd и Pb содержание воды колеблется от 12.5 до 14.5 молекул на элементарную ячейку [3].

На основании экспериментов по синтезу кальциевых цеолитов в гидротермальных условиях [9] при длительных выдержках без снижения температуры происходит уменьшение количества воды в цеолитах.

Рассмотренные факторы и определяют существенную разницу в количестве молекулярной воды в Са- и К-гарроните.

Синтез кальциевых и кальций—натриевых цеолитов [3] показывает, что тетрагональный цеолит типа 2Na₃₇Ca₆₃ — P_T распадается на Ca—P_T (собственно гарронит) и анальцим. Действительно, гарронит в Исландии и Ирландии [1] находится в тесной ассоциации с анальцимом, последний нарастает на лучистые

агрегаты гарронита из эффузивов Сибири [5]. По всей видимости, сод:ржание натрия в этих гарронитах связано, главным образом, с механической примесью в анализированном минерале анальцима. Это подтверждается и отсутствием четкой корреляции AlCa—Si(Na, K) в этих образцах гарронита (табл. 3).

Выше сказанное ставит под сомнение выделение особого места Na в структуре гарронита и приводимые в справочниках и оригинальных источниках формулы вида NaCa_{2.5}Al₆Si₁₀O₃₂·13·5H₂O [1] и NaCa_{2.5}Al₆Si₁₀O₃₂·14H₂O [2] возможно следует

Таблица 2				
Химический	состав	гарронита	(sec.	%)

Окисел	1	2	3	4	5	6	7
CaO	12,35	8,92	12,53	10,64	11.31	10.52	10.32
Na ₂ O	0,35	0,27	1,19	2,94	1,38	2,52	2.96
K ₂ O	0,20	3,98	0,90	0,54	0,70	0,21	0,16
MnO	0,07	0,04	_	_	-	_	_
MgO	0,05	0,04	_		_	_	
BaO	-	_	_	Сл.	0,06	0,14	0,09
Fe ₂ O ₃	_	_	_	0,02	0,03	0,02	0,02
Al ₂ O ₃	24,12	22,48	26,00	24,20	23,54	23,61	23,35
SiO ₂	43,56	48,77	43,53	43,21	44,75	44,96	45,15
H ₂ O	19,30*	15,50*	16,65	18,62	18,35	17,97	18,74
Сумма	100,00	100,00	100,80	100,17	100,12	99,95	100,79

Примечание. 1, 2 — разновидности гарронита из Кольского полуострова; 3 — Сибирь [5]; 4 — Ирландия [1]; 5-7 — Исландия [1]. • приведена по разности.

Анализы кольских образцов выполнены на микроанализаторе MS-46 Сатеса, ускоряющее напряжение 15 кВ (ток зонда 20 нА) и 22 кВ (ток зонда 10 нА) аналитические линии для всех элементов — K_a, эталоны: на Са и Si — диопсид, Na — рамзаит, K — вадеит, Mg и Al — пироп, Mn — синтетический MnCO. Минералы проанализированы в нескольких образцах не менее, чем в 10 точках на каждом образце (время одного измерения 10 с). Пересчет относительных интенсивностей на концентрации выполнен на ЭВМ "Наири-2" по оригинальной программе [6]. Ошибка определения главных элементов — 1 отн. %, элементов-примесей — 2—3 отн. %.

Таблица З

Формульные коэффициенты атомов гарронита

Элемент	1	2	3	4	5	6	7	8	9
Na	0,15	0,11	0,50	1,28	0,58	1,06	1.27	1.0	1.0
К	0,06	1,08	0,26	0,16	0,18	0,05	0,05		_
Ca	2,95	2,04	2,89	2,54	2,67	2,48	2,37	2,5	2.5
Сумма катионов	3,16	3,23	3,65	3,98	3,43	3,59	3,69	3,5	3,5
Al	6,33	5,66	6,62	6,31	6,13	6,12	6,04	6,0	6,0
Si	9,71	10,42	9,40	9,61	9,88	9,88	9,93	10,0	10.0
Сумма Al и Si	16,04	16,08	16,02	15,92	16,01	16,00	15,97	16,0	16,0
H ₂ O	14,35	11,06	12,00	13,81	13,50	13,17	13,72	13,5	14,0

Примечание. 1—7 соответствуют номерам анализов в табл. 1;8— идеализированный состав гарронита, отвечающий формуле Na2Ca₃Al₁₂Si₂₀O₆₄·27H₂O [1];9— идеализированный состав гарронита, отвечающий формуле NaCa_{2,5}SAl₆Si₁₀O₃₂·14H₂O [2].

исправить, подчеркнув существенно подчиненное значение натрия в этом минерале, т.е. формула этого минерала должна иметь вид (Ca, Na)₃Al₆Si₁₀·O₃₂·14H₂O. В связи с этим, вероятно, составу гарронита отвечает изученная нами и описанная выше разновидность Са-гарронита.

ЛИТЕРАТУРА

- Walker G.P.L. Garronite, a new zeolite from Ireland and Iceland. — Miner, Mag., 1962, vol. 33, N 258.
- 2. Брек Д. Цеолитовые молекулярные сита. М.: Мир, 1976.
- Taylor A.M., Roy R. Zeolites studies. IV. Na-P zeolites and the ion-exchanged derivates of tetragonal Na-P. — Amer. Miner., 1964, vol. 49, N. 5—6.
- 4. Koizumi M., Roy R. Zeolites studies. I. Synthesis and stability of the calcium zeulites. — J. Geol.,
- 5. Феоктистов Г.Д., Ущаповская 3. Ф., Лахно Т.А. О находке гарронита в СССР. — Докл. АН СССР, 1969, т. 188, N 3.
- Кравченко-Бережной Р.А., Медведева Э.М., Пахомовский Я.А. и др. Использование ЭВМ в количественном рентгеновском микроанализе. — Заводск. лаб., 1976, N 9.
- Walker G.P.L. Low-potash gismondine from Ireland and Iceland. — Miner. Mag., 1962, vol. 33, N 258.
- Barrer R.M., Langley D.A. Reactions and stability of chabazite—type phases. Part III. Intercrystalline water. — J. Chem. Soc., 1958, N 11.
- 9. Wirsching U. Experiments on the hydrothermal formation of calcium zeolites. Clay and Clay miner., 1981, vol. 29, N 3.