Т.И. ГЕТМАНСКАЯ, Е.Г. РЯБЕВА, К.В. ЮРКИНА

ШТОЛЬЦИТ ИЗ ВОЛЬФРАМОВОГО МЕСТОРОЖДЕНИЯ АНГОКИТ (Северная Бурятия)

Штольцит — PbWO₄ — редкий вольфрамат свинца известен в нескольких месторождениях мира. Наиболее характерно его образование в зонах окисления и древних корах выветривания кварц-сульфидных месторождений с минералами вольфрама в ассоциации с тунгститом, лимонитом, повеллитом и в пустотках на месте выветрившихся сульфидов [1–5]. Известна единичная находка его в россыпи [2]. Гораздо реже штольцит встречается в гипогенных условиях в кварцевых жилах в ассоциации с сульфидами – халькопиритом, галенитом, пиритом и минералами вольфрама [2, 6, 7].

Авторами штольцит найден в рудах Ангокитского месторождения, расположенного на севере Бурятской АССР в пределах Байкало-Витимской складчатой зоны. Месторождение приурочено к осадочно-метаморфической толще пород, сложенной доломитами, известняками и сланцами нижнекембрийского возраста, прорванными мелкими телами и дайками пестрого состава Витимканского комплекса. Рудные тела представлены серией минерализованных прожилково-метасоматических зон кварц-флюорит-шеелитового состава, в которых в подчиненных количествах развиты кальцит, серицит, пирит, блеклые руды, тунгстенит и галенит. Штольцит образует тонкие прожилки по трещинкам в шеелите, обычно встречаясь около небольших выделений рутила. Размер выделений штольцита составляет 20-40 мкм.

Минерал изучен в полированных шлифах. В отраженном свете штольцит серый без цветового оттенка, двуотражение заметное, плеохроизма нет, внутренние рефлексы интенсивные, бесцветные. Микротвердость измерена на приборе ПМТ-3 при нагрузке 20 г (в связи с малыми размерами выделений) и экспозиции 15 с и составляет 147 кг/мм², относительная твердость 3,7. Спектры отражения штольцита (рис. 1) сняты на двухлучевом микроспектрофотометре МСФП-1 с автоматической регистрацией на участках размером 4 мкм с точностью 1,5% относительных, настройка прибора проверялась по эталону WTiC. Спектры отражения и рассчитанное спектральное двуотражение приведены в табл. 1. Отражения рассчитаны характеристики цветности и координаты цвета для четырех стандартных источников света A, B, C и E, они приведены в табл. 2. Координаты цвета для сечений R_e и R_0 очень близки, следовательно, эти сечения по цвету практически не отличаются.

Таблица 1

Спектры отражения и	спектральное	двуотражение ш	польцита
---------------------	--------------	----------------	----------

Длина волны, нм	Отражение		Двуотражение	
	R _e	R ₀	$R_{\epsilon}-R_0$	$\frac{R_{\epsilon} - R_0}{R_{\epsilon}} \cdot 100$
420	16,5	15,3	1,2	7.2
440	16,2	14,9	1,3	8,0
460	16,0	14,6	1,4	8,7
480	15,8	14,4	1,4	8,8
500	15,5	14,3	1,2	7,7
520	15,4	14,1	1,3	8,4
540	15,3	14,0	1,3	8,5
560	15,2	13,9	1,3	8,5
580	15,1	13,8	1,3	8,6
600	15,1	13,7	1,4	9,2
620	15,1	13,7	1,4	9,2
640	15,1	13,7	1,4	9,2
660	15,1	13,7	1,4	9,2
680	15,1	13,7	1,4	9,2
700	15,1	13,7	1,4	9,2

Рис. 1. Спектры отражения штольцита

Состав штольцита определялся локальным микрорентгеноспектральным методом на приборе Сатевах при ускоряющем напряжении 20 кВ и силе тока электронного зонда ~ 30 нА. В качестве эталонов применялись синтезированный шеелит – на вольфрам и галенит на свинец. Расчет проведен методом "гипотетического состава" с введением поправок на атомный номер и пог-

лощение [8]. В табл 3 усредненный состав по 5 участкам сравнивается с теоретическим составом и справочными данными. Молибден в штольците не обнаружен. На рис. 2 приведены микрофотографии штольцита в обратно-рассеянных электронах и в характеристическом рентгеновском излучении Pb, W, Ca и Ti при увеличении 800.

Образование штольцита на Ангокитском месторождении связано с процессом метаморфизма и перекристаллизации кварц-флюорит-шеелитового оруденения, обусловившими интенсивное замещение шеелита первой генерации мелкокристаллическим агрегатом шеелита второй генерации в ассоциации с тунгстенитом, пиритом, рутилом, блеклыми рудами. Слабое развитие зоны окисления на месторождении, ассоциация штольцита с неизмененными сульфидами свидетельствует о гипогенном его происхождении. Близкоодновременное образование тунгстенита и штольцита свидетельствует о нестабильных условиях перекристаллизации и замещения шеелита, в частности о колебаниях

Таблица 2

Характеристика	Источник			
	A	В	С	E
	Расче	т по спектру R _е	T -	1
x	16,6331	15,0772	14,9625	15,197
у	15,1992	15,2410	15,2589	15,251
Z	5,6401	13,4549	19,6259	15,567
m	37,4427	43,7731	49,8473	46,015
x	0,444	0,344	0,300	0,330
V	0,406	0,348	0,306	0,331
Ī	0,150	0,308	0,394	0,339
	Расче	г по спектру. R ₀		
x	15,1326	13,7370	13,6436	13,851
y	13,8629	13,9137	13,9346	13,924
Z	5,1449	12,3464	18,0118	14,292
m	34,1404	39,9971	45,5900	42,067
x	0,443	0,343	0,299	- 0,329
V	0,406	0,348	0,306	0,331
Ī	0,151	0,309	0,395	0,340

Характеристики цветности и координаты цвета штольцита

Таблица З

Состав штольцита

	РьО	WO ₃	Сумма
Теоретический	47,35	52,65	100
Д. Дэна [10]	49,04	50,96	100
Тоже	47,44	51,34	98,79
Ангокит	49,46	51,52	100,98

Рис. 2. Микрофотографии штольцита, увел. 800

а – в обратно-рассеянных электронах; в рентгеновском характеристическом излучении: б – свинца, а – вольфрама, б – кальция, д – титана

окислительно-восстановительного потенциала рудообразующих растворов. Развитие тунгстенита связано с локальным восстановительным действием органического вещества, освобождающегося в процессе перекристаллизации ранней генерации шеелита и вмещающих карбонатных пород [9]. Штольцит, пространственно обособленный от выделений тунгстенита, образуется в более окислительной обстановке рудоотложения в тех участках рудных тел, где выполнение трещин преобладает над замещением карбонатных пород и влияние органического вещества минимально.

ЛИТЕРАТУРА

1. Stevenson L.S. An occurence of stolzite in the Cariboo district, British Columbia. - Univ. Toronto studies, geol. ser., Contribution to Canadian mineralogy, 1941, N 46.

2. Palache C. Crystallographic notes: cahnite,

stolzite, zincite, iltrabasite. - Amer. Miner., 1941, v. 26, N 7.

3. Альбов М.Н. Образование штольцита в зоне окисления. – Записки Всесоюз. 'минерал. о-ва, 1954, № 2.

- 4. Frick I.M., Hildebrand F.A. An occurence of molibdenian stolzite in Arizona. – Amer. Miner., 1958, v. 43, N 1–2.
- 5. Kosakevitch A. Presence de stolzite dans le filon du signal de la mine de plomb du IBEL Aouam (Massif Hercynien du Maroc Central). – Notes serv geol Maroc. 1970, v. 30, N 225.
- Notes serv. geol. Магос, 1970, v. 30, N 225. 6. Эшкин В.Ю. Штольцит из хрусталеносного месторождения Приполярного Урала. – Записки Всесоюз. минерал. о-ва, 1962, вып. 2.
- 7. Sadao H. Stolzite-bearing tungsten deposits

in the Hidaka mine, Yamaguti district, South-West Japan. – Bull. geol. surv. Japan, 1978, v. 29, N 2.

- 8.Рыдник В.Е., Боровский И.Б. К методике покального • рентгеноспектрального анализа. – Зав. лабор., 1965, № 8.
- 9. Гетманская Т.И., Рябева Е.Г., Юркина К.В. Тунгстенит – новая находка в СССР. – ДАН, 1979, т. 244, N 1.
- 10.Дэна Д.Д., Дена С., Пэлач., Берман Г., Фрондель К. Система минералогии. т. II, п/т 2. Ил. 1954.

УДК 549 (283 + 755.14)

А.А. ГОРШКОВ, Е.Г. РЯБЕВА, Л.С. ДУБАКИНА

О ПЕРВОЙ НАХОДКЕ В СССР САМОРОДНОЙ МЕДИ В АССОЦИАЦИИ С МИНЕРАЛАМИ ВАНАДИЯ

Самородная медь встречается в ассоциации с различными минералами, причем, как правило, образуется в восстановительных условиях [1]. Нами самородная медь впервые в СССР обнаружена в ассоциации с хеггитом и ближенеопределенным силикатом ванадия.

Хеггит — очень редкий минерал ванадия — был открыт и изучен Н.Т. Эвансом и М.Е. Мроуз в сильно минерализованных глинистых сланцах формации Лакота в Вайоминге (США) [2-3]. Позднее он был обнаружен в пестроцветной толще пород Воронежской антеклизы [4]. В обоих случаях идентификация минерала была проведена по рентгенометрическим данным, химический анализ в связи с малыми количествами минерала не производился.

Позднее хеггит был обнаружен в Туркмении и в Сыр-Дарьинской депрессии [5]. Микрорентгеноспектральный анализ показал, что хеггит является безводным окислом с формулой V_2O_5 . В обоих последних случаях этот минерал был обнаружен вместе с самородными элементами — селеном (Сыр-Дарья) и медью (Туркмения), но если с селеном непосредственных контактов не наблюдалось, то с самородной медью эти контакты очень тесные. Хеггит в ассоциации с ближенеопределенным из-за малых размеров (первые микроны) силикатом ванадия окаймляется мелкими (30–40 мкм) округлыми выделениями самородной меди, причем медь обнаруживается только непосредственно на минералах ванадия или рядом с ними.

Парагенетическая минеральная ассоциация самородной меди с хеггитом и силикатом ваналия образовалась в ходе многостадийного процесса эндогенного минералообразования, наложенного на отложения надшорсафедской свиты алайского яруса эоцена в Туркмении. В результате проявления того же процесса несколько ранее указанной ассоциации образовались кварц-халцедоновая и кальцит-целестин-баритовая ассоциации, а более поздние ассоциации представлены арагонит-целестиновой и др.

Образование изученной парагенетической минеральной ассоциации, а также сопутствующих ей кварц-халцедоновой, кальцит-целестин-баритовой и арагонит-цеолитовой ассоциаций происходило из низкотемпературного гидротермального флюида.

Вмещающие минерализацию существенно глинистые прибрежно-морские отложения надшорсафедской свиты имеют буровато-красный цвет. Лишь около каверн, размеры которых не превышают 5 мм в поперечнике, и около разноориентированных прожилков мощностью до 3 мм, выполненных хеггитом и сопутствующими ему самородной медью и силикатом ванадия, цвет вмещающих пород ореольно изменен на зеленоватосерый. Ширина этого ореола обычно превышает размер выделения в 8–10 раз (рис. 1).

Самородная медь образует округлые выделения с зазубренными краями. В отраженном свете минерал насыщенно розового цвета, мягкий, характеризуется очень сильной эллиптической поляризацией. Полируется плохо. Спектр отражения снят на двухлучевом микроспектрофотометре МСФП-1 с автоматической регистрацией по эталону WTiC на участках размером 10 мкм с точностью 1,5% относительных. Спектр приведен на рис. 2 и в табл. 1. По спектру отражения рассчитаны характеристики цветности и координаты цвета для источников A, B, C и E, они приведены в табл. 2.