отсутствуют. Вблизи рефлекса {111} на лауэграммах кристаллов второй разновидности дополнительные экстраотражения типа "шипов" не наблюдаются (рис.3 μ). Полученные результаты показывают, что ни одно из двух необходимых условий, определяющих структурный дефект в виде Ns₍₁₀₀₎ (ИК-полоса 1365 см⁻¹ и дополнительные экстраотражения типа "шипов"), для кристаллов этой разновидности не выполняется. Следовательно, поглощение алмазов в ИК-области 1358—1378 см⁻¹ и дополнительные экстраотражения типа "шипов" на лауэграммах, действительно связаны с одним и тем же дефектом. Примесный азот, проявляющийся в ИК-спектрах полосой 1282 см⁻¹, в алмазах второй разновидности образует дефекты в виде N₂, в то время как сегрегации многочисленных атомов в виде Ns₍₁₀₀₎ для этой разновидности не характерны.

Таким образом, очевидно, что изменение внутреннего строения кристаллов II разновидности (по сравнению с кристаллами I разновидности) приводит не только к появлению не характерного для структурной морфологии алмаза кубического габитуса [3], но и к изменению формы вхождения азота в структуру алмаза.

ЛИТЕРАТУРА

- 1-2. Elliot R. I. Speculation on the centres formed by nitrogen in diamond. – Proc. Phys. Soc., London, 1962.
- Соболев Е.В., Бокий Г.Б. К вопросу о природе экстрарефлексов типа "шипов" на лауэграммах природных алмазов. – Ж. структурн. хим., 1965, № 3.
- Соболев Е.В., Лисойван В.И. О связи экстрарефлексов типа "шипов" в лауэграммах природных алмазов с оптическими свойствами. – ДАН СССР, 1967, № 3.
- 5. Kaiser W., Bond W.L. Nitrogen a maior impurity in common type diamond. – Phys. Rev., 1959.

- 6. Evans T., Phall C. Dislocation loops in diamond. – Phil. Mag., 1962, N 77.
- 7. Орлов Ю.Л. Минералогия алмаза. Наука, 1973.
- Хартман П. Зависимость морфологии кристалла от кристаллической структуры. – В кн.: Рост кристаллов, 1967, т.УП.
- 9. Клюев Ю.А., Дуденков Ю.А., Непша В.И. Некоторые особености условий образования алмазов по формам их роста и распределению примесных оптически активных центров. – Геохимия, 1973, № 7.
- 10. Соболев Е.В. Азотные центры и рост кристаллов природного алмаза Тр. ин-та геол. и геофиз. Сиб. отд. АН СССР, 1978, № 403.

УДК 549

В.Г. ФЕКЛИЧЕВ

ПРИРОДНЫЙ ИОННЫЙ ОБМЕН ПРИ ОБРАЗОВАНИИ ОКСИСОЕДИНЕНИЙ В ГРУППЕ ЭВДИАЛИТА

В некоторых пегматитах и гидротермалитах, залегающих в приконтактовых областях между фойянтами и рисчорритами юкспорского типа в Хибинском щелочном массиве, особенно в районе Лопарского перевала и на г.Эвеслогчорр наблюдаются выделения зонального эвдиалита. Внутренняя часть кристаллических зерен или выделений эвдиалита обычно светло-желтая или розовато-желтая, а их поверхностная корка окрашена в различной интенсивности лиловые тона. Более ранними исследованиями было установлено, отчетливое различие в оптических свойствах внешних и внутренних частей таких выделений эвдиалита как в Ловозерском [1], так и в Хибинском [2] шелочных массивах. Было установлено, что изменение желтого эвдиалита в лиловый идет не только в краях зерен, но и вдоль трещин, и оно сопровождается увеличением светопоглощения и двупреломления, появлением плеохроизма [2]. Причем оптический знак может меняться на противоположный, а может оставаться тем же, что и у неизмененного эвдиалита. Предположительно процесс изменения объяснялся окислением Mn и его продукты были названы оксиэвдиалитами и оксиэвколитами [1].

Рис. 1. Карта распределения оптической плотности в зернах зонального эвдиалита обр. 201 (значения плотности в условных величинах)

Образование отличающегося по свойствам эвдиалита не только во внешней зоне, но и по трещинам однозначно свидетельствует о том, что это процесс вторичный, не связанный с ростом первичного эвдиалита.

Дальнейшее исследование этих образцов было нами продолжено. Были приготовлены прозрачные шлифы зональных выделений обр. 201 и профотометрированы на регистрирующем микрофотометре МФ-4. Фиксировалась оптическая плотность по профилям при длине волны 518 нм (область максимума полосы поглощения в оксиэвдиалитах по результатам наших измерений [2].

На рис. 1 приведено распределение поглощения света в условных единицах в разрезе зонального выделения эвдиалита. Видно, что изменение желтого эвдиалита в лиловый идет постепенно с краев выделения и отдельных изолированных зерен. Постепенно к краям зерен и выделений меняется величина двупреломления.

Определение содержания MnO в желтых и лиловых зернах одних и тех же выделений эвдиалита показало, что его количество почти не меняется в процессе образования оксиэвдиалитов с учетом точности анализа (табл. 1).

С увеличением содержания марганца рефракция у оксиформ резко уменьшается, в то время как у неизмененного эвдиалита рефракция меняется в меньшей мере (табл. 1, рис. 2). Объясняется это, по-видимому, тем, что с увеличением содержания марганца у неизмененных эвдиалитов рост плотности опережает рост светопреломления. Весовая плотность окисных форм несколько меньше, а светопреломление больше, чем у соответствующих неизменных эвдиалитов. Ранее [3] было замечено, что оксиэвдиалиты плохо растворяются в кислотах, например, в соляной, в то время как обычный эвдиалит растворяется хорошо. Гораздо устойчивее оксиформы и в процессе выветривания, чем обычный эвдиалит.

Все сказанное заставляет предположить, что с окислением происходят более глубо-

Таблица 1 Свойства зон (n – светопреломление, d – удельный вес) и расчет из рефракций r D у марганцовистых эвдиалитов						
Образец	Зона	Цвет	Содерж. MnO, %	n _{cp} .	d _{cp} .	$r_D = \frac{n^2 - 1}{n^2 + 2} \cdot \frac{1}{d}$
85	внутр. внешн.	желт. красн.	2,17 2,20	1,618 • 1,625	2,910 2,905	0,12040 0,12170
-						
201a	внутр.	желт.	2,88	1,624	2,937	0,12022
	внешн.	лилов.	3,17	1,627	2,936	0,12072
-						
2016	внутр.	желт.	3,65	1.625	2,940	0.12025
	внешн.	пепель- но-лило- вый	3,87	1,625	2,931	0,12062

Рис. 2. Сравнение зависимостей удельной рефракции г d n^2 от содержания МпО в первичных и окисленных эвдиалитах

1 - оксисоединения, 2 первичные эвдиалиты

ø

кие изменения в химическом составе и структуре эвдиалита, и что эти изменения происходят постепенно, без разрушения основной структуры эвдиалита и изменения ориентировки его зерен.

Детальное изучение обр. 201 с г.Эвеслогчорр подтверждает это предположение. В этом образце желтая внутренняя зона к поверхности замещается темно-красной, а в некоторых участках у самой поверхности – пепельно-лиловой. В табл. 2 сопоставля-

Зона	Цвет	Наличие	Удельный вес	Наличие плеохро- изма	Оптичес- кий знак	Светопреломление	
		спаинос- ти				no	n _e
Внутрен-	Желтый	Нет	2,937–2,94	Нет	_	1,627-1,628	1,621-1,622
промежу промежу точная	- Лиловы	й Нет	2,935-2,937	Слабый	+	1,624	1,629
Внешняя	Пепельн лиловы	ю-По й (0001)	2,929–2,934	Отчетли- вый	+	1,620–1,622	1,630

Таблица 2 Физические свойствв эвдиалита в различных зонах обр. 201.

171

Г	าก	111410	2 3
	aυ	Jung	a .)

Окисел	Bec.%	Внутренняя з	она 201а (ж)	Внешняя зона 201б (пл.)			
		Атомн. колич.	Форм. колич.	Bec.%	Атомн. колич.	Форм. колич.	
SiO ₂	46,74	0,778	24,32	48,29	0,804	24,83	
Al_2O_3	0,81	0,016	0,50	2,60	0,051	1,54	
Fe, O ₃ FeO	5,24	0,066	2,06	2,88 1,89	0,036 0,26	1,11	
MgO	0.23	0.006	0,19	0.35	0,009	0.24	
MnO	2.91	0,041	1,28	3,87	0,055	1.70	
CaO SrO	10,61	0,189 0.014	5,91) 0,44	11,81}	0,211	6,49	
TR,O,	2,89	0,018	0,56	0,45	0,003	0,09	
BaO	-	-	_	-	-	-	
К, О	0,60	0,013	0,41	1,35	0,029	0,89	
Na ₂ O	11,10	0,358	11,19	9,45	0,305	9,42	
H, C**	0,96	0,107	3,35	2,02	0,224	6,95	
H ₂ O ⁻	0,54	-	_	0,15	-	_	
Nb ₂ O ₅	1,52	0,011	0,34	2,03	0,015	0,46	
Ta ₂ O ₅	0,045	4	-	Не обн.	-		
ZrO ₂	12,89	0,105	3,28	12,21	0,099	3,39	
TiO ₂	0,36	0,005	0,16	0,24	0,003	0,09	
Cl	1,04	0,029	0,91	0,82	0,023	0,71	
Сумма	99,91			100,41			
-0=Cl ₂	0,23			0,16			
Σ	99,68			100,25			
Анал	итики	В.Н. Архан	игельская	И.(С. Разина		

Химический состав эвдиалита из внешней и внутренней зоны обр. 201

ются физические свойства трех зон, а в табл. 3 — химический состав внутренней и наружной зон. Пересчет химических анализов велся по методу Хея. При этом анализ внешней зоны и его пересчет взят из работы (4). Анализ внутренней зоны публикуется впервые и пересчитан с учетом того, что он близок к анализу желтого марганцевистого эвдиалита обр. 85, исходя из чего объем элементарной ячейки взят такой же, как у образца 85 (внутренная желтая зона).

Табл. 2 показывает, что свойства эвдиалита по зонам меняются постепенно. Сопоставление пересчитанных анализов внутренней и внешней зоны эвдиалитов обр. 201 (табл.3) показывает, что многие важные компоненты почти не меняются в своем содержании с учетом ошибок анализа. Распределение компонентов по позициям в структуре эвдиалита выполнено по правилам в работе [4]:

Oбр. 201a (ж)
$$(Na_{11,11}Ca_{0,91})_{12} (Ca_{6,00} Sr_{0,44} TR_{0,56})_{6}$$

 $(Fe_{0,75}^{3+} Mg_{0,19} Mn_{1,28}^{2+} Ti_{0,16} Zr_{0,28} Nb_{0,34}) Zr_{3} Si_{24}O_{72}$
 $I(Si_{0,32} Al_{0,50} Fe_{1,31}^{3+} K_{0,41} Na_{0,08})_{2,62} (O_{0,46} (OH)_{3,35} Cl_{0,91})_{4,72}$
Ofp. 2016 (п.-л.) $(Na_{9,42} K_{0,06} Ca_{0,82} Mn_{1,70}^{2+})_{12} (Ca_{5,67} Mg_{0,24} TR_{0,09})_{6}$
 $(Fe_{0,80}^{2+} Fe_{1,11}^{3+} Zr_{0,39} Nb_{0,46} Ti_{0,09} Al_{0,15})_{3} Zr_{3} Si_{24} O_{72}$
 $I(Si_{0,83} Al_{1,39} K_{0,83})_{3,05} (O_{0,43} (OH)_{6,95} Cl_{0,71})_{8,09}$

172

Пересчет анализа 2016 (п.—л.) выполнен при учете всего марганца двухвалентным. При этом обращает на себя внимание одинаковое количество кислорода, не связанного с водородом, в обеих зонах, 72,46 и 72,43 соответственно. Если учитывать, что часть марганца во внешней зоне стала трехвалентной, то количество внекаркасного кислорода в ней должно быть увеличено. Это согласуется и с большим количеством внекаркасных катионов в эвдиалите этой зоны. Так, при пересчете всего марганца в трехвалентный в обр. 2016 (п.—л.) количество внекаркасного кислорода становится равным 0,43+ +1,70/2 = 1,28. Но, по-видимому, окислению подверглась только часть марганца во внешней зоне. Главным отличием внешней зоны от внутренней является значительно большее содержание в первой внекаркасных ионов, как катионов, так и анионов, а из последних — ионов гидроксилов (в 2 раза). Насыщенность полостей каркаса ионами близка к предельной (5,6).

Таким образом, в природной обстановке зафиксирован интенсивный ионный обмен в структуре эвдиалита, в результате которого существенно изменились состав и свойства эвдиалита.

ЛИТЕРАТУРА

- Семенов Е.И. Минералогия и геохимия вторичных процессов в пегматитах Ловозерского щелочного массива. – Автореф. дисс. канд. геол. –минер. наук. М., 1953.
- Фекличев В.Г. Оптические свойства хибинских и других эвдиалитов – В кн.: Редкие элементы и акцессорные минералы в ультраосновных, щелочных и кислых породах. М.: Изд-во АН СССР, 1963, с. 121– 135.
- Фекличев В.Г. О химическом составе и химической формуле хибинских и других эвдиалитов. – В кн.: Экспериментально-

методологические исследования рудных минералов. М.: Наука, 1965, с. 195-213.

- 4. Фекличев В.Г. Исследование взаимозависимостей состава и свойств у минералов группы эвдиалита. – В кн.: Новые данные о минералах СССР. М.: Наука, 1979, вып. 28 с.126–144.
- 5. Голышев В.М., Симонов В.И., Белов Н.В. О кристаллической структуре эвдиалита. – Кристаллография, 1971, т.16, вып. 1.
- 6. Борнеман-Старынкевич И.Д. Эвдиалит. В кн.: Изоморфизм в минералах. М.: Наука, 1975.