73171 2-4 7 1, 6 3 РОССИЙСКАЯ АКАДЕМИЯ НАУК институт геологии рудных месторождений,

ПЕТРОГРАФИИ, МИНЕРАЛОГИИ И ГЕОХИМИИ

МИНЕРАЛЫ

СПРАВОЧНИК

TOM IV

Выпуск З

СИЛИКАТЫ ДОПОЛНЕНИЯ К ТОМАМ III и IV

727930

МОСКВА "НАУКА" 1996

Издание осуществлено при поддержке Российского фонда фундаментальных исследований по проекту 95-05-164816

Главный редактор

член-корреспондент РАН Г.Б. БОКИЙ

÷		Ответственные редакторы
	от, і г ление	доктор геолого-минералогических наук Н.Н. МОЗГОВА т кандидат геолого-минералогических наук М.Н. СОКОЛОВА
	، رون د ۲۰۰۱ و ۲۰۰۰	ъ м
		Рецензенты

доктор геолого-минералогических наук М.И. НОВГОРОДОВА доктор геолого-минералогических наук М.Д. ДОРФМАН

Минералы: Справочник. Т. IV, вып. 3. Силикаты. Дополнения к то-M62 мам III и IV. – М.: Наука, 1996. – 426 с.

ISBN 5-02-003649-8

Выпуск содержит дополнения к опубликованным томам, посвященным силикатам с одиночными и сдвоенными кремнекислородными тетраэдрами (т. III, вып. 1, 1972), с изолированными некольцевыми группами, кольцами, цепочками (т. III, вып. 2, 1981), лентами (т. III, вып. 3, 1981) и слоями Si-O-тетраэдров (т. IV, вып. 1 и 2, 1992). Охарактеризованы новые силикаты. приведены новые структурные данные для ранее описанных.

Для минералогов, петрографов, геохимиков и других специалистов, занимающихся изучением минерального сырья.

Ил. 116. Библиогр.: 733 назв.

Minerals: Handbook. Vol. III, pt 3. Silicates. Additions to vol. III and IV. – M.: Nauka, 1996. – 426 p. ISBN 5-02-003649-8

This part contains additions to the published volumes, devoted to silicates with single and double silica-oxygen tetrahedra (vol. III, pt 1, 1972), isolated nonrings groups, rings, chains (vol. III, pt 2, 1981), bands (vol. III, pt 3, 1981) and layers of Si-O tetrahedra (vol. IV, pts 1 and 2, 1992). New silicates are characterized and new structural data are given for silicates described earlier.

For mineralogists, petrologists, geochemists and the other specialists dealing with minerals raw materials.

Fig. 116. Ref. 733.

М 1804020200-075 042(02)-96 108-96, II полугодие

ББК 26.303

ISBN 5-02-003649-8

- © Коллектив авторов, 1996
- © Издательство "Наука", оформление, 1996
- © Российская академия наук, 1996

Со времени создания первых томов справочника "Минералы", посвященных силикатам, прошло более 20 лет. В мировой литературе появилось много нового материала. Поэтому параллельно с работой над продолжением издания (т. V Каркасные силикаты") подготовлен специальный выпуск с дополнениями к опубликованным томам. Выпуск содержит характеристику новых силикатов (195 минералов) и ранее описанных силикатов с уточненной структурой (15 минералов, в тексте отмечены звездочкой). Минералы относятся к силикатам с одиночными и сдвоенными кремнекислородными тетраэдрами (дополнение к т. III, вып. 1, 1972), с изолированными некольцевыми группами, кольцами и цепочками кремнекислородных тетраэдров (к т. III, вып. 2, 1981), с лентами кремнекислородных тетраэдров (к т. III, вып. 3, 1981) и слоистым силикатам (к т. IV, вып. 1 и 2, 1992).

Первые работы по структурным мотивам силикатных минералов проводились У Л. Брэггом в 1926–1931 гг. Начало классификации силикатов положил Ф. Махачки (1928 г.), предложивший делить их на четыре части: 1) нольмерные – с изолированными группами кремнекислородных тетраэдров; 2) одномерные – с кремнекислородными радикалами, образующими бесконечные в одном направлении цепи или ленты; 3) двухмерные – с бесконечными слоями; 4) трехмерные – каркасные с объемной связью кремнекислородных радикалов.

После работ Ф. Махачки и У.Л. Брэгга классификацией силикатов занимались чногие авторы. Ссылки на них имеются в следующих работах:

Бокий Г.Б. Классификация минералов – силикатов // Зап. ВМО. 1985. Ч. 114, вып. 5. С. 528–539.

Liebau F. Structural chemistry of silicates. B.: Springer Verlag, 1985. 347 p.

Пущаровский Д.Ю. Структурная минералогия силикатов и их синтетических аналогов. М.: Недра, 1986. 160 с.

В этих работах признается необходимость более дробного разделения класса силикатов, каждую часть в классификации Ф. Махачки предлагается делить по крайней мере на две. Полученные в результате разделы можно назвать подклассами. Следует подчеркнуть, что подкласс – это первый таксон в классификации силикатов, требующий знания структуры.

На принадлежность силиката к определенному подклассу в данном выпуске прежде всего указывает кремнекислородный мотив, заключенный в квадратные скобки в формуле, приводимой в начале описания минерала. Этот мотив характеризуется конкретным отношением Si:O (точнее T:O, где T – Si и изоморфно замещающие его элементы-имитаторы, главным образом Al, реже B, Be, Fe³⁺). Кремнекислородные радикалы выделены в формулах во всех случаях, включая те, где в авторских публикациях приведены формулы в общем виде.

В химических формулах катионы обычно расположены в порядке убывания катионного радиуса. Изоморфные элементы (или группы), занимающие одну позицию в структуре, заключены в скобки, в которых располагаются слева направо в порядке убывания их количества. В случае силикатов, в структуре которых имеются два разных кремнекислородных радикала, принято следующее условие: минерал относится к конкретному таксону по более сложному радикалу, который указывается в формуле на первом месте. Описание подобных минералов с двумя радикалами (например, деллаит) в соответствующем подразделении дано после характеристики силикатов с одиночным радикалом.

Подклассы в ранее опубликованных томах подразделяются по типам структур и затем по группам минералов. Хотя термин "группа" фигурирует практически во всех руководствах по минералогии, его четкого определения не существует. В группы объединяются минеральные виды в основном по признаку изоструктурности с учетом изоморфизма и близости составов. При описании некоторых групп в опубликованных томах иногда отмечались отступления от структурных принципов. В качестве примера можно указать группу астрофиллита, отнесенную к силикатам со сдвоенными кремнекислородными тетраэдрами (т. III, вып. 1, с. 638), в которой лишь лампрофиллит и баритолампрофиллит имеют в структуре анион [Si₂O₇], а остальные минералы не отвечают этому типу структур. В астрофиллите и, очевидно, в близких к нему минералах (куплетскит, цезийкуплетскит, ниобофиллит) основу структуры составляют бесконечные цепочки Si-О-тетраэдров. В связи с этим бывшую группу астрофиллита следует подразделять на две группы лампрофиллита (диортосиликаты) и астрофиллита (цепочечные). Новые данные по структуре килхоанита, описанного ранее в диортосилнкатах (т. III, вып. 1, с. 658), показывают наличие двух кремнекислородных радикалов – [Si₃O₁₀] и [SiO₄], в связи с чем он относится по более сложному радикалу к силикатам с трехчленными группами кремнекислородных тетраэдров (см. с. 187).

Несмотря на указанную недостаточную определенность термина "группа", описания минералов в данном выпуске располагаются в основном в соответствии с ранее принятой систематикой и выделенными в предыдущих томах группами. Изменение систематики осложнило бы поиск минералов, близких к вновь опубликованным. Для полноты восприятия в известных группах минералы, описанные в опубликованных томах, перечислены перед изложением нового материала. Наряду с известными, выделено большое число новых групп, в которых новые минералы структурно (и химически) близки друг к другу или описанным ранее одиночным минералам. В первом случае группы названы по наиболее изученному минералу, во втором – по ранее известному.

Из новых структурных типов наиболее интересны структуры с дефектными мотивами из двух связанных по ребру кремнекислородных тетраэдров (риббеит, лейкофёницит, вюнцпахкит).

В отношении минералов редких земель и иттрия выполняются правила Комиссии по новым минералам и названиям минералов Международной минералогической Ассоциации (КНМ ММА) (Никель, Мандарино, 1989) – в названии в скобках указывается преобладающий редкоземельный элемент или иттрий.

При подготовке данного выпуска авторы стремились к наиболее полному использованию литературного материала, включая публикации 1994 и частично 1995 г.

Работа подготовлена при финансовой поддержке Российского Фонда фундаментальных исследований (проект 93-05-14592а).

Авторы выпуска:

Б.Е. Боруцкий – введение к группе эвдиалита, ликеит, феррисурит.

И.В. Витовская – андремейерит, герстманнит, джунитоит, квейтит, коликит, магнезиохлоритоид, моцартит, оттрелит, салиотит, шанталит.

З.В. Врублевская – новые структурные данные для ранее описанных минералов: ганомалит, килхоанит, назонит, рустумит, суринамит, сянхуалинит, таленит, ферсманит.

Н.И. Забавникова – введение к группам ломоносовита, эпидота; баратовит, вуоннемит, гидроастрофиллит, калий-фтор-рихтерит, диссакисит, долласеит, катаямалит, клинофосинаит, медаит, нагасималит, параумбит, пудреттит, сверигеит, стронциопьемонтит, сузукиит, тирагаллоит, титантарамеллит, умбит, фосинаит, христовит, чейесит, эйфелит, янхаугит.

Н.И. Зардиашвили – вердингит, карлостуранит, корнит, деллаит, хенномартинит.

П.М. Карташов – хинганит-(Се), хинганит-(Ү) (при участии М.Н. Соколовой).

В.И. Кудряшова – акатореит, баланджероит, боромусковит, джасмундит, джервисит, джерриджиббсит, донпикорит, ершовит, клинотоберморит, луницзяньлаит, магнезиосаданагаит, мангангумит, намансилит, наньпинит, наталиит, небёит, норришит, оелит, орлиманит, питданнит, риббеит, саданагаит, свамбоит, танеямалит, тунгусит, урсинит, циркофиллит, эссенеит.

Л.И. Мурзова – бельковит, бурпалит, имандрит, келдышит, кулиокит-(Y), ифтисит-(Y), натронамбулит, паракелдышит, траскит, хибинскит, хинганит-(Yb), чкаловит.

И.В. Островская – кванфьелдит, киллалаит, омилит, пеллиит, райнхардбраунсит, элленбергерит.

В.Н. Смольянинова – багдадит, бариоортоджоакинит, белоруссит-(Се), канонаит, макфаллит, оленит, ориентит, охотскит, повондраит, пумпеллиит-(Mn²⁺), руицит, санероит, страховит, стронциоджоакинит, тайканит, ферувит, фойтит, франклинфилит, холтит, хромдравит, шуйскит.

Н.Н. Смольянинова – введение к группе куспидина (при участии З.В. Шлюковой), амсталлит, вертумнит, вюаньятит, джорджчаоит, йортдалит, каскандит, лайхунит, либенбергит, литиомарстурит, сантаклараит, стисиит, стронциочевкинит, стрингхамит, францисканит, штрётлингит, эканит, эребруит.

М.Н. Соколова – аллуайвит, алтисит, ванадомалаяит, зорит, кумбсит, маттхеддлеит, мегациклит, нафертисит, параспёррит, уикенбергит, фторрихтерит, хейтманит, эдгарбейлиит; совместно с Т.С. Ходашовой – джоннинесит, зорит, либауит, пенквилксит, эффенбергерит.

Т.Ю. Успенская – вюнцпахкит (при участии Т.С. Ходашовой), гидроксилэллестадит, крайслит, ситинакит, флюорэллестадит, харрисонит, хлорэллестадит.

Т.С. Ходашова – новые структурные данные для ранее описанных минералов: ревдит, сонолит.

З.В. Шлюкова – введение к группе энигматита (при участии Т.С. Ходашовой), гафнон, гиалотекит, гиттинсит, джаффеит, джеффрейит, доррит, кальциоилерит, катоит, кейвиит-(Yb), кейвиит-(Y), комковит, костылевит, кукисвумит, кьявеннит, линтисит, макарочкинит, минасжерайсит-(Y), накарениобсит-(Се), натисит, паранатисит, петарасит, сазыкинаит-(Y), синсаоит, токкоит, уилкинсонит, уэдслиит.

В научном редактировании описания структур минералов принимали участие З.В. Врублевская и Т.С. Ходашова. Библиографические материалы подготовлены Н.С. Кулиш. В подготовке рукописи к печати участвовали Н.С. Кулиш, Н.А. Панкина, В.А. Юдинцева, А.В. Ефимов.

При составлении выпуска принимались во внимание обзоры по новым минералам в Записках Всесоюзного минералогического общества Э.М. Бонштедт-Куплетской (до 1974 г.), Т.А. Яковлевской (1975–1977 гг.), В.И. Кудряшовой (с 1978 г.; 1988–1992 гг. совместно с И.В. Рождественской). Как и в ранее опубликованных выпусках "Минералов", не повторяются ссылки на следующие работы (ссылки на них даны в тексте в скобках):

Белов Н.В. Очерки по структурной минералогии. М.: Недра, 1976. 344 с.

Либау Ф. Структурная химия силикатов. М.: Мир, 1988. 405 с. Пер. с англ. яз.: Libau F. Structural chemistry of silicates. B.: Springer Verlag, 1985. 347 р.

Никель Е.Х., Мандарино Д.А. Порядок рассмотрения материалов, представленных в Комиссию по новым минералам и названиям новых минералов при Международной минералогической ассоциации и некоторые вопросы минералогической номенклатуры // Минерал. журн. 1989. Т. 11, № 1. С. 51. Пер. с англ. яз.: Nikel E.H., Mandarino J.A. // Canad. Miner. 1987. Vol. 25, pt 2. P. 253.

Семенов Е.И. Систематика минералов: Справочник. М.: Недра, 1991. 334 с.

Флейшер М. Словарь минеральных видов. М.: Мир, 1990. 204 с. Пер. с англ. яз.: Fleischer M. Grossary of Mineral Species. Tucson: Miner. Rec. Inc., 1987. 192 р.

Clark A.M. Hey's mineral index: Mineral species, varieties and synonyms. L., 1993. 852 p.

Fleischer M., Mandarino J.A. Grossary of Mineral Species. Tucson: Miner. Rec. Inc., 1995. 280 p.

Leake B.E. Nomenclature of Amphiboles // Amer. Miner. 1978. Vol. 63, № 11/12. P. 1023–1052.

- *a*, *b*, *c* кристаллографические оси
- *a*₀, *b*₀, *c*₀ параметры элементарной ячейки
- *a_{rh}* ребро ромбоздрической ячейки
- *a_h*, *c_h* параметры гексагональной ячейки тригональных минералов
- α, β, γ углы между кристаллографическими осями
- P, т плоскости симметрии в разных обозначениях
- С центр симметрии
- (hkl) простые формы и грани кристаллов
- [hkl] ребра кристаллов и зоны
- Z число формульных единиц в элементарной ячейке
- Ng, Nm, Np оси индикатрисы двуосных минералов
- Ne, No оси индикатрисы одноосных минералов
- ng, nm, np показатели преломления двуосных минералов
- *n_e*, *n_o* показатели преломления одноосных минералов
- п показатели преломления кубических кристаллов
- 2V угол оптических осей
- V объем элементарной ячейки
- *г*, *v* соответственно красный и синий свет (при дисперсии)
- Rg, Rm, Rp показатели отражения двуосных минералов
- *Ro, Re* показатели отражения одноосных минералов
- Анал. аналитик
- Бл. блеск
- Вычисл. вычисленный
- Гексаг.с. гексагональная сингония (система)
- Диагн. исп. диагностические испытания (название раздела)
- Изл. излом
- Изм. изменение (название раздела)
- ИК инфракрасный

- Искусств. искусственный, искусственное получение (название раздела)
- К.ч. координационное число
- Кл. класс
- Конц. концентрированная
- Коэф. коэффициент
- Куб.с. кубическая сингония (система)
- Микр. микроскопическая характеристика (название раздела)
- Микрозонд. электронно-микрозондовый анализ (рентгеноспектральный микроанализ на основе волновой дисперсии)
- Монокл.с. моноклинная сингония (система)
- Нахожд. нахождение (название раздела)
- Не обн. не обнаружено
- Н.о. нерастворимый остаток
- Октаэдр. октаэдрический
- Опт. оптика, оптический
- Отл. отличие (название раздела)
- Отраж. отраженный, отражение
- Плавл. плавление
- Пл. опт. осей плоскость оптических осей
- Повед. при нагр. поведение при нагревании (название раздела)
- П.п. потеря при прокаливании
- П.п.тр. перед паяльной трубкой
- Практ. знач. практическое значение (название раздела)
- Пр.гр. пространственная группа
- Разб. разбавленный
- Разнов. разновидность (название раздела)
- Ромб.с. ромбическая сингония (система)
- Синон. синонимы (название раздела)
- Сл. следы
- Сп. спайность
- Структ. и морф.крист. структура и морфология кристаллов (название раздела)
- Тв. твердость
- Теор. теоретический
- Тетраг.с. тетрагональная сингония (система)

- Тетраэдр. тетраэдрический
- Триг.с. тригональная сингония (система)
- Трикл.с. триклинная сингония (система) Уд.в. – удельный вес
- Физ. св. физические свойства (название раздела)

Форм. ед. – формульная единица

- Характ. выдел. характер выделений (названне раздела)
- Хим. химизм, химический состав (название раздела)
- Цв. цвет
- Шт. штат

СИЛИКАТЫ С ОДИНОЧНЫМИ КРЕМНЕКИСЛОРОДНЫМИ ТЕТРАЭДРАМИ

А. БЕЗ ДОПОЛНИТЕЛЬНЫХ АНИОНОВ

Структура типа шпинели Уэдслиит β-(Mg, Fe²⁺)₂[SiO₄] Структура типа граната Группа гидрогранатов Катоит Ca₃Al₂[(SiO₄)_{3-r}(OH)_{4r}] (x = 1, 5-3) Структура типа циркона Группа циркона Гафнон (Hf, Zr)[SiO₄] Структура типа фенакита Группа фенакита Синсаоит (Zn, Co)₂[SiO₄] Структура типа оливина Группа оливина Лайхунит Fe²⁺Fe³⁺[SiO₄]₂ Либенбергит (Ni, Mg)₂[SiO₄] Структура типа стрингхамита Стрингхамит CaCu[SiO₄] \cdot H₂O Структура типа уранофана Группа уранофана Свамбоит $U^{6+}H_6[(UO_2)(SiO_4)]_6 \cdot 30H_2O$ Урсинит (Co, Mg, Ni)(H₃O)₂[(UO₂)(SiO₄)]₂ · 3H₂O

Б. С ДОПОЛНИТЕЛЬНЫМИ АНИОНАМИ

Структура типа дюмортьерита Группа дюмортьерита Холтит Al₆(Ta, Sb) [(Si, As)O₄]₃(BO₃) (O, OH)₃ Структура типа тундрита Тундрит-(Ce) Na₃(Ce, La)₄ (Ti, Nb)₂ (SiO₄)₂ (CO₃)₃ O₄(OH) · 2H₂O Тундрит-(Nd) Na₃(Nd, La)₄ (Ti, Nb)₂ (SiO₄)₂ (CO₃)₃ O₄(OH) · 2H₂O Структура типа спёррита Группа спёррита Параспёррит Ca₅[SiO₄]₂CO₃

```
Структура типа харрисонита
                   Харрисонит Ca(Fe<sup>2+</sup>, Mg)<sub>6</sub>[SiO<sub>4</sub>]<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>
 Структура типа коликита
                   Коликит Mn<sub>7</sub>Zn<sub>4</sub>[SiO<sub>4</sub>]<sub>2</sub>(AsO<sub>4</sub>)<sub>2</sub>(OH)<sub>8</sub>
 Структура типа крайслита
                  Крайслит Fe<sup>3+</sup>Mg<sub>4</sub>Mn<sub>44</sub>Zn<sub>6</sub>[SiO<sub>4</sub>]<sub>12</sub>(AsO<sub>3</sub>)<sub>4</sub>(AsO<sub>4</sub>)<sub>6</sub>(OH)<sub>36</sub>
Структура типа титанита
            Группа титанита
                   Ванадомалаяит CaV[SiO<sub>4</sub>]O
Структура типа кианита
            Группа кианита
                   Kанонаит (Mn<sup>3+</sup>Al)Al[SiO₄]O
Структура типа натисита
            Группа натисита
                  Натисит Na<sub>2</sub>Ti[SiO<sub>4</sub>]O
                  Паранатисит Na<sub>2</sub>Ti[SiO<sub>4</sub>]O
Структура типа ифтисита
                  Ифтисит-(Y) (Y, TR)<sub>4</sub>Ti[SiO<sub>4</sub>]<sub>2</sub>O(F, OH)<sub>6</sub>
Структура типа джасмундита
                  Джасмундит Са11[SiO4]4O2S
Структура типа апатита
           Группа эллестадита
                  Флюорэллестадит Са10[SiO<sub>4</sub>]<sub>3</sub>(SO<sub>4</sub>)<sub>3</sub>F<sub>2</sub>
                  Гидроксилэллестадит Ca<sub>10</sub>[SiO<sub>4</sub>]<sub>3</sub>(SO<sub>4</sub>)<sub>3</sub> (OH, Cl, F)<sub>2</sub>
                  Хлорэллестадит Ca<sub>10</sub>[SiO<sub>4</sub>]<sub>3</sub> (SO<sub>4</sub>)<sub>3</sub> (Cl, OH, F)<sub>2</sub>
                  Маттхеддлеит Pb<sub>20</sub>[SiO<sub>4</sub>]<sub>7</sub> (SO<sub>4</sub>)<sub>4</sub>Cl<sub>4</sub>
Структура типа датолита
           Группа датолита
                  Минасжерайсит-(Y) Y<sub>2</sub>CaBe<sub>2</sub>[SiO<sub>4</sub>]<sub>2</sub>O<sub>2</sub>
                  Хинганит-(Ce) (Ce, Y, Nd) (□, Fe<sup>2+</sup>)Be<sub>2</sub>[SiO<sub>4</sub>]<sub>2</sub> (O,OH)<sub>2</sub>
                  Хинганит-(Yb) (Yb, Y)2Be2[SiO4]2(OH)2
                  Хинганит-(Y) (Y, Yb, Er)<sub>2</sub>Be<sub>2</sub>[SiO<sub>4</sub>]<sub>2</sub> (OH)<sub>2</sub>
Структура типа хлоритоида
           Группа хлоритоида
                  Хлоритоид (Fe<sup>2+</sup>, Mg)<sub>2</sub>Al<sub>4</sub>[SiO<sub>4</sub>]<sub>2</sub>O<sub>2</sub>(OH)<sub>4</sub>
                  Магнезиохлоритоид (Mg, Fe<sup>2+</sup>)<sub>2</sub>Al<sub>4</sub>[SiO<sub>4</sub>]<sub>2</sub>O<sub>2</sub>(OH)<sub>4</sub>
                  Оттрелит (Mn<sup>2+</sup>, Fe<sup>2+</sup>, Mg)<sub>2</sub>Al<sub>4</sub>[SiO<sub>4</sub>]<sub>2</sub>O<sub>2</sub> (OH)<sub>4</sub>
Структура типа велинита
           Группа велинита
                  Францисканит Mg_3^{2+}(V_r\Box_{1-r})[SiO_4](O,OH)_3 (x \approx 0,5)
                  Эребруит Mn<sub>3</sub><sup>2+</sup>(Sb<sup>5+</sup>, Fe<sup>3+</sup>)[SiO<sub>4</sub>](O,OH)<sub>3</sub>
Структура типа гумита
           Группа гумита
                  Mahrahrymur (Mn, Mg)_7(SiO_4)_3(OH)_2
                   Джерриджиббсит Mno[SiO<sub>4</sub>]<sub>4</sub> (OH)<sub>2</sub>
                   Райнхардбраунсит Са5[SiO4]2 (OH, F)2
                   Сонолит Mn_9[SiO_4](OH)_2
```

Структура типа вюаньятита
Группа вюаньятита
Вюаньятит CaAl[SiO ₄] (OH)
Моцартит CaMn ³⁺ [SiO ₄] (OH)
Структура типа шанталита
Шанталит CaAl ₂ [SiO ₄] (OH) ₄
Структура типа элленбергерита
Элленбергерит
$(Mg, Ti, Zr, \Box)_2 Mg_6(Al, Mg)_6[SiO_4]_6[(Si, P)O_2(OH)_2]_2(OH)_6$
Структура типа полдерваартита
Полдерваартит Ca(Ca _{0,5} Mn _{0,5})[SiO ₃ OH] (OH)
Структура типа герстманнита
Герстманнит MnMgZn[SiO ₄] (OH) ₂
Структура типа сверигеита
Сверигеит Na (Mg, Mn ²⁺) ₂ SnBe ₂ [SiO ₄] ₃ (OH)
Структура типа кулиокита-(Y)
Кулиокит-(Y) Y_4 Al[SiO_4] ₂ (OH) ₂ F ₅
Структура типа сянхуалинита
Сянхуалинит [*] Li ₂ Ca ₃ Be ₃ [SiO ₄] ₃ F ₂
Структура типа ситинакита
Ситинакит Na ₂ KTi ₄ [SiO ₄] ₂ O ₅ (OH) \cdot 4H ₂ O

А. БЕЗ ДОПОЛНИТЕЛЬНЫХ АНИОНОВ

СТРУКТУРА ТИПА ШПИНЕЛИ

Ранее со структурой этого типа был описан рингвудит (Mg, Fe)₂ [SiO₄], диморф оливина (т. III, вып. 1, с. 13). Структура уэдслиита промежуточная между структурой рингвудита и оливина.

Сингония a_0 b_0 c_0 Уд.в. Уэдслинт β - (Mg, Fe²⁺)₂[SiO₄] Ромб. 5,70 · 11,71 8,24 3,84

Уэдслиит Wadsleyite

 β -(Mg, Fe²⁺)₂[SiO₄]

Назван в память о кристаллографе А.Д. Уэдсли [1]. К уэдслииту относят члены серии твердых растворов $Mg_2SiO_4 - Fe_2SiO_4$ со структурой β-фазы при Mg > Fe [1]. Полиморфен с форстеритом и ринтвудитом.

Характ. выдел. Мельчайшие зерна (не более 5 мкм) и их агрегаты (до 0,5 мм).

Структ. и морф. крист. Ромб. с. D_{2h}^{28} – *Ітта.* $a_0 = 5,70$, $b_0 = 11,71$, $c_0 = 8,24$ Å; $a_0:b_0:c_0 = 0,4867:1:0,7035;$ Z = 8 [1]. Для синтетической фазы β -(Mg_{1,80}Fe_{0,20})₂SiO₄: $a_0 = 5,7107$, $b_0 = 11,4467$, $c_0 = 8,2778$ Å; $a_0:b_0:c_0 = 0,4989:1:0,7291$; a_0,b_0 и c_0 линейно увеличиваются от 5,6984, 11,4380 и 8,2566 Å для β -Mg₂SiO₄ до 5,7216 11,4823 и 8,2879 Å для β -(Mg_{1,4}Fe_{0,60})₂SiO₄ [2]. Синтетическая фаза β -(Mg_{1,80}Fe_{0,20})₂[SiO₄] имеет структуру шпинели, в которой Si-тетраэдры и катионные полиэдры искажены в разной степени. Fe и Mg частично упорядоченно распределены по октаэдрическим позициям: Fe только в M(1) и M(2), а Mg полностью заселяет M(2). Имеются три кристаллографически независимых незаселенных октаэдра и шесть тетраэдров [2].

Средние межатомные расстояния (в Å): в Si₂O₇-группах Si-O = 1,646, O-O = 2,69; в MO₆-октаэдрах M(1)-O = 2,083, O-O = 2,925, M(2)-O = 2,085, O-O = 2,944; M(3)-O = 2,098, O-O = 2,968 [2].

Физ. св. Уд. в. 3,84 (вычисл.). Цв. микроагрегатов светло-бурый. Прозрачен [1].

Микр. Анизотропный. Слабо двупреломляет, $n_{cp} = 1,76$, $n_{вычисл} = 1,77$ [1].

Хим. Теор. состав для формулы (Mg_{1,5}Fe_{0,5})₂SiO₄: MgO – 39,42; FeO – 22,68; SiO₂ – 37,91.

Анализ (микрозонд.) [1]: MgO – 38,21; CaO – 0,07; FeO – 22,37; MnO – 0,48; NiO – 0,11; ZnO – 0,10; SiO₂ – 38,67; сумма 100,02.

Нахожд. Обнаружен в сульфидных прожилках в перекристаллизованном гиперстен-оливиновом хондрите в метеорите Пис Ривер (Альберта, Канада), где образовался по оливину вместе с рингвудитом. Ассоциирует с плагиоклазом, ортопироксеном, железо-никелевыми сплавами и троилитом. Плагиоклаз частично превращен в маскелинит, ортопироксен – в меджорит. Образовался предположительно под действием сверхдавления во время внеземного ударного процесса [1]. Полагают, что уэдслиит – наиболее распространенный минерал в верхней мантии Земли на глубине 400–500 км [2].

Искусств. Синтезированы монокристаллы уэдслиита (Mg_{1,80}Fe_{0,20})₂ [SiO₄] (размером до 500 мкм) из смеси искусственных форстерита и фаялита при 18–20 ГПа и 1800°. Продолжительность опыта 30 мин [2]. При синтезе β-фаз с разными отношениями Fe/(Mg + Fe) (от 0,00 до 0,25) чисто магнезиальная фаза получается при 16 ГПа и 1400°, а железосодержащие – при 1800°. Замещение железом 1/4 атомов Мg незначительно влияет на сжимаемость уэдслиита, объемные модули сжатия согласуются в пределах 3% для 164 ГПа [3]. Средний изотермический объемный модуль сжатия – 171,0 ГПа [4].

Межплоскостные расстояния уэдслинта из метеорита [1]

CuK_{α} -излучение, $D = 114,6$ мм							
hkl	I	d(Å)	hki	I	d(Å)		
112	20	3,195	240	80	2,038		
040	50	2,886	143	15	1,872		
013	40	2,691	204	20	1,670		
211	30	2,637	303	30	1,567		
220	15	2,583	341	30	1,552		
141	100	2,452	244	80	1,442		

Литература

1. Price G.D., Putnis A., Agrell S.O., Smith G.W. // Canad, Miner. 1983. Vol. 21, N 1. P. 29.

2. Sawamoto H., Horiuchi H. // Phys. Chem. Miner. 1990. Vol. 17, N 4. P. 293.

3. Hazen R., Zhang J., Ko J. // Ibid. N 5. P. 416.

4. Jeanloz R., Hazen R. // Amer. Miner. 1991. Vol. 76, N 9/10. P.1765.

СТРУКТУРА ТИПА ГРАНАТА

ГРУППА ГИДРОГРАНАТОВ

Группа включает силикаты со структурой типа граната, в которых тетраэдры [SiO₄] частично замещены группами (OH)₄. Ранее в группе описаны: гидрогроссуляр, гибшит, гидроуграндит и анритермьерит (т. III, вып. 1, с. 85); название "гидроуграндит" дискредитировано (Никель, Мандарино, 1989).

	Сингония	<i>a</i> ₀	Уд.в.
Катоит $Ca_3Al_2(SiO_4)_{3-x}(OH)_{4x}(x = 1, 5-3)$	Куб.	12,358	2,73

Катоит Katoite

$Ca_3Al_2[(SiO_4)_{3-x}(OH)_{4x}](x = 1,5-3)$

Назван в честь японского минералога Акира Като [1]. Близок к конечному члену изоморфного ряда Ca₃Al₂(SiO₄)₃ (гроссуляр) – Ca₃Al₂(OH)₁₂ (искусственная фаза) с содержанием 27% гроссуляровой молекулы. КНМ ММА утвердила два названия для гидратированных разиостей этого ряда: "гибшит" (более 50% Gr) и "катоит" (менее 50% Gr); "гидрогроссуляр" предложено использовать в качестве общего названия для гидратированных членов этого ряда [1].

Характ. выдел. Микрокристаллы (до 0,3 мм) и их скопления в виде тонких корок и опалесцирующих каемок.

Структ. и морф. крист. Куб.с. $O_h^{10} - Ia3d. a = 12,358$ Å [1], после уточнения $a_0 = 12,38$ Å [2]; V = 1897Å³; Z = 8. Для дейтерированных искусственных Ca₃Al₂(SiO₄)O₄D₄ (метод нейтронографии) $a_0 = 12,0$ Å при 300 K, а для Ca₃Al₂(O₄D₄) $a_0 = 12,5389$, 12,5530 и 12,5695 Å при 100, 200 и 300 K соответственно [3, 4].

Обладает структурой гроссуляра, в которой около 80% SiO₄-тетраэдров замещается на 4OH (фиг. 1) [2]. С изоморфным замещением SiO₄⁴⁻ \rightarrow 4OH⁻ в катоите (1)

Фяг. 1. Фрагмент структуры катоита, показывающий конфигурацию полиэдров и положение атомов Н (по Сакердотти и Пассаглиа)

	1	2	3
В тетраэдрах			
Si–O	1,892	1,775	1,645
O (1)O (2)	2,969	2,775	2,567
0(1)-0(3)	3,147	2,957	2,745
В октаэдрах			
Al-O	1,902	1,927	1,924
O (1)O (4)	2,607	2,701	2,756
O (1)O (5)	2,769	2,750	2,686
В додекаэдрах			
Ca (1)-O (4)	2,429	2,383	2,319
Ca (2)O (4)	2,497	2,503	2,490
O (1)O (2)	2,969	2,775	2,567
O (1)O (4)	2.607	2,701	2,756
O(1)-O(6)	3,973	3,987	3,967
O(1)O(7) .	3,669	3,573	3,450
O (1)O (8)	4,364	4,319	4,241
O (4)O (6)	3,037	3,011	2,973
O (4)O (7)	2,977	2,931	2,866
O (7)O (8)	4,030	4,092	4,121
O-H	0,68	0,928	_
Содержание H ₂ O	20,80	10,71	0,00
(в мас.%)			

связано изменение длин связей в полиэдрах по сравнению с таковыми в гибшите (2) и гроссуляре (3):

На основании анализа длин связей предполагается [2], что степень гидратации природных гранатов зависит от содержания Са в додекаэдрических позициях.

Кристаллы округлые, октаэдрического облика [1].

Физ. св. Уд. в. 2,73 (вычисл.). Цв. молочно-белый. По сравнению с ИК-спектром гроссуляра полосы поглощения в области 550–1250 см⁻¹, отвечающие валентным связям Si–O, значительно слабее и размыты, дополнительно проявлена полоса 1100 см⁻¹, а полоса 618 см⁻¹ отсутствует. Валентным колебаниям связи O–H в группировке O₄H₄ отвечает четкая полоса поглощения 3650 см⁻¹. Конфигурация спектра в этой области почти идентична таковой бескремниевой искусственной фазы [1]. Коэф. объемного сжатия искусственного катоита $K'_0 = 6, 1\pm 1, 5$ ГПа [5].

Микр. Бесцветный. Изотропный. N = 1,632 (очень слабое двупреломление).

Хим. Теор. состав для идеализированной формулы $Ca_3Al_2SiO_4(OH)_8$: CaO – 33,36; $Al_2O_3 - 40,43$; SiO₂ – 11,92; $H_2O - 14,29$. Анализ (микрозонд.): CaO – 42,27; MgO – 0,07; SiO₂ – 10,58; $Al_2O_3 - 24,01$; SO₃ – 2,27; $H_2O - 20,80$ (определена по термограмме); сумма 100,00. Предполагается, что сера, установленная анализом, замещает кремний. На качественной спектрограмме обнаружены Fe, Cr, Ti, Mn, Sr, Ba, K и Na. Эмпирическая формула (на 12 атомов O): $Ca_{2,96}(Al_{1,85}Mg_{0,01})_{1,86} \times (Si_{0,69}S_{0,11})_{0,80} \cdot O_{2,93}$ (OH)_{9,07} [1].

Повед. при нагр. Дегидратация начинается с 50°, и к 270° потеря веса составляет около 7%, к 580°– 20,80%. Слабое понижение кривой нагревания в интервале 750–900° предположительно связано с улетучиванием серы в форме SO₃ [1].

Нахожд. Найден в пустотах в фонолите в верхней части лавового потока, внедрившегося сквозь аргиллитовые мергели и излившегося на их поверхность, вблизи Монтальто-ди-Кастро (область Лацио, Италия). Ассоциирует с гранатом, волластонитом, тоберморитом, геленитом, кордиеритом, кальцитом, гипсом, апофиллитом и цеолитами. Предполагается, что кристаллизовался из гидротермальных растворов, недосыщенных кремнием при температуре около 300° и относительно высоком давлении водяного пара [1].

Отл. От других членов изоморфного ряда отличается по параметрам элементарной ячейки, уд.в. и показателю преломления.

Искусств. Дейтерированная фаза Ca₃Al₂(O₄D₄)₃ получена при гидротермальной обработке синтетического Ca₃Al₂O₆ при 478 K и 200 бар в течение 8 дней [3], а Ca₃Al₂(SiO₄)₂(O₄D₄) – в гидротермальных условиях из Ca₃Al₂(O₄D₄)₃ и аморфного кремнезема при 623 K и 500 бар (длительность эксперимента 2 мес) [4]. Другие способы синтеза см. в т. III, вып. 1, с. 87 и 92.

Межплоскостные расстояния природного катоита из Италии [1]

СuКα-излучение, Ni-фильтр. Дифрактометр

hkl	1	d(Å)	hkl	1	d(Å)	hkl	1	<i>d</i> (Å)
211	37	5.046	510;431	22	2,424	721	11	1,6814
220	21	4,369	521	58	2,257	64 2	37	1,6507
321	32	3,303	440	5	2,187	732;651	2	1,569
400	50	3,089	661;532	58	2,004	800	10	1,5457
420	100	2,763	620	5	1,956	840	8	1,4058
33 2	12	2,636	444	10	1,7833			
422	21	2,518	640	29	1,7134			

Литература

1. Passaglia E., Rinaldi P. // Bull. miner. 1984. Vol. 107, N 5. P. 605.

2. Sacerdoti M., Passaglia E. // Ibid. 1985. Vol. 108, N 1. P. 1.

3. Lager G A., Armbruster T., Faber J. // Amer. Miner. 1987. Vol. 72, N 7/8. P. 756.

4. Lager G.A., Armbruster T., Schultz A. // 14th Gen. Meet. Intern. Miner. Assoc., Stanford, Calif., 13-18 July, 1986: Abstr. Program. Wash. (D.C), 1986. P. 149.

5. Olijnvk H., Paris E., Geiger C., Lager G. // J. Geophys. Res. 1991. Vol.96, N B9. P. 14313.

СТРУКТУРА ТИПА ЦИРКОНА

ГРУППА ЦИРКОНА

Описание минералов группы – циркона, торита, коффинита, ненадкевита см. т. III, вып. 1, с. 97.

	Сингония	<i>a</i> 0	<i>c</i> 0	Уд.в.
Гафнон (Hf, Zr) [SiO ₄]	Terpar.	6,572	5,963	6,3

Гафион Hafnon

$(Hf, Zr) [SiO_4]$

Название по элементу [1], первоначально принятое для искусственной фазы [2].

В изоморфном ряду ZrSiO₄ – HfSiO₄ предложено выделять [1]:

HfSiO₄, мол.%

циркон	0-10
гафниевый циркон	10-50
пиркониевый гафнои	5090
гафион	90-100

Характ.выдел. Микроскопические участки (пятна) в кристаллах гафнийсодержащего циркона размером от долей мм до 1 см [1].

Структ. и морф. крист. Тетраг. с. $D_{4h}^{19} - I4_1/amd. a_0 = 6,5725, c_0 - 5,9632$ Å; $a_0:c_0 = 1:0,9072; V = 257,6$ Å³; Z = 4 для искусственного гафнона [3]. Параметры элементарной ячейки природных минералов изоморфной серии циркон-гафнон уменьшаются с возрастанием атомного отношения $100 \cdot \text{Hf}/(\text{Zr} + \text{Hf})$ от $a_0 = 6,617$ и $c_0 = 5,999$ Å для 33 до $a_0 = 6,588$ и $c_0 = 5,973$ Å для 78 [1].

Структура искусственного гафнона идентична структуре циркона. Однако вследствие меньшего размера радиуса гафния (0,83 Å) против радиуса циркония (0,84 Å) все межатомные расстояния в структуре гафнона закономерно сжаты по сравнению с аналогичными в структуре циркона и соответствуют таковым в его структуре под давлением 29,5 кбар.

Межатомные расстояния (в Å): Si-O = 1,620; Hf-O = 2,115 и 2,260 Å [3]. Кристаллы искусственного гафнона тетрагональные, дипирамидального облика [3].

Физ. св. Уд. в. гафнонсодержащего циркона (вычисл.) 6,32 и 6,48 увеличивается с повышением содержания Hf [1], синтетического гафнона 6,64 (вычисл.), 6,95–7,07 [3]. Цв. гафнонсодержащего циркона обычно оранжево-красный, реже от бесцветного до буровато-желтого. Корреляция между окраской минерала и удельным весом не установлена [1].

ИК-спектр искусственного гафнона, полученного гидротермальным способом при 700 бар и 800°, характеризуется полосами поглощения: 430,610,890 и 1020 см⁻¹, которые совпадают с таковыми в ИК-спектрах как природного, так и синтетического циркона [4]. В ИК-спектре гафнона, синтезированного при 2000 бар и 1200°, наблюдается небольшое смещение в области низких частот (колебание связей Zr-O и Hf-O) на 10–15 см⁻¹, что предположительно объясняется, с одной стороны, условиями синтеза, не соответствующими природным процессам, а с другой – свидетельствует об увеличении прочности связи Hf-O [5].

Хим. Теор. состав: HfO₂ - 77,79; SiO₂ - 22,21.

Анализ (микрозонд., анализировались участки с максимальным содержанием Hf в двух гафнийсодержащих кристаллах циркона из Муиане; анал. Сиивола):

SiO ₂	HfO ₂	ZrO2	Сумма	HfSiO ₄	ZrSiO ₄	SiO ₂	Уд.в. (вычисл.)
28,32	69,78	3,28	101,38	88,48	4,81	6,71	6,32
27,20	72,52	1,21	100,93	92,36	1,78	5,86	6,48

Избыток SiO₂ в анализах связан с супермикроскопическими включениями твердого раствора SiO₂ в структуре гафнона. Типичные для циркона микропримеси U, Th, а также Mg, Al, P, Ca, Ti, Cr, V, Mn, Fe, Nb, Ba, Y, TR, Ta не установлены [1].

Нахожд. Обнаружен в гафнийсодержащем цирконе в тяжелой фракции концентратов из гранитных танталсодержащих пегматитов из месторождений Морруа, Конко, Монейа и Муиане (Мозамбик). Ассоциирует с альбитом и кукеитом [1].

Отл. От циркона существенно отличается по удельному весу и параметрам элементарной ячейки.

Искусств. Впервые [2] синтезирован в 1954 г. при 1550° и атмосферном давлении из смесей HfO_2 с кварцем и аморфным SiO_2 . Образуется при 1400, 1470, 1500, 1550 и 1600° и атмосферном давлении в разных количествах при одновременном нагревании каждой из трех смесей HfO_2 с α -кварцем, силикатным стеклом и аморфным SiO_2 в стехиометрических пропорциях 77,79 и 22,21 мас.% соответственно. Время опыта 18 ч. В качестве побочных фаз во всех случаях зафиксирована фаза моноклинного HfO_2 , а в сплавах с α -кварцем и силикатным стеклом

при 1400, 1470, 1500° – кристобалита [6]. Синтезирован двухстадийным методом: первоначально при 1000–1300° и атмосферном давлении путем спекания в платиновом тигле смеси HfO₂, SiO₂ и Na₂O получен силикат Na₂HfSiO₅, а затем из измельченного до 0,05 мм гафносиликата при гидротермальной обработке при 300° в стальном автоклаве в течение 60г – гафнон (для получения высокочистого гафнона рекомендуется обработку проводить в серебряном автоклаве) [7]. В гидротермальных условиях при 800° и 700 бар синтезирован из смеси HfOCl · 8H₂OSiO₂ [4]. Кристаллизовался при сплавлении смеси HfO₂ марки ГФО-2 и безводного аморфного SiO₂ с добавлением 10%-ной HCl в платиновой ампуле при нагревании в течение 4–5 ч при 1200° и 2000 бар в оригинальной установке высокого газового давления [5].

Тетрагональные кристаллы гафнона выращены из Li_2MoO_4 сплава, в котором содержалось 0,5 мас.% HfO₂ · SiO₂, в платиновом тигле в муфельной печи при 1000° и атмосферном давлении в течение 4 дней [3].

Межплоскостные расстояния синтетического га	афнона,
СиК - излучение. Пифрактомето	

			u /	• • •				
hkl	1	d (Å)	hkl	1	d(Å)	hki	1	d (Å)
101	60	4,43	400	18	1,644	521	2	1,195
202	100	3,29	411	6	1,539	512	10	1,183
211	25	2,638	004	4	1,491	440	4	1,162
112	70	2,512	420	12	1,469	215	6	1,105
220	18	2,324	332	12	1,374	600	6	1,096
202	2	2,208	204	10	1,358	611	2	1,063
301	20	2,057	323	2	1,343	532	8	1,054
103	14	1,903	431; 501	6	1,283	424	8	1,047
321	18	1,743	224	8	1,255	620	6	1,039
312	55	1,705	413	4	1,243			

* ASTM, 20-467, $a_0 = 6,573$, $c_0 = 5,964$ Å.

Литература

1. Correta Neves J.M., Lopes Nunes J E. // Contrib. Miner. and Petrol. 1974. Vol. 48, N 1. P. 73.

2. Curtis C.E., Doney L.M., Johnson J R H. // J. Amer. Ceram. Soc. 1954. Vol. 37, N 10. P. 458.

3. Speer J., Cooper B. // Amer. Miner. 1982. Vol. 67, N 7/8. P. 804.

4. Caruba R., Baumer A., Tureo G. // Geochim. et cosmochim. acta. 1975. Vol. 39, N 1. P. 11.

5. Поваренных А.С., Мельник Ю.П., Шабалин Б.Г. // Геол. журн. АН УССР. 1977. Т. 37, вып. 3. С. 136.

6. Salt D.J., Hornung // J. Amer. Ceram. Soc. 1967. Vol. 50. P. 549.

7. Чухланцев В.Г., Полежаев Е.М. // Тр. Урал. политехн. ин-та, 1966. Вып. 148. С. 40.

СТРУКТУРА ТИПА ФЕНАКИТА

ГРУППА ФЕНАКИТА

Группа включает фенакит, виллемит, эвкриптит, либерит и мервинит (т. III, вып. 1, с. 145). Установлена кобальтсодержащая разновидность виллемита – синсаоит – xingsaoite (Zn, Co)₂[SiO₄] [1].

Триг. с. $C_{3i}^2 - R\overline{3}$. $a_h = 13,9559$, $c_h = 9,3364$ Å; $a_h : c_h = 1 : 0,6699$; V = 1574, 8104 Å³; Z = 18.

Рентгенограмма и ИК-спектр идентичны таковым виллемита.

Микротвердость 548-681 кгс/мм². Цв. темно-сине-фиолетовый. Бл. стеклянный до жирного. В ИК-спектре полосы поглощения 973, 928, 895, 868, 677, 612, 462, 397, 389 см⁻¹.

отделение (6 л. 1 Одноосный (+). $n_e = 1,722-1,723$, $n_0 = 1,713-1,714$; $n_e - n_0 = 0,009$.

Анализ (микрозонд., среднее из 3): ZnO - 47,01; CoO - 25,41; SiO₂ - 27,36; сумма 99,78.

Эмпирическая формула: (Zn_{1.26}Co_{0.74})_{2.0}SiO₄.

- -

Известен только в зоне окисления золоторудного месторождения в пров. Хунань (КНР).

		Межп	лоскостные	рассто	Эяния синсаоит	a [1]			
<i>D</i> = 53,7 мм									
hkl	1	d(Å)	hkl	Ι	d (Å)	hkl	1	d (Å)	
110	4	6,978	523	2	1,6435	208	2	1,1459	
300	4	4,0287	710	3	1,6009	716	3	1,1158	
22 0	10	3,4890	006	3	1,5561	048	3	1,0887	
113	10	2,8423	443	3	1,5217	508	2	1,0510	
140	10	2,6374	713	8	1,4236	556	2	1,0390	
330	6	2,3260	550	1	1,3956	835	1	1,0255	
060	2	2,0144	633	4	1,3678	348	4	1,0063	
250	2	1,9353	090	5	1,3429	229	2	0,9944	
333	6	1,8631	526	2	1,2127	746	2	0,9761	
603	2	1,6910	743	3	1,1626				

Литература

1. Zhen Y., Huang Z. // Acta miner. Sinica. 1989. Vol. 9, N 1. P. 33.

СТРУКТУРА ТИПА ОЛИВИНА

ГРУППА ОЛИВИНА

Ранее описаны минералы группы: форстерит, оливин, фаялит, кнебелит, тефроит, кальциооливин (т. III, вып. 1, с. 167).

	Сингония	a 0	b 0	<i>c</i> ₀	β	Уд.в.
Лайхунит $Fe^{2+}Fe_2^{3+}[SiO_4]_2$	Монокл.	4,805	10,189	5,801	91,00°	2,92
Лнбенбергит (Ni, Mg) ₂ [SiO ₄]	Ромб.	4,727	10,191	5,955	-	4,60

Понижение симметрии лайхунита связано с появлением вакансий, возникающих при замещении в фаялите части атомов Fe²⁺ атомами Fe³⁺.

Лайхунит Laihunite $Fe^{2+}Fe_{2}^{3+}[SiO_{4}]_{2}$

Назван по месту находки вблизи деревни Лайху на северо-востоке Китая [1].

Ранее опнсан как феррифаялит в Средней Азии [2].

Синон. Феррифаялит - ferry-fayalite [2]. Первоначальное название применяется для образца из Средней Азии.

Характ. выдел. Кристаллы, тонкотаблитчатые и короткопризматические (0,3-0,65 мм) [1-3], псевдоморфозы по фаялиту.

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1/b$. Z = 2.

	a 0	<i>b</i> 0	<i>c</i> 0	β	V(Å ³)	Местонахождение	Ссылка
Лайхунит	4,805	10,189	5,801	91,00°	283,9	Китай	[4]
"	4,82	10,20	5,82	91,02			[8]
Феррифаялит	4,806	10,20	5,76	90,89		Средняя Азия	[9]
Лайхунит-2М	4,81	10,43	5,93	91,00	297	Синтетический	[6]
Лайхунит-3М	4.81	10.44	5,99	90.3	301	н	

Установлены сверхструктуры вдоль оси *с* – 2*с* и 3*с*, отвечающие синтетическому лайхуниту 2M и 3M соответственно [4–7].

Структура оливинового (фаялитового) типа, определена для лайхунита-3c [4, 10, 11]. В отличие от фаялита в структуре лайхунита около 1/4 октаэдрических позиций в ячейке вакантны (не заняты атомами железа) [4, 10]. Позиция M(2) занята атомами Fe³⁺, в позиции M(1) упорядоченно распределены атомы Fe²⁺ и вакансии [4, 5, 9]. Вакансии возникают в результате замещения в фаялите бо́льших по размеру ионов Fe²⁺ меньшими Fe³⁺.

По Г.Б. Бокию с соавторами [9], для наиболее вероятной модели структуры катионы Fe^{2+} н вакансии располагаются в позиции M(1) послойно: вдоль направления с через расстояние, равное с/2, чередуются параллельно (001) слой с катионами Fe^{2+} и слой вакансий, что вызывает понижение симметрии лайхунита по сравнению с фаялитом.

Межатомные расстояния (в Å) [4]: T–O = 1,615–1,654; O–O = 2,517–2,754; M(1)–O = 2,092–2,236; O–O = 2,642–3,596; M(2)–O = 1,921–2,141; O–O = 2,517–3,288; \square –O = 2,102–2,325; O–O = 2,673–3,640. Углы: O–T–O = 99,2–115,0; O–M(1)–O = 72,6–107,4; O–M(2)–O = 71,4–112,4; O– \square –O = 72,6–107,4°.

Состав, полученной на основании распределения атомов железа по позициям (M(1) = Fe²⁺ + Mg = 1, M(2) = ~0,20Fe²⁺ + ~0,80Fe³⁺, \Box = 0,20), выражается формулой $\Box_{0,40}$ Fe²⁺_{0,80}Fe³⁺_{0,80}SiO₄, указывающей на нестехиометричность минерала [4].

Прецизионные рентгеноструктурные исследования феррифаялита из Средней Азии [12] показали: $a_0 = 4,806$, $b_0 = 10,20$, $c_0 = 5,76$ Å, $\beta = 90,89^\circ$; позиция M(1) расщепляется на две – M(1) и M(3); заселение Fe²⁺: в M(1) – 66%, в M(3) – 33% (средние расстояния Fe²⁺–O в M(1) и M(3) = 2,21 и 2,15 Å соответственно).

Под высокоразрешающим электронным микроскопом в образце из Китая выявлены доменная текстура и наличие двух фаз: лайхунита и магнетита, образовавшихся при окислении фаялита [8]. Магнетит по границам доменов лайхунита образует тончайшую сетку из полосок шириной в несколько нм и тонкие прожилки в несколько десятков нм. Отношение лайхунита к магнетиту составляет примерно 6:1 [8].

В феррофаялите отмечены включения кнобелита и тонкодисперсных фаз – Fe₂O₃ и SiO₂ [2, 12].

Выявлены доменные псевдодвойники лайхунита из Китая по плоскости (100) размером в несколько сот нм [10].

Решетки двух индивидуумов находятся не в точном двойниковом срастании: оси с повернуты друг относительно друга на 0,3° [4, 11].

Соотношение лайхунита с фаялитом является топотаксическим с общей плоскостью (023) [4].

Физ. св. Сп. по (001) и (010) совершенная, по (100) несовершенная. Тв. 6,1. Уд.в. 3,92 (вычисл. 4,11). Микротвердость 890 кгс/мм². Цв. черный. Черта светлобурая. Непрозрачен [1]. Мессбауэровский спектр показал аналогичное химическим анализам отношение Fe³⁺/Fe²⁺ = 1/0,65 [1, 3].

На ИК-спектре отмечаются линии: 510, 830, 885 и 955 см⁻¹; после нагревания

до 700° – наиболее интенсивные линии при 475, 834, 870, 920, 950 и 965 см⁻¹; для фаялита характерны линии при 480, 566, 828, 950 и 965 см⁻¹ [3].

Микр. В прох. свете непрозрачный; некоторые зерна по краям буроватокрасные. В отраженном свете серый с неотчетливыми внутренними рефлексами. Слабо анизотропен. R = 12,39% – в красном и желтом свете, 13,43% – в зеленом [1].

Хим. Анализы лайхунита из железорудного месторождения в пров. Ляонин (Китай), анал. Хон Ин, Ян Сичен [1]:

	1	2	3		1	2	3
MgO	-	0,21	0,47	Fe ₂ O ₃	43,57	44,24	45,07
CaO	-	0,87	0,47	SiO ₂	31,00	31,07	31,85
FeO Al ₂ O3	25,50	23,64 _	22,52 0,07	Сумма	100,07	100,03	100,45

Эмпирические формулы (на 8 атомов О) [1]:

$$1 - Fe_{1,28}^{2+}Fe_{1,98}^{3+}Si_{1,88}O_8;$$

 $2 - Fe_{1.18}^{2+}Fe_{2.00}^{3+}Mg_{0.08}Si_{1.86}O_8;$

 $3 - \text{Fe}_{1,12}^{2+} F_{2,02}^{3+} \text{Mg}_{0,06} \text{Si}_{1,94} \text{O}_8.$

Спектроскопически - сл. Ва, Си, Мп.

Микрозондовые анализы лайхунита см. в работе [5]. Средний состав по 55 точечным микрозондовым определениям 7 образцов: $Fe_{2.06}^{2+}Fe_{2.06}^{3+}Mg_{0.06}Si_{1.88}O_8$.

Дефицит Si/O обязан присутствию в анализированном материале тонкой примеси магнетита, благодаря чему лайхунит должен содержать меньше FeO и, следовательно, приближаться к стехиометричному составу Fe²⁺Fe³⁺₂(SiO₄)₂.

В феррифаялите из Средней Азии содержится (в %) [2]: FeO – 12,53–26,77; Fe₂O₃ – 32,19-45,74; MnO – 5,49–7,96; SiO₂ – 29,02–30,48. С учетом вакансий состав выражается формулой □_{0,49} (Fe²⁺_{0,22}Mn_{0,22}Ca_{0,07})_{0.51} Fe³⁺_{1,00}SiO₄ [9].

Диагн. нсп. Относится к феррифаялиту [2]. В отличие от фаялита полностью растворяется только в смеси H₂SO₄ и HF.

Повед. при нагр. На кривой ДТА фиксируется экзотермический пик при 713°. После нагревания на воздухе до 900° и выдержке при этой температуре в течение 2 ч экзотермический пик не появляется [1, 3].

Нахожд. Обнаружен [1] на докембрийском метаморфическом железорудном месторождении в пров. Ляонин, вблизи дер. Лайху на северо-востоке Китая, вместе с фаялитом, гиперстеном, кварцем, магнетитом. Встречается в верхней части рудного тела во вмещающих кварц-гиперстеновых и гиперстеновых гранулитах, где его содержание составляет 1—4%. Образовался при окислении фаялита [1, 3, 8]. С фаялитом, магнетитом и кварцем найден в эвлизите на месторождении Хеби (Китай): нарастает на кристаллах фаялита или переслаивается с ним по (001) [8]. Упоминается [8] в вулканических породах Камитага, преф. Сидзуока (Япония). Феррифаялит описан из крупнозернистых шлиров Черкасского гранитного массива в Кураминском хребте (Средняя Азия) как продукт изменения Mn-фаялита [2].

Искусств. Лайхунит состава $\Box_x \operatorname{Fe}_{2-3x}^{2+}\operatorname{Fe}_{2x}^{3+}\operatorname{SiO}_4$ получен нагреванием кристаллов синтетического фаялита на воздухе при 400, 600 и 700° [6]. В процессе окисления происходило образование двух типов лайхунита: 2М и 3М. Лайхунит-2М (состав $\Box_{0,37} \operatorname{Fe}_{0,90}^{2+} \operatorname{Fe}_{0,73}^{3+} \operatorname{SiO}_4$) наблюдается в наиболее удаленной от фаялита гематит-силикатной зоне шириной около 3000 Å, а лайхунит-3М (состав $\Box_{0,24} \operatorname{Fe}_{1,28}^{2+} \operatorname{Fe}_{0,48}^{3+})$ – в виде зоны (шириной около 300 Å) между фаялитом и лайхунитом-2М. В самом фаялите, где концентрация ионов Fe³⁺ невелика, отмечались лишь отдельные "пучки" лайхунита-3М размером около 18 Å, имеющего общую с фаялитом плоскость (023).

В отличие от природного лайхунита, который находится в тесной смеси с магнетитом, синтетический сосуществует с гематитом и аморфным кремнеземом. Причина этого – в различных условиях фугитивности кислорода.

Предполагается [13], что природный лайхунит стабилен при давлении 15 кбар и температуре между 600 и 700°.

В синтезированном продукте лайхунит-2М и лайхунит-3М выделяются как самостоятельные пространственно разделенные фазы, в природном они находятся преимущественно в тесных взаимных прорастаниях на уровне элементарной ячейки [6, 8].

Отл. От фаялита отличается физическими и оптическими свойствами в соответствии с различиями химического состава и структуры.

Межплоскостные расстояння лайхунита из железорудного месторождении в пров. Лионин (Китай) [3] FeK₀-излучение

hkl	1	d(Å)	hkl	I	d(Å)	hkl	1	d (Å)
100	3	5,80	014	5	2,260	206; 314	3	1,476
002	1	5,21	0,22; 121	2	2,180	401; 332	4	1,440
102	6	3.78	122	1	2,055	133; 230	3	1,410
111	9	3,47	ī 23	1	1,870	017; 305; 216	2	1,395
200	3	2,90	024; 222	7	1,750	126, 117	3	1,355
013	8	2,78	124; 303	1	1,675	040; 118	2	1,200
202; 113	10	2,520	106; 223	2	1,635	242; 416	3	1,084
020: 211	6	2,405	215	1	1,595	045; 219; 318	2	1,035
104	1	2,350	304; 025	1	1,555			

Литература

1. Laichunite // Geochimica. 1976. Vol. 2, N 1. P. 95; Amer. Miner. 1977. Vol. 62, N 9/10. P. 1058 (abstr).

- 2. Гинзбург И.В., Лисицина ГА., Содикова А.Т., Сидоренко Г.А. // Тр. Минерал. музея АН СССР. 1962. Вып. 13. С. 16.
- 3. Fu P., Kong Y., Zhang L. // Geochimica. 1982. Vol. 1, N 1. P. 105.
- 4. Tamada O., Shen B., Morimoto N. // Mineral. J. 1983. Vol. 11, N 8. P. 382.
- 5. Shen B., Tamada O., Kitamura M., Morimoto N. // Sci. Geol. Sinica. 1982. Vol. 3. P. 341.
- 6. Kondon S., Kitamura M., Morimoto N. // Amer. Miner. 1985. Vol. 70, N 7/8. P. 737.
- 7. Zou B S., Kuo K H. // Acta crystallogr. B. 1986. Vol. 42. P. 17.
- 8. Kitamura M., Shen B., Banno S., Morimoto N. // Amer. Miner. 1984. Vol. 69, N 1/2. P. 154.
- Бокий Г.Б., Врублевская З.В., Гинзбург И.В. // Минералогическая кристаллография и ее применение в практике геолого-разведочных работ. Киев: Наук. думка, 1986. С. 167.
- 10. Fu P., Kong Y., Zhang L. // Geochimica. 1979. Vol. 2, N 1. P. 103.
- 11. Fu P., Kong Y., Zhang L. // Ibid. 1982. Vol. 1, N I. P. 115.
- Bokiy G.B., Vrublevskaja Z.V., Ginzburg I.V., Zacharow N.D. // Ninth European Crystallogr. Meeting, Torino, Italy, 2-6 septemba, 1985; Abstr. Torino, 1982. Vol. 2. P. 443.
- 13. Wang S. // Geochimica. 1980. Vol. 3, N 1. P. 31; Miner. Abstr. 1981. Vol. 32, N 1. P. 48.

Либенбергит Liebenbergite

$(Ni, Mg)_2[SiO_4]$

Назван в честь У.Р. Либенберга – заместителя главного директора Национального института металлургии ЮАР [1].

Название относится к членам оливинового ряда, в октаэдрических позициях которых Ni преобладает [1].

Характ. выдел. Зерна, сильно серпентинизированные.

Структ. и морф. крист. Ромб. с. D_{2h}^{16} -*Pbnm* (предположительно). $a_0 = 4,727, b_0 = 10,191, c_0 = 5,955$ Å; $a_0: b_0: c_0 = 0,4638: 1: 0,5843; V = 286,8$ Å³; Z = 4 [1].

В сводной статье Р.А. Виноградовой [2] ошибочно указана пр. гр. D_{2k}^{7} -Pbnm.

Аналог синтетического Ni₂SiO₄ ($a_0 = 4,725, b_0 = 10,118, c_0 = 5,908$ Å) [3, 4].

Физ. св. Сп. по (010) несовершенная до средней, по (100) – несовершенная. Тв. 6-6,5. Уд.в. 4,60 (вычисл.). Цв. желтовато-зеленый [1].

Микр. Плеохроизм: по Np и Nm – от бесцветного до светло-зеленого, по Ng – зеленовато-желтый. Пл. опт. осей (001). Np = b, Nm = c, Ng = a. Двуосный (-). $n_g = 1,888$, $n_m = 1,854$, $n_p = 1,820$; $n_g - n_p = 0,068$; $2V = 88^\circ$. Дисперсия, r > v [1].

Хим. Теор. состав для Ni₂SiO₄: NiO – 71,32; SiO₂ – 28,68.

Анализ (микрозонд., среднее для 8 зерен из 3 образцов), анал. Калк [1]: MgO – 6,50; FeO – 4,37; NiO – 56,32; CoO – 1,80; SiO₂ – 29,39; сумма 98,38.

Эмпирическая формула (на 4 атома О): (Ni_{1,52}Mg_{0,33}Fe_{0,12}Co_{0,05})_{2,02} Si_{0,99}O₄.

Искусств. Получен нагреванием при 1400° в течение 6 ч смеси NiO и SiO₂ [3], а также из водных растворов сульфата никеля и метасиликата натрия при температуре 1000–1400° и давлении 0,001 кбар [4]. Наблюдалось превращение синтетического никелевого оливина в шпинелевую фазу при 650° и давлении около 18 кбар [3].

Нахожд. Обнаружен [1] в отвалах контактового месторождения треворита в рудном поле Барбертон (ЮАР). Находится вместе с треворитом, никелевым серпентином (богатым Ni лизардитом?), никелевым людвигитом, бунзенитом, виоларитом, миллеритом, гаспеитом и нимитом. Выполняет промежутки между зернами треворита. В результате интенсивного замещения никелевым серпентином от первоначальных зерен либенбергита, имеющих размер до 1 мм (и более), сохраняются зерна лишь немногим более 150 мкм в диаметре.

> Межплоскостные расстояния лябенбергита из Барбертона (ЮАР) [1] Си К_α-излучение, D = 114,6 мм

hk!	1	d (Å)	hkl	1	d(Å)	hkl	1	d (Å)
020	30	5,09	042	10	1,936	312	10	1,380
110	25	4,29	150	10	1,870	322	15	1,343
020	25	3,87	113	5	1,7 9 9	341	15	1,308
101	10	3,70	151	5	1,783	332	5	1,289
111	60	3,47	222	9 0	1,738	2 04	5	1,259
121	10	2,986	241	15	1,664	214	5	1,250
130	9 0	2,759	061	10	1,631	234	5	1,183
022	20	2,564	133	15	1,609	025	5	1,160
131	80	2,503	152	15	1,583	420	5	1,150
112	100	2,442	043	10	1,561	244	5	1,129
200	10	2,367	311	5	1,507	412	5	1,092
041	10	2,337	242	5	1,497	422	10	1,074
210	5	2,303	143	20	1,486	334	10	1,031
122	30	2,252	062	30	1,473	235	10	1,015
211	15	2,146	330	10	1,429	384	10	0,8245
132	15	2,022	331	20	1,390	295	5	0,7753

Литература

1. Waal S.A.de, Calk L.C. // Amer. Miner. 1973. Vol. 58, N 7/8. P. 733.

- 2. Виноградова Р.А. // Новые данные о минералах. М.: Наука, 1983. Вып. 31. С. 13.
- 3. Ringwood A.E. // Nature. 1960. Vol. 187, N 4742. P. 1019.

4. Pistorins C.W.F.T. // Neues Jb. Miner. Monatsh. 1963. H. 2/3. S. 30.

СТРУКТУРА ТИПА СТРИНГХАМИТА

	Сингония	a 0	b_0	<i>c</i> 0	β	Уд.в.
Стрингхамит CaCu[SiO ₄] \cdot H ₂ O	Монокл.	5,030	16,135	5,343	102 ,9 6°	3,16-3,18

Стрингхамит Stringhamite CaCuíSiO₄]·H₂O

Назван в память о Б. Стрингхаме – бывшем главе отдела минералогии в Университете штата Юта (США) [1].

Синон. "Минерал F" [2]. Идентичность со стрингхамитом установлена Хиндманом [1]. Стрингамит (по: Семенов, 1991).

Характ. выдел. Почковидные агрегаты, реже кристаллы (до 0,1 мм) [1].

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1/c$. $a_0 = 5,030$, $b_0 = 16,135$, $c_0 = 5,343$ Å; $\beta = 102.96^\circ$; $a_0:b_0:c_0 = 0.312:1:0.331$; V = 422.7 Å; Z = 4 [3].

Основным элементом структуры (оригинал расшифровки – "минерал F" [3]) явтяются группы [Cu(SiO₄)O₃]⁸⁻, которые соединяются в двух направлениях общими вершинами с образованием [Cu(SiO₄)]²⁻-слоев, параллельных (010). Слои связаны друг с другом атомами Са и H-связями за счет атомов водорода молекул воды (фиг. 2). Атомы Cu, занимающие две независимые позиции, координированы четырьмя атомами О по вершинам квадрата. Каждый атом Са окружен семью атомами О, образующими координационный полиэдр, близкий к квадратной антипризме, два свободных конца которого занимают молекулы H₂O.

Кристаллы редки. Главные формы: w (011) и d (101), второстепенные: b (010) и O (111) [1].

Физ. св. Уд.в. 3,16–3,18 (вычисл. 3,39 для формулы с 1 H₂O, 3,68 – для формулы с 2 H₂O). Цв. темно-азуритово-синий. Прозрачный до непрозрачного. На ИКспектре пики при 3150 и 2890 см⁻¹ свидетельствуют о наличии в минерале молекул воды; при 885 и 530 см⁻¹ – SiO₄^{4–} [1].

Микр. Плеохроизм: по Ng – темно-синий, по Nm – светло-синий, по Np – светло-серовато-синий. Np = b, $cNg = 2,5^{\circ}$. Двуосный (+). $n_g = 1,729$, $n_m = 1,717$, $n_p = 1,709$ (для Na-света); $n_g - n_p = 0,020$; $2V = 80^{\circ}$ (вычисл.). Наблюдалось микродвойни-кование [1].

Хим. По структурным данным, формула содержит 1 H₂O [3]; согласно хим. анализу – 2 H₂O, по термогравиметрическому анализу – 1,5 H₂O [1].

Анализы и теор. составы для формул с разным количеством H₂O:

	1	2	3	4	5	6
CuO	31,63	33,41	34,10	37,22	34,32	35,71
MgO	0,54	0,10	0,94	-	_	-
CaO	24,64	25,40	26,97	26,25	24,21	25,19
FeO	0,23	0,77	Не оби.	_	-	_
Al ₂ O ₃	0,03	0,07	0,07	-	-	_
SiO ₂	28,42	26,95	27,46	28,11	25,93	26,98
H ₂ O	14,51	13,30*	10,46*	8,42	15,54	12,12
Сумма	100,00	100,00	100,00	100,00	100,00	100,00

* По разности.

1-3 – микрозоид. [1]: 1, 2- из месторождения Бавана, шт. Юта (США), 3 – "минерал F" из месторождения Крестмор, шт. Калифорния (США); 4-6 – теор. составы: 4 – при 1 H₂O, 5 – при 2 H₂O, 6 – при 1,5 H₂O.

Фиг. 2. Структура стрингхамита в проекции вдоль оси а (по Хауторну). Водородные связи показаны пунктиром

Повед. при нагр. Термогравиметрическим анализом определено 12% H₂O. Конечный продукт разложения (после нагревания до 900°) представлен смесью волластонита и тенорита [1].

Нахожд. Обнаружен [1] на месторождении Бавана, округ Бивер, шт. Юта (США), в диопсид-магнетитовых скарнах на контакте кварцевых монцонитов с пермскими известняками. Встречается с таумаситом, теноритом, киноитом и кальцитом по трещинкам в скарнах. Вместе с борнитом и халькопиритом наблюдался в виде рассеянных включений в зернах диопсида.

"Минерал F" найден в 1943 г. Вудфордом [2] на месторождении Крестмор, шт. Калифорния (США), в виде синих пленок на кальците.

Межплоскостные расстояния стрингхамита месторождении Бавана, шт. Юта (США) [2]

			СиК _а -излу	чение,	<i>D</i> = 114 мм			
hki	Ι	<i>d</i> (Å)	hkl	1	d(Å)	hkl	1	d (Å)
020	35	8,049	022	14	2,481	162	11	1,657
100	21	4,884	210	18	2,431	202	23	1,614
110	20	4,687	220	18	2,344	331	14	1,595
)21	9	4,370	231	16	2,222	281	19	1,551
120	20	4,182	112	15	2,089	271	5	1,530
Ī11	34	3,928	211	11	2,031	332	19	1.482
30	21	3,618	080	11	2,003	143	14	1,429
Ĭ31	39	3,236	132	20	1,964	262	1	1.385

Литература

1 Hindman J.P. // Amer. Miner. 1976. Vol. 61, N 3/4. P. 189.

2. Woodford A.O. // Calif. Div. Mines. Rep. 1943. Vol. 39. P. 333.

3. Hawthorne F.C. // Tschermaks miner. und petrogr. Mitt. 1985. Bd. 34, H. 1. S. 15.

СТРУКТУРА ТИПА УРАНОФАНА

ГРУППА УРАНОФАНА

Группа объединяет минералы, основу структуры которых составляют уранилсиликатные слои $[(UO_2)(SiO_4)]_n^{2n}$. Ранее в группе описаны: купросклодовскит, склодовскит, уранофан, бета-уранофан, болтвудит, казолит и соддиит (т. III, вып. 1, с. 242).

	Сингония	a_0	b 0	<i>c</i> 0	β	Уд.в.
Свамбонт U ⁶⁺ $H_{4}[(UO_{2})(SiO_{4})]_{6}$ ·30 H ₂ O	Монокл.	17,64	21,0	20,12	103,4°	4,03
Урсинит	Ромб.	12,74	17,55	7.050	-	3,64
(Co,Mg,Ni)(H ₃ O) ₂ [UO ₂)(SiO ₄)] ₂ ·3 H ₂ O						

Свамбоит Swamboite $U^{6+}H_6[(UO_2)(SiO_4)]_6 \cdot 30 H_2O$

Назван по месту находки на месторождении Свамбо, Занр [1].

Характ. выдел. Призматические игольчатые кристаллы (длиной до 0,8 мм и толшиной 0,05 мм), волокнистые агрегаты, радиально-лучистые агрегаты.

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P_2_1/a$. $a_0 = 17,64$, $b_0 = 21,0$, $c_0 = 20,12$ Å; $\beta = 103,4^\circ$; $a_0:b_0:c_0 = 0,840:1:0,958$; Z = 18; "малая псевдоячейка" (без учета отражений слабой интенсивности): a' = 8,82, $b'_0 = 7,00$, $c'_0 = 6,67$ Å, $\beta = 102,0^\circ$; это хорошо согласуется с параметрами элементарных ячеек минералов группы уранофана.

В структуре выделяются слои [(UO₂)₂(SiO₄)₂]⁴ⁿ⁻. Слои состоят из цепочек пентагональных дипирамид UO₇, разделяющих два ребра, и цепочек тетраэдров SiO₄. Период повторяемости между слоями в минералах группы уранофана, параллельными цепочкам, приблизительно равен 7,03 Å, а в перпендикулярном направлении – около 6,66 Å; расстояния между слоями изменяются в зависимости от состава.

Кристаллы вытянуты вдоль [001] и часто заканчиваются очень острой гранью. Грани (001) и (201) под углом 78° (гониометрические измерения); в псевдоячейке им отвечают (001) и (100).

Физ. св. Сп. по (201) совершенная. Уд.в. 4,03 (вычисл. 4,064). Цв. бледно-желтый. В ультрафиолетовых лучах не флюоресцирует.

Микр. Плеохроизм: по Ng и Nm – светло-желтый, по Np – бесцветный. Двуосный (-). Np $\approx a$, Nm $\approx b$, cNg $\approx 13^{\circ}$. $n_g = 1,663$, $n_m = 1,661$, $n_p = 1,640$; $n_g - n_p = 0,023$; $2V = 30^{\circ}$ (вычисл. 34°). Дисперсия сильная, r > v. **Хим.** Теор. состав: UO₂ – 67,70; SiO₂ – 12,19; H₂O – 20,11. Анализ (микрозонд., среднее из 6 определений; H₂O по TГ-анализу): UO₂ – 67,43; SiO₂ – 12,73; H₂O – 19,93; сумма 100,09. Отношение окислов: 7/3 UO₃·2 SiO₂·11 H₂O.

Повед. при нагр. По ТГ-анализу, вода теряется при 450°; потеря веса 19,93%.

Нахожд. Встречен в зоне окисления уранового месторождения Свамбо (в 36 км западнее Шинколобве, область Шаба, Заир) в тесной ассоциации с соддиитом и кюритом. Образует отдельные иголочки, сростки из двух-трех иголочек, рассеянные в соддиите и по трещинам в породе, а также войлокообразные тонкоигольчатые и радиально-лучистые агрегаты (диаметром до 2 мм), заполняющие мелкие жеоды в друзовых корочках соддиита и подстилающей матрице породы.

				Cura-wan	учение, г	м-филе	Tp, D = 114	4,0 MM			
hkl	h'kT'	Ι	d (Å)	hkl	ħ 'kT'	1	d (Å)	hkl	h kT	1	d (Å)
201	100	100	8,67	603	300	20	2,884	039	013	5	2,079
003	001	30	6,53	264	121	20	2,820	2.0.10	103	-	• • • • •
202	T 01	50	5,85	462	220	60	0.710	666	321	5	2,009
204	101	80	4,76	434	212	зош	2,710	807	401		
232	ΤH	50	4,49	630	311	50	2,650	495	231	20	1,927
402	20 0	80	4,32	<u> </u>	301	3	2,449	295	1 32	30	1 903
234	111	5	3,93	465	221	5	2,404	864	420		1,705
060	020	60	3,51	636	311	•		494	232	15	1,828
405	201	30	3,294	633	312	3	2,298	693	330	10	1 012
006	002	50	3,257	663	320	10	2,223	297	132	10	1,012
063	021	5	3,097	093	031	10	2.202				
435	211			009	003						
235	T 12	60 ш	2,979	292	ī 31	25	2,171				

Межилоскостные расстоянии свамбоита из Свамбо, Знир [1]

Примечание. hkl н h'k'l' отвечают соответственно реальной элементарной ячейке и псевдоячейке, уменьшенной в 18 раз.

Литература

1. Deliens M., Piret P. // Canad. Miner. 1981. Vol. 19, pt 4. P. 553.

Урсинит Oursinite (Co,Mg,Ni)(H₃O)₂[(UO₂)(SiO₄)]₂·3 H₂O

Название от французского слова "oursin" - морской ёж, по характерной форме агрегатов [1].

Характ. выдел. Игольчатые кристаллы (до 1 мм длиной при толщине 0,02 мм); радиально-лучистые агрегаты.

Структ. и морф. крист. Ромб. с. $C_{2\nu}^{17}$ -Aba2. $a_0 = 12,74, b_0 = 17,55, c_0 = 7,050$ Å; $a_0:b_0:c_0 = 0,726:1:0,402; Z = 4.$

Кристаллохимическая структура типа уранофана.

Игольчато-призматические кристаллы, вытянутые по [001].

Физ. св. Возможна одна спайность, параллельная удлинению. Тв. 3,5. Уд.в. 3,64–3,83 (вычисл. 3,674). Цв. светло-желтый до желтовато-белого. Прозрачный или просвечивающий. В ультрафиолетовых лучах не флюоресцирует.

Микр. Не плеохроирует. Двуосный (+). Nm = c. Погасание прямое. $n_g = 1,650$, $n_m = 1,640$, $n_p = 1,624$; $n_g - n_p = 0,026$; $2V = 76^\circ$ (вычисл.).

Хим. Теор. состав: $SiO_2 - 13,78$; $UO_3 - 65,62$; CoO - 7,39; MgO - 0,46; NiO - 0.34; H₂O - 12,40.

Анализ (микрозонд., среднее из 7): MgO – 0,42; NiO – 0,30; CoO – 6,56; SiO₂ – 13,21; UO₃ – 66,71; H₂O (по разности) – 12,80; сумма 100,00. Отвечает формуле (Co_{0.86}Mg_{0.10}Ni_{0.04})O·2 UO₃·2 SiO₂·6 H₂O.

Повед. при нагр. По ТГ-анализу, вода удаляется при 110, 260 и 300°; общая потеря массы к 500° составляет 11%.

Нахожд. Встречен среди вторичных минералов на урановом месторождении Шинколобве в южной части области Шаба (Заир) в тесной ассоциации с соддиитом, казолитом, скупитом, склодовскитом, торбернитом, леперсоннитом-(Gd), бижвётитом и кюритом. Иногда волокна урсинита тесно срастаются с леперсоннитом-(Gd).

Межплоскостные расстояния урсинита из Шинколобве (Заир) [1]

Nº 1 D 1146

		(сик _α -излуче	ение, N	-фильтр, <i>D</i> =	= 114,0 MM		
hkl	1	d (Å)	hkl	1	d (Å)	hkl	I	d (Å)
020	100	8.73	002	40	3,528	162	15	2,212
120	70	7.20	022	30	3,267	620; 371; 313	10	2,053
200	5	6.34	122	10	3,170	591	10	1,975
220	50	5.16	202	20	3,081	413	10	1,877
221	35	4.55	160	90	2,853			
040	5	4.38	142	10	2,689			
140	70	4,141	431	10	2,602			
231	10	3,670	351	10	2,525			

Литература

1. Deliens M., Piret P. // Bull. minér. 1983. Vol. 106, N 3. 305.

Б. С ДОПОЛНИТЕЛЬНЫМИ АНИОНАМИ

СТРУКТУРА ТИПА ДЮМОРТЬЕРИТА

ГРУППА ДЮМОРТЬЕРИТА

Ранее с подобной структурой описан только дюмортьерит (т. III, вып. 1, с. 329).

	Сингония	<i>a</i> 0	b 0	<i>c</i> ₀	Уд.в.
Холтит Al ₆ (Ta, Sb)[(Si, As)O ₄] ₃ (BO ₃)(O, OH) ₃	Ромб.	11,905	20,355	4,690	3,90

Холтит Holtite

Al₆(Ta, Sb)[(Si, As)O₄]₃(BO₃)(O, OH)₃

Назван в честь Р. Холта (1908-1967) – премьер-министра Австралии [1].

Характ. выдел. Кристаллы, тонкопризматические до игольчатых по [001], иногда пластинчатые (длиной до 1–5 см); параллельно-шестоватые, лучистые и тонковолокнистые агрегаты.

Структ. и морф. крист. Ромб. с. D_{2h}^{16} -*Pmcn.* Z = 4 [1].

a ₀ (Å)	b_0	<i>c</i> ₀	$a_0: b_0: c_0$	V (Å ³)	Местонахождение	Ссылка
11 905	20.355	4.690	0,584:1:0,230	1136,5	Зап. Австралия	[1]
11.85	20,40	4,706	0,586:1:0,230	1137,6	Кольский п-ов	[2]
11.92	20,35	4,67	0,585:1:0,229	1132,8	*1	[2]

Сверхъячейка: $a'_0 = 2a_0$, $b'_0 = 2b_0$, $c'_0 = c$ [1].

Структурно близок к дюмортьериту с формулой $X^{VI}Y_{5-6}^{VI}Z^{IV}O_4(BO_3)_{2-3}$ [3], где X – колонки октаэдров, окруженные Z-тетраэдрами, Y – колонки спаренных ребрами октаэдров Al. В позиции X алюминий может замещаться крупными, пятивалентными катионами Ta, Nb и Sb⁵⁺ (Sb³⁺ в австралийском холтите сомнительна [2]). As⁵⁺ предположительно находится в четверной координации вместе с Si. Отмечается небольшой дефицит в позиции Z и в тригональной позиции бора.

По морфологическим признакам различают [4, 5]: холтит-І – в виде призматических кристаллов и холтит-ІІ – волокнистые агрегаты. Они различаются также по некоторым физическим свойствам (характеру ИК-спектров и люминесценции) и по содержанию Sb₂O₅.

Физ. св. Сп. (или отдельность) у австралийского холтита по (010) [1], у холтита с Кольского п-ова сп. по (100) совершенная [2]. Тв. 8,5. Уд.в. 3,90 [1], 3,604–3,670 [2]. Цв. светло-бурый, кремово-бурый, зеленовато-бурый [1], светло-серый до светло-сиреневого (голубоватого) [2]. Бл. восковой, стеклянный, в выветрелых участках матовый [1]. В ультрафиолетовых лучах холтит-І люминесцирует при $\lambda = 254$ нм голубовато-белым светом, холтит-ІІ обладает интенсивным светло-желтым свечением при $\lambda = 360$ нм [2].

ИК-спектр сложный, подобен дюмортьеритовому [4, 5]. Кроме основных линий при 3500 см⁻¹ (колебания групп ОН), 1370 см⁻¹ (связи В–О), 1090 и 1015 см⁻¹ (связи Si–O) и 584–465 см⁻¹ (связи Si–O–Al^{V1}), имеется целый ряд дополнительных полос: у холтита-I – при 1315, 775, 750, 700, 545, 520 см⁻¹, у холтита-II – при 950, 925, 825, 610, 500 см⁻¹.

Микр. Плеохроизм в образцах из Австралии: по Ng = Nm – бесцветный, по Np – желтый разных оттенков [1], в образцах с Кольского п-ова отсутствует [2]. Ng = a, Nm = b, Np = c. Двуосный (-). $n_g = 1,758-1,761$, $n_m = 1,756-1,759$, $n_p = 1,743-1,746$; $n_g - n_p = 0,015$; $2V = 49-55^{\circ}$ [1]. $n_g = 1,730, 1,737, n_m = 1,728, 1,729, n_p = 1,705, 1,709$; $n_g - n_p = 0,025, 0,028$; $2V = 27, 20-30^{\circ}$ [2]. Дисперсия, r < v [1]. Наблюдается полисинтетическое двойникование [1].

|--|

	1	2	3		1	2	3
Li ₂ O	0,30	0,59	-	Fe ₂ O ₃	0,32	0,20	0.27
Na ₂ O	0,35	0,35	_	SiO ₂	26,60	26,74	20,30
K ₂ O	0,46	0,45	_	Sb ₂ O ₃	-	_	13,89
Rb ₂ O	0,38	0,11	-	Sb ₂ O ₅	7,11	6,49	4.61
Cs ₂ O	0,13	0,57		As ₂ O ₅	3,68	2,92	_
MgO	0,04	0,10	_	Nb ₂ O ₅	0,18	0,15	0,76
CaO	0,06	0,10	_	Ta ₂ O ₅	10,65	11,70	11,24
MnO	Сл.	Сл.	0,05	H ₂ O	Сл.	1,13	0,38
B ₂ O ₃	5,06	4.67	1,82	Cupan	00.22	00.71	00.07
Al ₂ O ₃	44,00	43,44	46,43	Сумма	77,32	99,/1	99,97

1, 2 – из пегматитов, Кольский п-ов, анал. Кульчицкая (1 – светло-серый, 2 – светло-сиреневый) [2]; 3 – из галек в аллювиальных отложениях, Западная Австралия, в том числе Ti₂O – 0,05, BeO – 0,05, H₂O⁻ – 0,08, анал. Гембла [1].

Эмпирические формулы:

l (за вычетом 5% трилитионита, 3% альбита, 0,4% поллуцита) – $Al_{5,44}$ ($Ta_{0,33}Sb_{0,30}Nb_{0,01}Fe_{0,03}^{3+}Mg_{0,01} \times Ca_{0,01}b_{0,69}$ ($Si_{2.55}As_{0.22}Al_{0,23}b_{3,00}B_{1,00}O_{17,31}$;

2 (за вычетом 6% трилитионита, 3% альбита, 1% поллуцита) – $Al_{5,65}(Ta_{0,37}Sb_{0,29}Nb_{0,01}Fe_{0,67}^{3+}Mn_{0,02} \times MgO_{0,02}Ca_{0,02})_{0,73}(Si_{2,66}As_{0,18}Al_{0,16})_{1,00}B_{0,96}O_{17,41}(OH)_{0,52};$

3 (для безводиого минерала) – $AI_{6,12}Sb_{0,64}^{3+}Ta_{0,34}Sb_{0,19}^{5+}Nb_{0,04}Fe_{0,02}^{3+}Be_{0,02}Ti_{0,01}Mn_{0,02}B_{0,35}Si_{2,27}O_{16,71}$.

	1	2	3
	холтит-1 (8 обр.)	холтит-II (5 обр.)	холтит-II(?) (1 обр.)
Al ₂ O ₃	46,91-48,50	42,46-48,43	45,04
Sb ₂ O ₅	5,10-8,41	19,6824,57	17,21
Ta ₂ O ₅	12,23-14,48	10,44-11,71	9,76
Nb ₂ O ₅	0,00-0,28	0,07-0,27	0,00
SiO ₂	21,49-23,25	16,59-18,54	16,76
As ₂ O ₄	2.82-4.93	1,18-3,45	3,53

Микрозондовые анализы образцов с Кольского п-ова (1) и (2) и из Австралии (3) показали колебания содержаний главных элементов [4, 5]:

Повед. при нагр. При нагревании до 1000° рентгенограмма не изменяется [1]. На кривой нагревания наблюдается [2] эндотермический эффект в интервале 1150– 1208°. Прокаливание при 1110 и 1200° в течение 2 ч приводит к образованию смеси муллита, кварца и фазы Al(Sb, Ta)O₄; бор и мышьяк полностью улетучиваются.

Нахожд. Обнаружен в гальках из аллювиальных отложений оловорудного поля Гринбушес (Западная Австралия) [1]. Встречается в виде иголочек, врастающих в стибиотанталит, и образует вокруг него каймы. Асбестовидные скопления холтита замещают танталит.

На Кольском п-ове встречен [2, 4, 5] в пегматитовом теле, залегающем среди амфиболитов. Находится в центральной части пегматитового тела, сложенной крупнозернистым агрегатом сподумена и поллуцита. Наблюдается в парагенезисе с клевеландитом и лепидолитом, иногда с розовым турмалином и амблигонитом. Характерна ассоциация со стибиотанталитом, тапиолитом, микролитом и цирконом; постедний иногда находится в центре радиально-лучистых агрегатов холтита. Выдетенные выше по морфологическим признакам разности представляют собой две генерации: холтит-II по сравнению с холтитом-I является более поздним, замещает другие Та-содержание минералы, в том числе и холтит-I, образуя по нему псевдоморфозы или слагая краевые зоны вокруг его призматических кристаллов [4, 5].

Отл. Внешне пластинчатые кристаллы иногда могут быть приняты за сподумен, а тонкопризматические и радиально-лучистые агрегаты – за ахроит [2]. От дюмортьерита отличается цветом, оптическими свойствами, наличием в составе пятивалентных катионов.

Межплоскостные расстояния холтита из Гринбушес (Западная Австралия) [1]

СиКα-излучение. Дифрактометр

hki	1	d(Å)	hkl	1	d (Å)	hkl	1	d(Å)
110: 020	100	10.28	321	8	2,895	132	2	2,173
200	32	5.93	420	10	2,840	451; 222	2	2,137
130	34	5.89	331	3	2,762	511	6	2,113
220	24	5.12	251	2	2,731	371; 142;	10	2,094
040	32	5.08	161	7	2,679	281		
111.021	3	4.26	440	8	2,571	521; 231	2	2,076
031	14	3.86	080	8	2,543	461	4	2,018
050	14	3.85	261:411	2	2,492	312; 242	2	2,010
211	2	3.62	071	2	2,473	600; 322	6	1,981
221.041	14	3.46	351	6	2,430	39 0	4	1,965
330	6	3 44	510	24	2,362	620	4	1,945
060	3	3.39	431	16	2.355	332; 480	4	1,934
141	3	3 31	370: 002	24	2.344	062	4	1,930
231	20	3.23	280	26	2,338	162	2	1,910
051	6	3.07	460	4	2.237	342	4	1,873
400 151	22	2 97	181	2	2.202	Кроме того	, 60 сла	бых
260	40	2,94	202	2	2,181	линий до 1,	171 Å	

Литература

1. Pryce M.W. // Miner. Mag. 1971. Vol. 38, N 293. P. 21.

- 2. Волошин А.В., Гордиенко В.В., Гельман Е.М., Зорина М.Л. и др. // Зап. ВМО. 1977. Ч. 106, вып. 3. С. 337.
- Гордиенко В.В., Волошин А.В., Кривовичев В.Г. и др. // Проблемы современной кристаллохимии и их решения в целях геолого-минералогических наук: Всесоюз. конф., 20–23 окт. 1976 г. Л.: Изд-во ЛГУ, 1976. С. 65.
- Волошин А.В. Пахомовский Я.А., Залкинд О.А. // Минеральные ассоциации и минералы магматических комплексов Кольского п-ова. Апатиты, 1987. С. 14.
- 5. Волошин А.В., Пахомовский Я.А. // Минералогия тантала и ниобия в редкометальных пегматитах. Л.: Наука, 1988. С. 179.

СТРУКТУРА ТИПА ТУНДРИТА

Тундрит, описанный ранее как ортосиликат с формулой $Na_{3-y}(Ce, Ca)_4 \times (Ti, Nb)_2[SiO_4]_2(O, OH)_8 \cdot 8 H_2O$ (т. III, вып. 1, с. 356), согласно уточнению химического состава и структуры рассматривался как силико-карбонат [1]. По преобладающему редкоземельному элементу выделены (Clark, 1993):

тундрит-(Ce) tundrite-(Ce) - Na₃(Ce, La)₄(Ti, Nb)₂(SiO₄)₂(CO₃)₃O₄(OH) · 2 H₂O;

тундрит-(Nd) tundrite-(Nd) - Na₃(Nd, La)₄(Ti, Nb)₂(SiO₄)₂(CO₃)₃O₄(OH) · 2 H₂O.

По соотношению (SiO₄)- и (CO₃)-групп следует отнести к карбонатам.

Литература

1. Шлюкова З.В., Власова Е.В., Казакова М.Е., Пилоян Г.О., Шумяцкая Н.Г., Боруцкий Б.Е. // ДАН СССР. 1973. Т. 211, № 2. С. 426.

СТРУКТУРА ТИПА СПЁРРИТА ГРУППА СПЁРРИТА

Описание минералов группы: спёррита, таумасита, бирунита, реблингита см т. III, вып. 1, с. 358.

	Сингония	<i>a</i> ₀	b_0	<i>c</i> ₀	β	Уд.в.
Парасперрит Са ₅ [SiO ₄] ₂ СО ₃	Монокл.	10,473	6,706	27,78	90,58°	3,00

Параспёррит Paraspurrite

Ca₅[SiO₄]₂CO₃

Назван по кристаллохимической близости со спёрритом [1].

Характ. выдел. Кристаллы (в среднем 0,5 см, до 2,0 см).

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1 / a$. $a_0 = 10,473$, $b_0 = 6,706$, $c_0 = 27,78$ Å; $\beta = 90,58^\circ$; $a_0: b_0: c_0 = 1,5617: 1: 4,1425$; V = 1951,2 Å³; Z = 8. Полиморфен со спёрритом.

Физ. св. Сп. плохая по (001). Уд. в. 3,00 (вычисл. 3,01).

Микр. Бесцветен. Двойникование полисинтетическое по (001). Двуосный (-). $Nm = b, cNg = aNm = 30^{\circ}. n_g = 1,677, n_m = 1,672, n_p = 1,650; n_g - n_p = 0,027;$ $2V = 47^{\circ}.$

Хим. По составу идентичен спёрриту. Теор. состав: CaO – 62,98; SiO₂ – 27,13; CO₂ – 9,89. Анализ: Na₂O – 0,03; MgO – 0,19; CaO – 62,78; MnO – 0,02; Fe₂O₃ – 0,12; $Al_2O_3 - 0,37$; SiO₂ - 27,25; TiO₂ - 0,02; п.п. - 8,65; сумма 99,56. Микрозондовым анализом определены: CaO - 62,13, SiO₂ - 26,73.

Нахожд. Встречен как породообразующий минерал темно-серой породы грануитовой фации, слагающей небольшую линзу в метаморфизованных силикатно-карбонатных породах близ Дарвина, шт. Калифорния (США). Ассоциирует с геленитом, везувианом, апатитом, ларнитом. Вдоль контакта линзы развита зона массивного гроссуляра.

Jinpa.					(000 4) [1]
Межпло	жостные	расстояния па	расперрита из Кал	ифорин	(США)[1]
		СuKα-излучен	ие. цифрактомет	2	
hkl	1	<i>d</i> (Å)	hkl	I	<i>d</i> (A)
004	78	6,92	404	8	2,443
012	34	6,03	00.12	28	2,313
201	14	5,15	227	12	2,307
201	27	5,12	227		2,292
006	37	4,62	406	4	2,288
203	2	4,54	20.11	2	2,282
21Ī	2	4,09	406	4	2,268
211	2	4,08	20.11	6	2,262
205	11	3,83	032	6	2,208
016	12	3,82	01.12	8	2,186
205	12	3,80	416	7	2,165
213	8	3,78	416	8	2,149
213	5	3,76	02.10	2	2,140
008	100	3,47	408	17	2,080
020	16	3,35	420	5	2,065
215	4	3,30	231; 231	4	2,050
207	12	3,18	036	8	2,015
018	4	3,08	233	5	2,008
024	20	3,017	00.14; 424	63	1,983
026	42	2,716	02.12	4	1,905
223	34	2,707	426	10	1,890
223	48	2,698	22.11	5	1,887
209	25	2,671	038	7	1,880
209	39	2,647	426	7	1,879
400	8	2617	428	11	1.767

Литература.

1. Colville A A., Colville P.A. // Amer. Miner. 1977. Vol. 62, N 9/10. P. 1003.

СТРУКТУРА ТИПА ХАРРИСОНИТА

Харрисонит Harrisonite $Ca(Fe^{2+}, Mg)_6[SiO_4]_2(PO_4)_2$

Назван по имени бывшего директора Геологической службы Канады Д.М. Харрисоиа [1].

Характ. выдел. [1]. Агрегаты зерен неправильной формы (до 2 мм, чаще 0,2-0,5 мм) и каймы.

Структ. и морф. крист. [2]. Гексаг. с. $R3m. a_0 = 6,240, c_0 = 26,784$ Å; $c_0 : a_0 = 4,2923; V = 906,0$ Å³; Z = 3.

Структура слоистая [2]. Вдоль оси с в элементарной ячейке размещается 12 слоев. В каждой ромбоэдрической подъячейке, составляющей 1/3 элементарной ячейки, находятся четыре слоя: два из [FeO₆]¹⁰⁻-полиэдров, один из [SiO₄]⁴⁻-тет-

Фиг. 3. Структура харрисонита (по Грайсу и др.)

а – проекция (100); б – проекция (001): слой [FeO₆]¹⁰⁻октаэдров корундового типа

раздров, один из $[CaO_6]^{10-}$ -полиздров и $[PO_4]^{3-}$ -тетраздров (фиг. 3,*a*). $[FeO_6]^{10-}$ -слои (см. фиг. 3,*б*) структурно сходны с подобными слоями в корунде, в котором 25% октаздрических позиций вакантны. Над и под вакансиями находятся либо $[SiO_4]^{4-}$ -тетраздры, либо $[CaO_6]^{10-}$ -полиздры. В $[SiO_4]^{10-}$ -слое тетраздры не соединены друг с другом. В $[Ca(PO)_4]^{4-}$ -слоях $[CaO_6]^{10-}$ -полиздры, представляющие собой тригональные антипризмы, сочленяются посредством $[PO_4]^{3-}$ -тетраздров. Слои с подобным строением характерны для мервинита [3], в котором $[MgO_6]^{6-}$ -октаздры окружены шестью $[SiO_4]^{4-}$ -тетраздрами с поочередно повернутыми вверх и вниз вершинами.

Физ. св. [1]. Сп. несовершенная. Изл. раковистый. Хрупок. Тв. менее 5 (царапается иглой). Уд.в. 4,02 (вычисл. 4,01). Цв. от желто- до оранжево- и темнокоричневого. Черта бледно-желтая. Бл. стеклянный. Полупрозрачен, края зерен прозрачны.

Не люминесцирует в ультрафиолетовых лучах.

Микр. [1]. Бледно-желтый. Одноосный (–), иногда частично аномально двуосный с небольшим $2V(-5^{\circ})$. $n_o = 1,770$, $n_e = 1,759$; $n_o - n_e = 0,011$. Плеохроизм слабый [1].

Хим. Среднее из 4 анализов (микрозонд.): CaO – 7,65; FeO – 52,27; MgO – 3,89; MnO – 0,11; SiO₂ – 15,99; P₂O₅ – 19,18; сумма 99,09.

Эмпирическая формула (на 16 атомов О): Ca_{1,01}(Fe²⁺_{5,36}Mg_{0,71}Mn_{0,01})_{6,08} × × (Si_{0.98}O₄)₂(P_{0.99}O₄)₂ [1, 2].

Нахожд. Обнаружен на о-ве Аркедекне близ северной части п-ова Бутия (округ Франклин, Арктическая Канада). Входит в состав слоистых кварц-Fe-силикатапатитовых тел, относящихся к высоко метаморфизованной пластовой сланцевой P-Fe-формации. Образует тонкие каймы вокруг Fe- и Sr-содержащего фторапатита и отдельные зерна, ассоциирующие с кварцем, альмандином и ферросилитом (Fs₇₅₋₇₈) [1].

Отл. [1]. В шлифах сходен с фаялитом и ферросиликатом, отличаясь слабой аномальной двуосностью ($2V - 5^{\circ}$). По раковистому излому и стеклянному блеску похож на обсидиан, но имеет другую окраску.

Межплоскостные расстоянии харрисонита и	з Арктической	Канады [1]
---	---------------	----------	----

Со-излучение, D = 114,6 мм

hkl	I	d(Å)	hkl	I	d (Å)
101	10	5,29	2.0.11; 217	30ш	1,806
012	60	5,00	0.0.15	5	1,785
006	50	4,46	033	10	1,765
107	100	3,119	036; 306	30	1,670
009	50	2,976	0.2.13	10	1,635
113	15	2,947	2.1.10	10	1,624
021	80	2,689	1.0.16	20	1,599
116	100	2,558	1.2.11; 220	80	1,560
024	80	2,505	1.1.15	20	1,550
205	20	2,410	312	3	1,490
0.1.11	10	2,217	226	5	1,473
027	40	2,206	315	3	1,444
208	15	2,103	0.2.16	3	1,426
214	3	1,952	229	20	1,382
125; 0.2.10	60	1,903	2.0.17	20	1,362

Литература

- 1. Roberts A.C., Stirling J.A.R., Grice J.D., Frisch T., Herd R.K., Jambor L.J. // Canad. Miner. 1993. Vol. 31, pt 4. P. 775.
- 2. Grice J.D., Roberts A.C. // Ibid. P. 781.

3. Moore P.B. // Amer. Miner. 1973. Vol. 58, N 1/2. P. 32.

СТРУКТУРА ТИПА КОЛИКИТА

	Сингония	<i>a</i> ₀	b_0	<i>c</i> 0
Коликит Mn ₇ Zn ₄ [SiO ₄] ₂ (AsO ₄) ₂ (OH) ₈	Ромб.	18,59	8,789	12,04

Коликит Kolicite

$Mn_7Zn_4[SiO_4]_2(AsO_4)_2(OH)_8$

Назван в честь Джона Колика, американского горного инженера, впервые обнаружившего минерал в 1977 г. [1].

Характ. выдел. Мелкие зерна и таблитчатые кристаллы с несовершенными гранями, размером около 0,05 мм, редко 0,5 мм.

Структ. и морф. крист. Ромб.с. D_{2n}^{18} -Стса [1]. $a_0 = 18,59, b_0 = 8,789, c_0 = 12,04$ Å; $a_0: b_0: c_0 = 1,1151:1:1,3699; V = 1967,1$ Å³; Z = 2 [1].

Основными элементами структуры служат сложные блоки из семи Мп-октаэдров, соединенные бесконечными слоями из Zn, As, Si-тетраэдров в трехмерный каркас. Октаэдрические блоки, характеризующиеся плотнейшей кубической упаковкой анионов, состоят из трех коротких цепочек: центральной – из Mn(1)- и двух Mn(2)-октаэдров, соединенных общими ребрами, параллельными оси c, и двух боковых – каждая из двух Mn-полиэдров, имеющих общие ребра с центральными M(1)- и M(2)-полиэдрами (фиг. 4).

В тетраэдрических блоках два Zn-тетраэдра и один As-тетраэдр, соединенные общими вершинами, занимают два уровня (z = 1/8 и z = 3/8) и образуют короткие цепочки, вытянутые параллельно оси a. Четыре цепочки объединяются центральным изолированным тетраэдром через общие вершины в бесконечный двумерный слой (толщиной от z = 1/8 до z = 3/8) состава AsZn₂SiO₈(OH)₂. Отношение катион : анион = 4 : 10 позволяет трактовать его как тетраэдрический слой бесконечный слюдам.

Близкую структуру имеют герстманнит и холденит.

Межатомные расстояния (в Å) [2]: As-O = 1,697-1,704; Si-O = 1,691-1,646; Zn-O = 1,935-1,994; М-О расстояния близки между собой (М(1)-O = 2,180; M(2)-O = 2,212; М(3)-O = 2,215) и к обычному расстоянию Mn-O = 2,21. Уменьшенное М-О расстояние может быть связано с замещением части Mn на Mg.

Кристаллы таблитчатые; основные формы – пинакоиды и дипирамиды; наибольший пинакоид вытянут параллельно удлинению кристаллов (сканирующий микроскоп) [2].

Микр. Плеохроизм сильный: по Ng – светло-желтый, по Nm – желтовато-оранжевый, по Np – бесцветный или бледно-желтый. Двуосный (-). Ng = a, Nm = c, Np = b; абсорбция Ng = Nm > Np; $n_g = 1,790$; $n_m = 1,786$; $n_p = 1,779$; $n_g - n_p = 0,011$; $2V = 78^{\circ}$ (вычисл. 74°). Дисперсия сильная, r < v [1].

Хим. Теор. состав: ZnO – 26,11; MnO – 39,91; SiO₂ – 9,66; As₂O₅ – 18,48; H₂O – 5,79. Анализ (микрозонд.): MgO – 0,8; ZnO – 26,1; MnO – 39,2; FeO – 0,4; SiO₂ – 10,4; As₂O₅ – 18,9; H₂O – 5,5 (по данным ДТА, ТГА); сумма 101,2 (анал. Обермайер).

Распределение идеализированных ктаздров во фрагменте структуры: -z = 0; 2 - z = 1/2

Эмпирическая формула на 8 атомов As в элементарной ячейке): (MnMgFe)₇Zn₄× × (SiO₄)₇(AsO₄)₂(OH)₈ [1].

Диагн. исп. Легко растворим в HCl 1:1, слабее в HNO₃ 1:1 [1].

Повед. при нагр. До 625° теряет 5,5 веса [1].

Нахожд. Обнаружен в нескольких образцах из рудника Стерлинг-Хилл, шт. Нью-Іжерси, США [1]. Образует корочки на зеркалах скольжечия в зонах дробления рудных тел, сложенных красным вилтемитом и франклинитом; ассоцнирует с более ранним вилтемитом и более поздним сонолитом и фриделитом; содеркит включения прозрачных агольчатых кристаллов виллемита поздней генерации. В од-

юм из образцов коллекции минералов рудника Франклин найден в виде включений в холдените [1].

Межплоскостные расстояния колякита из Стерлинг-Хилла, шт. Нью-Джерси (США) [1]

СuK_α-излучение, D = 114,6 мм

hkl	1	d(Å)	hkl	1	d(Å)	I	d(Å)
021	10	4,12	514	10	2,263	10	1,577
220	2	3,97	040	1	2,194	5	1,550
221	2	3.76	532	5	2,147	70	1,540
113	60	3.58	025	10	2,111	10	1,506
512	100	2.970	042	1	2,067	5	1,478
223	40	2.815	242	1	2.009	10	1,454
602	2	2,752	515	2	1.969	5	1,423
132	50	2.608	913	2	1.796	5	1,378
620	1	2,533	443	2	1.776	2	1,318
024	40	2,479	715	5	1.746	2	1.296
113	40	2.342	151	5	1.731	2	1.196
115	5	2 304	606	10	1.681	2	1.182
	2		000	-0	-,	-	1.081

Литература

Dunn P.J., Peacor D.R., Sturmann B.D. // Amer. Miner. 1979. Vol. 64, N 7/8. P. 708. Peacor D.R. // Ibid. 1986. Vol. 65, N 5/6. P. 483.

СТРУКТУРА ТИПА КРАЙСЛИТА

Крайслит Kraisslite

$Fe_{2}^{3+}Mg_{4}Mn_{44}Zn_{6}[SiO_{4}]_{12}(AsO_{3})_{4}(AsO_{4})_{6}(OH)_{36}$

Назван в честь Фредерика и Алисы Крайсл, исследователей месторождений Франклин и Огденсбург в Нью-Джерси (США) [1].

Характ. выдел. Кристаллы (до 1 см) и чешуйки [1].

Структ. и морф. крист. Гекс. с. P6322. a0 = 8,22, c0 = 43,88 Å [1].

Кристаллическая структура слоистая, относится к структурному типу гематолита [1] ((Mn^{2+} , Mg, Al)₁₅(AsO_3)(AsO_4)₂(OH)₂₃), основой структуры которого является чередование пяти различающихся по строению слоев с кубической и гексагональной плотнейшей упаковкой атомов кислорода по следующему закону: *ABABCBC*, с периодом повторяемости по оси *c*, равным 15 слоям [2]. Вдоль оси *c* часто проявляется неупорядоченность [1]. На основании химических данных предполагается тетраэдрическая координация Zn, что согласуется с пространственной группой *P*6₃22 [3].

Кристаллы пластинчатые с частично растворенными пирамидальными и призматическими гранями, а также тонкие искривленные чешуйки.

Физ. Сп. совершенная по (0001) (слюдистая). Хрупкий, чешуйки не эластичные. Тв. 3-4. Уд. в. 3,876 (вычисл. 3,903 [1] и 3,918 [3]). Цв. красновато-бурый, медно-бурый, темно-красный. Черта золотисто-бурая. Бл. полуметаллический.

Микр. [1]. В отраж. свете напоминает медь. Одноосный (+). $n_o = 1,805$. Двупреломление низкое.

Хим. Сложный арсеносиликат Fe, Mg, Mn и Zn. Отношение $As^{3+}: As^{5+} = 3:4$. Предполагается существование незначительных изоморфиых замещений между As^{5+} и Si [3].

Анализы:

	1	2	3	4	5	6	7
MgO	2,53	2,3	2,7	2,4	2,5	2,9	2,6
MnO	51,6	51,4	52,5	53,5	50,6	51,8	52.0
FeO	1,92	-	-	_	_	_	_
ZnO	8,47	8,0	8,8	8,2	8,9	9.1	8.6
Fe ₂ O ₃	_	2,2	1,7	1,6	2,3	2.1	2.0
Al ₂ O ₃	0,21	0,2	0,1	0,1	0.3	0.1	0.2
As ₂ O ₃	0,87	6,48*	6.88*	6,72*	7.082*	6.99 ^{2*}	6.694*
As ₂ O ₅	17,1	10,063*	10,25 ^{3*}	10,743*	10.96 ^{2*}	10.84 ^{2*}	10.354*
SiO ₂	13,8	13,2	12,9	13,1	12.8	12.5	12.9
H ₂ O ⁺	3,68	3,685*	3,685*	3,685*	3,685*	3,685*	3,685*
Сумма	100.78	97.5	99.5	100.0	99.1	100.0	100.0

Химический анализ.

^{2*} Рассчитаны из отношения As^{3+} : As^{5+} , полученного из ан. 2-4, суммарный As - на микрозонде. ^{3*} $As_{2}O_{5}$ – по разнице суммарного As и As^{3+} .

4* Среднее из ан. 2-4.

^{5*} H₂O – по ан. 1.

1-7 - месторождение Стерлинг-Хилл (США): 1 - анал. Айто [1], 2-6 - микрозонд. [3], 7 - среднее из ан. 2-6.

Эмпирическая формула, рассчитанная из ан. 1 на 12 атомов (Si + As): (Mn²⁺_{0.89}Mg_{0.08}Fe²⁺_{0.03})Zn₄(AsO₄)₄(SiO₄)₈(OH)₁₂[1]. Указывалось [3], что данная формула
эшибочна, так как не удовлетворяет требованиям пространственной группы $P6_322$. Эмпирическая формула для ан. 7 (на 18 атомов (Si + As⁵⁺)): Fe³⁺_{1.49}Mg_{3.81}Mn_{3.91}Zn_{6.33}× ×(AsO₃)_{4.05}(AsO₄)_{5.39}(SiO₄)_{12,87}(OH)₃₆. В идеальном виде: Fe³⁺₂Mg₄Mn₄₄Zn₆(AsO₃)₄× ×(AsO₄)₆(SiO₄)₁₂(OH)₃₆ [3]. У Флейшера приведена формула (Mn²⁺, Mg)₂₄Zn₃Fe³⁺× $(As^{3+}O_3)_2(As^{5+}O_4)_3(SiO_4)_6(OH)_{18}$.

Нахожд. Обнаружен на месторождении Стерлинг-Хилл (округ Суссекс, шт. Нью-Джерси, США) в центральной цинкитовой зоне франклинит-виллемит-цинкитовых руд [1] в виде тонких пленок и линз на поверхности трещин в ассоциации с пирохроитом, баритом, сфалеритом, родохрозитом и другими вторичными Zn-Mn минералами.

Образует тонкие чешуйки в трещинах в виллемит-франклинитовых (с примесью холденита) рудах, хаотично ориентированные пластинки, ассоциирующие с франклинитом, кальцитом, виллемитом и Zn-аделитом, в массивном холдените, а также массивные агрегаты в виллемит-кальцит-франклинитовой руде [3].

Отл. От макговернита отличается по рентгенограмме, параметру c_0 (у макговернита – 203,15 Å) и более низким содержаниям As₂O₃, MgO и H₂O [1].

Межплоскостные расстояния крайслита из Стерлинг-Хилла, шт. Нью-Джерси (США) [1] СиК_о-излучение

hkl	I	d (Å)	hki	1	d(Å)
004	5	10,002	00.18	55	2,437
006	1	7,266	00.20	55	2,194
00.10	45	4,385	00.30	1	1,4601
00.12	35	3,651	00.34	2	1,2907
00.14	20	3,130	00.36	7	1,2190
?	2	2,993	00.38	2	1,1552
00.16	100	2,740			

Литература

Moore P.B., Ito J II Amer. Miner. 1978. Vol. 63, N 9/10. P. 938. *Moore P.B., Araki T. II* Ibid. N 1/2. P. 150. *Dunn P.J., Nelen J.A. II* Ibid. 1980. Vol. 65, N 9/10. P. 957.

СТРУКТУРА ТИПА ТИТАНИТА

ГРУППА ТИТАНИТА

Ранее в группе описаны: титанит, малаяит и условно – ферсманит (т. III, вып. 1, 336). Последний, как показала расшифровка структуры, относится к диортоситкатам (см. с. 156).

	Сингония	a_0	b_0	c_0	β
Ванадомалаяит $CaV[SiO_4]O$	Монокл.	6,526	8.691	7,032	113,88°

Ванадомалаяит Vanadomalayaite CaV[SiO₄]O

Назван по составу, является ванадиевым аналогом малаяита [1].

Характ. выдел. Мелкие кристаллы (до 0,4 мм).

Структ. и морф. крист. Монокл. с. C2/c. $a_0 = 6,526, b_0 = 8,691, c_0 = 7,032$ Å; $z = 113,88^\circ; Z = 4.$ Изоструктурен с титанитом. V4+ находится в октаэдрических позициях.

Кристаллы призматические. Двойники не наблюдались.

Физ.св. Сп. хорошая по (110). Цв. темно-красный.

Микр. Данные не приведены.

Хим. Ванадиевый аналог титанита и малаяита. Эмпирическая формула, полученная для среднего из нескольких микрозондовых анализов (анализы не приведены) (расчет на 5 атомов O): $Ca_{1.00}(V_{0.71}Ti_{0.26}Fe_{0.01}Al_{0.01})[Si_{1.01}O_4]O$.

Нахожд. Найден в тонких прожилках в окремненных известняках на месторождении Гамбатеса в Восточной Лигурии (Италия). Образует редкие кристаллы в ассоциации с кварцем, кальцитом и харадаитом.

Литература

1. Basso R., Lucchetti G., Zefiro L., Palenzona A. // Abstr. 16th Gen. Meet. of Intern. Miner. Assoc. Pisa, 1994. P. 31.

СТРУКТУРА ТИПА КИАНИТА

ГРУППА КИАНИТА

Ранее в группе описаны: кианит, андалузит, иодерит, грандидьерит (т. III, вып. 1, с. 440).

	Сингония	<i>a</i> ₀	b_0	<i>c</i> ₀	Уд.в.
Канонаит (Mn ³⁺ , Al)Al[SiO ₄]O	Ромб.	7,953	8,038	5,619	3,395

Канонаит Kanonaite

(Mn³⁺, Al)Al[SiO₄]O

Назван по месту иаходки вблизи г. Канона (Замбия). Название относится к членам изоморфного ряда андалузит AI^{VI} – AI^{V} [SiO₄]O–канонант $Mn^{3+(VI)}AI^{V}$ [SiO₄]O для $Mn^{3+(VI)}$ > AI^{VI} [1].

Характ. выдел. Ангедральные порфиробласты длиной до 12 мм.

Структ. и морф. крист. Ромб. с. D_{2h}^{12} -*Pnnm.* $a_0 = 7,953$, $b_0 = 8,038$, $c_0 = 5,619$; $a_0: b_0: c_0 = 0,989: 1:0,699$; V = 359,2 Å³; Z = 4 [1].

Физ. св. [1]. Сп. по (110) несовершенная. Наблюдается анизотропия твердости: для разноориентированных зерен тв. 6,5 и 7,5; микротвердость соответственно 906–1017 и 1275–1465 кгс/мм². Уд.в. 3,395 (вычисл.). Цв. зеленовато-черный. Черта серовато-зеленая. Бл. стеклянный. ИК-спектр аналогичен таковому андалузита.

Микр. [1]. Плеохроизм сильный: по Ng – темно-золотисто-желтый, по Nm – голубовато-зеленый, по Np – желтовато-зеленый, $Ng \parallel c, Nm \parallel b, a \parallel Np$. Двуосный (+). $n_e = 1,823, n_m = 1,730, n_p = 1,702; n_e - n_p = 0,121. 2V = 53°$ (вычисл. 56°).

Хим. Анализ (микрозонд., среднее из 24 точечных определений для главных элементов и 10 – для второстепенных) [1]: MgO – 0,04; CaO – 0,01; BaO – 0,04; PbO – 0,01; ZnO – 0,13; CuO – 0,01; Al₂O₃ – 33,9; Fe₂O₃ – 0,66; Mn₂O₃ – 32,2; SiO₂ – 32,2; TiO₂ – 0,01; сумма 99,21 (вода не определялась).

Эмпирическая формула (на 5 атомов О): $(Mn_{0,76}^{3+}Al_{0,23}Fe_{0,015}^{3+})_{1,01}^{VI}Al_{1,00}^{V}[Si_{0,99}O_{4,00}] \times O_{1,00}$. Отмечены сл. Zr, Sn, As и Ga.

Нахожд. Обнаружен в ганит-Мg-хлорит-коронадит-кварцевых сланцах вблизи канона (Замбия) в виде порфиробластов, включающих агрегаты ганита и коронадита [1]; последний, в свою очередь, содержит неправильной формы зерна браунита размером в сотые и десятые доли миллиметра. Предполагается многосазовый метаморфизм пород. Возможно, что агрегаты Mg-хлорита и кварца представляют собой псевдоморфозы по кордиериту, тем более что кордиерит известен в породах с манганандалузитом в Якутии [2] и Германии [3].

Искусств. Составы $Mn_{0,14}^{3+}Al_{1,86}SiO_5 - Mn_{0,44}^{3+}Al_{1,56}SiO_5$ синтезированы в системе Al-O₃-MnO-MnO₂-SiO₂ при давлении 10–18 кбар и температуре 900° [4].

Отл. От манганандалузита отличается большей величиной ng и меньшим углом 21 [5, 6].

		Сик _α -излучен	ие, дифр	актометр			
1	d (Å)	hki	I	d (Å)	hkl	I	d (Å)
100	5,669	301	9	2,397	042	3	1,635
75	4,590	022; 311	69	2,299	402	19	1,623
2	4,252	320, 122;	83	2,212	150	11	1,576
46	3,981	212			332; 510	25	1,564
9 0	3,587	040	1	2,010	242	52	1,511
90	3,567	222; 400	22	1,988	250	4	1,491
2	3,482	140	4	1,947	440	25	1,413
32	3,340	410	5	1,930	004	6	1,403
14 ш	3,119	330; 132	24	1,884	350; 152	4	1,374
94	2,827	141	7	1,839	512; 114	4	1,365
52	2,540	411;013	17	1,823	252	1	1,318
90	2,517	331	15	1,787	522	8	1,308
15	2,418	232	2	1,743	620; 224	10	1,259
	/ 100 75 2 46 90 90 2 32 14ш 94 52 90 15	I d (Å) 100 5,669 75 4,590 2 4,252 46 3,981 90 3,587 90 3,567 2 3,482 32 3,340 14ш 3,119 94 2,827 52 2,540 90 2,517 15 2,418	I d (Å) hkl 100 5,669 301 75 4,590 022; 311 2 4,252 320, 122; 46 3,981 212 90 3,587 040 90 3,567 222; 400 2 3,482 140 32 3,340 410 14ш 3,119 330; 132 94 2,827 141 52 2,540 411; 013 90 2,517 331 15 2,418 232	I d (Å) hkl I 100 5,669 301 9 75 4,590 022; 311 69 2 4,252 320, 122; 83 46 3,981 212 90 90 3,587 040 1 90 3,567 222; 400 22 2 3,482 140 4 32 3,340 410 5 14ш 3,119 330; 132 24 94 2,827 141 7 52 2,540 411; 013 17 90 2,517 331 15 15 2,418 232 2	I d (Å) hkl I d (Å) 100 5,669 301 9 2,397 75 4,590 022; 311 69 2,299 2 4,252 320, 122; 83 2,212 46 3,981 212	I d (Å) hkl I d (Å) hkl 100 5,669 301 9 2,397 042 75 4,590 022; 311 69 2,299 402 2 4,252 320, 122; 83 2,212 150 46 3,981 212 332; 510 332; 510 90 3,587 040 1 2,010 242 90 3,567 222; 400 22 1,988 250 2 3,482 140 4 1,947 440 32 3,340 410 5 1,930 004 14ш 3,119 330; 132 24 1,884 350; 152 94 2,827 141 7 1,839 512; 114 52 2,540 411; 013 17 1,823 252 90 2,517 331 15 1,787 522 15 2,418 232 2 1,743	I d (Å) hkl I d (Å) hkl I 100 5,669 301 9 2,397 042 3 75 4,590 022; 311 69 2,299 402 19 2 4,252 320, 122; 83 2,212 150 11 46 3,981 212 332; 510 25 90 3,587 040 1 2,010 242 52 90 3,567 222; 400 22 1,988 250 4 2 3,482 140 4 1,947 440 25 32 3,340 410 5 1,930 004 6 14ш 3,119 330; 132 24 1,884 350; 152 4 94 2,827 141 7 1,839 512; 114 4 52 2,540 411; 013 17 1,823 252 1 90 2,517 331

Межплоскостные расстояния канонанта из Замбин [1]

Литература

1. Vrana S., Rieder M., Podlaha J. // Contrib. Miner. and Petrol. 1978. Vol. 66, N 3. P. 326.

- 2 Кулиш Е.А. // Геология и геофизика. 1961. № 1. С. 53.
- Abraham K., Schreyer W. // Contrib. Miner. and Petrol. 1975. Vol. 49, N 1. P. 1.
- = Abs-Wurmbach L., Langer K. // Ibid. P. 21.
- Deschadt R. // Bull. Soc. geol. belg. 1966. Vol. 75, fasc. 2. P. 147.
- 4 Herbosch A. // Ibid. 1968. Vol. 76, fasc. 2. P. 183.

СТРУКТУРА ТИПА НАТИСИТА

ГРУППА НАТИСИТА

	Сингония	a_0	<i>b</i> 0	<i>c</i> ₀	Ζ	Уд.в.
Натисит Na ₂ Ti[SiO ₄]O	Тетраг.	6,50	-	5,07	2	3,15
Паранатисит Na ₂ Ti[SiO ₄]O	Ромб.	9,827	9,167	4,799	4	3,12

Структура паранатисита аналогична структуре натисита; при одинаковой кислородной матрице они различаются распределением катионов Ті и Na, что приводит к понижению симметрии от тетрагональной до ромбической (фиг. 5, *a*, *б*) [1].

Фиг. 5. Структура натисита (a) и паранатисита (б) в проекции ab (по Соколовой и др.)

Литература

1. Соколова Е.В., Ямнова Н.А., Егоров-Тисменко Ю.К., Хомяков А.П. // ДАН СССР. 1985. Т. 284, № 5. С. 1136.

Натисит Natisite Na₂Ti[SiO₄]O

Назван по составу [1]. Первоначально был получен искусственно [2].

Характ. выдел. Округлые зерна, кристаллы (0,05-0,5 мм) и их агрегаты [1, 3].

Структ. и морф. крист. Тетраг. с. $D_{4h}^7 - P4/nmm$. $a_0 = 6,50$, $c_0 = 5,07$ Å; $a_0:c_0 = 1:0,780$; V = 214,4 Å³; Z = 2 [1]; для искусственного – $a_0 = 6,485$, $c_0 = 5,0987$ Å, $a_0:c_0 = 1:0,786$; V = 214,5 Å³; Z = 2 [4].

Структура искусственного натисита состоит из двух объемных, чередующихся верпендикулярно оси с этажей. Первый этаж сложен Ті-полуоктаэдрами и одичочными Si-тетраэдрами; второй состоит из Na-октаэдров, сгруппированных в четверки вокруг осей 4 порядка. Ребра октаэдров лежат в плоскости базиса, ъбразуя квадратные основания Ті-полуоктаэдров (см. фиг. 5, *a*) [5].

Средние межатомные расстояния (в Å): в Si-тетраэдрах Si-O = 1,630, -O = 2,662; в Ti-пятивершинниках Ti-O = 1,941, O-O = 2,844; в Na-октаэдрах Na-O = 2,398, O-O = 3,249 [4].

Кристаллы бипирамидального облика [3]. Искусственный имеет таблитчатый табитус, основные формы (001), (100) и (201) [2].

Физ. св. Сп. совершенная по (001), менее совершенная по (100). Изл. ступенчатый. Тв. 3–4 [1], у искусственного 4 [2]. Уд.в. 3.15 (вычисл.), у искуственного – 3,16. Прозрачный. Цв. желтовато-зеленоватый, зеленовато-серый, ветло-кремовый, кофейный, иногда бесцветный (водяно-прозрачный) [1, 3]; синтезированный без примесей бесцветный, активированные марганцем кристаллы ледно-желтые [2]. Бл. стеклянный до алмазного [1, 3].

Микр. Одноосный (-). $n_o = 1,756$, $n_e = 1,680$; $n_o - n_e = 0,078$; у искусственного $n_o = 1,758$, $n_e = 1,680$; $n_o - n_e = 0,078$ [1]. $n_o = 1,745$, $n_e = 1,722$; $n_o - n_e = 0,023$ [2].

Хим. Теор. состав: SiO₂ - 29,75; TiO₂ - 39,56; Na₂O - 30,69.

Анализы (микрозонд.):

	Na ₂ O	MnO	FeO	SiO ₂	TiO ₂	Nb ₂ O ₅	Ta ₂ O ₅	Сумма
I	30,32	0,31	0,53	29,77	38,93	0,72	0,12	100,70
2	29,47	0,37	1,35	29,14	39,62	0,18	_	100,13

 гора Карнасурт, Ловозерский массив, анал. Пахомовский [1]; 2 – гора Юкспор, Хибинский массив, анал. Полежаева [6] (дополнительно установлен F 1–1,5%) [5].

Диагн. исп. П.п.тр. легко сплавляется в белый фарфоровидный шарик. Не расворяется в 5%-ных HCl, HNO₃, H₂SO₄. Под электронным пучком имеет синеватое звечение [1].

Нахожд. Найден на Кольском п-ове (Мурманская обл.) в Ловозерском и Хибинском массивах. В Ловозерском массиве установлен [1] в натролит-уссинтовом прожилке, пересекающем фойяиты, луявриты и малиньиты, в ассоциации с чкаловитом, вуоннемитом и эгирином, в виде округлых единичных зерен и рочтковидных микрообособлений пластинчатых кристаллов среди натролита и жангита.

На горе Юкспор обнаружен в пегматоидных породах с пектолитом, канаситом, кльхайелитом, виллиомитом, натрофосфатом и с псевдоморфозами вторичных амрконосиликатов по эвдиалиту. Наблюдается в виде округлых зерен, дипираадальных и пластинчатых кристаллов и их агрегатов, иногда в тесном срастании с заранатиситом [3, 6, 7].

Образуется в позднегидротермальную стадию в условиях высокой щелочности стеды (парагенетический анализ и экспериментальные данные) [1, 6].

Искусств. Впервые получен [2] как побочный продукт в процессе гидротермальной кристаллизации в системе Na₂O–ZnO–SiO₂-H₂O при 550° и концентрации NaOH 30%, а также за счет растворения титановых вкладышей в верхней зоне изтоклава – зоне кристаллизации. Обнаружен [1] в продуктах возгона на крышках Гевкладышей при опытах по изучению мобилизации никеля из силикатных пород мсд действием растворов метасиликата натрия при 340° и давлении 500–600 атм поодолжительность опытов 96 ч).

Отл. Бипирамидальные кристаллы могут быть приняты за циркон [3]. От эранатисита [6] четко отличается по оптическим свойствам и порошкограмме [6].

1.1.1		14			1. 1 .		-	
nki	1	<i>d</i> (A)	hki	'	d (A)	hki	1	d (A)
001	8	5,05	013; 103	4	1,634	440	1	1,142
110	1	4,60	400	5	1,611	224	3	1,1113
011; 101	5	3,96	023; 203	5	1,494	243; 423	6	1,1001
020; 200	3	3,22	123; 213;	5	1,460	134; 314; 600	1	1.0786
021; 201	10	2,709	331			601; 061	4	1,0558
002; 121;	5	2,521	241; 421	5	1,387	053; 503	3	1,0295
211			223	3	1,358	620; 260	3	1,0235
012; 102	6	2,349	033; 303	3	1,331	015; 105;	2	1,0023
220	2	2,283	004; 510;	2	1,266	621; 261		
130; 310	2	2,033	150			451; 541; 115	4	0,9945
202; 022;	3	1,967	511; 151	2	1,230	253; 523;	3	0,9822
301; 031			124; 214	5	1,162	612; 162		
003; 321;	7	1,689	413; 143;	2	1,150			
231			502: 052					

Межплоскостные расстояния натнсита из Ловозерского масснва [1]

Fe-излучение, D = 57,3 мм

Литература

- 1. Меньшиков Ю.П., Пахомовский Я.А., Чайко Е.А., Буссен И.В., Мерьков А.П. // Зап. ВМО. 1975. Ч. 104, вып. 3. С. 317.
- 2. Никитин А.В., Илюхин В.В., Литвин Б.Н., Мельников О.К., Белов Н.В. // ДАН СССР. 1964. Т. 157, № 6. С. 1355.
- Хомяков А.П., Кобяшев Ю.С. // Новые данные по минералогии месторождений щелочных формаций. М.: Наука, 1979. С. 16.
- 4. Егоров-Тисменко Ю.К., Симонов М.А., Белов Н.В. // ДАН СССР. 1978. Т. 240, № 1. С. 78.
- 5. Соколова Е.В., Ямнова Н.А., Егоров-Тисменко Ю.К., Хомяков А.П. // Там же. 1985. Т. 284, № 5. С. 1136.
- 6. Хомяков А.П., Полежаева Л.И., Соколова Е.В. // Зап. ВМО. 1992. Ч. 126, вып. 6. С. 133.
- 7. Хомяков А.П. Минералогия ультраагпантовых щелочных пород. М.: Наука, 1990. 200 с.

Паранатисит Paranatisite Na₂Ti[SiO₄]O

Назван по сходству с диморфным натиситом [1]. Первоначально описывался как "минерал-Х" и "М-52" [2, 3].

Характ. выдел. Неправильные зерна (0,5--1 мм) и их агрегаты до 3-5 мм в поперечнике [1].

Структ. и морф. крист. Ромб. с. D_{2h}^5 -*Pmma*. $a_0 = 9,827$, $b_0 = 9,167$, $c_0 = 4,799$ Å; $a_0:b_0:c_0 = 1,0719:1:0,5235$; V = 432,3 Å³; Z = 4. Структура близка натиситу, но с другим распределением катионов Ті и Na (см. фиг. 5, 6).

Средние межатомные расстояния (в Å): в Si-тетраэдрах Si-O = 1,64, O-O = 2,67; в Ti-полиэдрах Ti₁-O₂ = 1,95, O-O = 2,74, Ti₂-O₁ = 1,91, O-O = 2,80; в Na-октаэдрах Na₁-O = 2,41, O-O = 3,30, Na₂-O = 2,49, O-O = 3,35, Na₃-O = 2,40, O-O = 3,38.

Физ. св. Тв. 5. Уд.в. 3, 12 (вычисл. 3,07). Цв. желтый, оранжево-желтый, оранжево-бурый. Бл. стеклянный до алмазного. Просвечивает в тонких сколах. Изл. саковистый. Не люминесцирует.

ИК-спектр фиксирует наличие четких максимумов в основной области: 1003, •)3, 862, 632, 432 см⁻¹ и очень слабое поглощение в области колебания молекул H₂O – 3400–3500 см⁻¹ [1].

Микр. Слабо плеохроирует от желтого (по Ng) до коричневато-бурого по Np, Nm), Np \gg Nm > Ng. Двуосный (+). a = Nm, b = Np, c = Ng. $n_p = 1,740$, $r_p = 1,741$, $n_p = 1,765$. $2V = 20^{\circ}$ [1].

Хим. Анализ (микрозонд.): Na₂O – 28,04; CaO – 0,05; MnO – 0,39; FeO – 2,61; $5_1O_2 - 29,69$; TiO₂ – 35,70; Nb₂O₅ – 0,14; F – 1 (анал. Нечелюстов); H₂O – 1,6 сопределена Елиной кулонометрическим методом); –O = F₂ – 0,4; сумма 98,82 (анал. Полежаева). Характерно изоморфное замещение Ti на Fe, Mn и Nb [1].

Нахожд. Обнаружен в интенсивно минерализованных пегматитах в ийолит-уртитах лежачего бока крупной залежи апатитовой руды (гора Юкспор) и в пегчатитах в рисчорритах в висячем боку той же залежи на восточном ее протяжении плато Расвумчорр) в Хибинском массиве. На горе Юкспор ассоциирует с дельчайелитом, нефелином, адуляровидным калиевым полевым шпатом, энигматитом, чербаковитом, лепидомеланом, лоренценитом, виллиомитом. Часто находится в тесном срастании с натиситом [1, 3].

Образовался в условиях экстремально высокой щелочности [1].

Отл. От натисита отличается по оптическим свойствам и порошкограмме. Отоорку для изучения рекомендуется производить под микроскопом в иммерсионных жидкостях [1].

|--|

FeK_a-излучение, D = 114.6 мм

hkl	1	d (Å)	hki	1	d(Å)	hkl	I	d (Å)
210	9	4,33	040	9	2,292	630	35	1,444
011	6	4,25	112	25	2,259	541	11	1,425
111	5	3,90	331	21	2,026	133	21	1,403
021	6	3,32	501	6	1,819	442	17	1,374
221	100	2,748	250	30	1,718	612	8	1,338
311	9	2.595	440	30	1,676	533	7	1,149
131	10	2,493	042	22	1,657	034	10	1,117
400	11	2,457	600	5	1,638	661	7	1,088
002	9	2,400	342	33	1,479	453	11	1,082

Литература

| Хомяков А.П., Полежаева Л.И., Соколова Е.В. // Зап. ВМО. 1992. Ч. 126, вып. 6. С. 133.

2 Соколова Е.В., Ямнова Н.А., Егоров-Тисменко Ю.К., Хомяков А.П. // ДАН СССР. 1985. Т. 284, № 5. С. 1135.

3 Хомяков А.П. Минералогия ультраагпаитовых щелочных пород. М.: Наука, 1990. 200 с.

СТРУКТУРА ТИПА ИФТИСИТА-(У)

	Сингония	a ₀	b_0	<i>c</i> 0	Уд.в.
Ифтисит-(Y) (Y, TR) ₄ Ti[SiO ₄] ₂ O(F, OH) ₆	Ромб.	14,949	10,626	7,043	3,96

Ифтисит-(Y) Yftisite-(Y) (Y, TR) Ti[SiO₄]₂O(F,OH)₆

Назван по составу [1]. Впервые кратко охарактеризован как новая иттриевая разновилность в группе фторсиликатов редкоземельных элементов [2].

Синон. Ифтисит - Yftisite [3, 4].

Характ. выдел. Мелкие зернистые выделения, сростки уплошенно-

призматических кристаллов длиной от 0,1 до 6 мм. Структ. и морф. крист. Ромб. с. D_{2h}^{17} – *Стест.* a_0 = 14,949, b_0 = 10,626, c_0 = 7,043 Å; $a_0: b_0: c_0 = 1,4067: 1: 0,6609$ [3]; $\vec{Z} = 4$. Для образца из Казахстана: $a_0 = 14,90$, $b_0 = 10,60, c_0 = 7,08$ Å [2].

Основной элемент структуры - цепи смешанных изолированных радикалов TiO[SiO₄], состоящие из Ті-октаэдров, соединенных Si-тетраэдрами. Эти цепи "прошивают" каркас, образованный из семи- и восьмивершинников вокруг (Y, TR) (фиг. 6) [3]. Ті-октаздры и (Y, TR)-полиздры образуют оливинополобные зубчатые ленты [5], в данном случае из-за большого числа катионов – двухэтажные. Ленты, лежащие на двух уровнях, связаны косой трансляцией базоцентрированной С-решетки. Структурный аналог ифтисита – синтетический Sm₄(OH)₆Ge^{VI}O[Ge^{IV}O₄]₂[5].

Средние межатомные расстояния (в Å): в Si-тетраэдрах Si-O = 1,640, О-О = 2,775; в Ті-октаэдрах Ті-О = 1,963, О-О = 2,775; в У₁-полиздре Y₁-(F, O) = 2,283; в Y₂-полиэдре Y₂-(F, O) = 2,326 [3].

Физ. св. Сп. не обнаружена. Тв. 3,5-4. Уд.в. 3,96 (вычисл. 4,87) [1].

Микр. [1]. Двуосный (-). $n_g = 1,710-1,712, n_m = 1,705, n_p = 1,690; n_g - n_p =$ = 0,020-0,022; 2V большой. Дисперсия, r > v. Характерна аномальная интерференционная окраска.

Хим. Анализы (микрозонд., 7 определений в 3 зернах из образца с Кольского п-ова): СаО – 0,37–0,72 (среднее 0,56); РьО – 0,33–4,63 (2,93); Gd₂O₃ – 0,28–1,09 (0,52); $AJ_2O_3 - 0.14 - 0.64$ (0.37); $Fe_2O_3 - 0.38 - 1.33$ (1.06); $Y_2O_3 - 40.21 - 48.92$ (43.22); $Er_2O_3 - 0.38 - 1.33$ (1.06); $Y_2O_3 - 40.21 - 48.92$ (43.22); $Er_2O_3 - 0.38 - 1.33$ (1.06); $Y_2O_3 - 40.21 - 48.92$ (43.22); $Er_2O_3 - 0.38 - 1.33$ (1.06); $Y_2O_3 - 40.21 - 48.92$ (43.22); $Er_2O_3 - 0.38 - 1.33$ (1.06); $Y_2O_3 - 40.21 - 48.92$ (43.22); $Er_2O_3 - 0.38 - 1.33$ (1.06); $Y_2O_3 - 40.21 - 48.92$ (43.22); $Er_2O_3 - 0.38 - 1.33$ (1.06); $Y_2O_3 - 40.21 - 48.92$ (43.22); $Er_2O_3 - 0.38 - 1.33$ (1.06); $Y_2O_3 - 40.21 - 48.92$ (43.22); $Er_2O_3 - 0.38 - 1.33$ (1.06); $Y_2O_3 - 40.21 - 48.92$ (43.22); $Er_2O_3 - 0.38 - 1.33$ (1.06); $Y_2O_3 - 40.21 - 48.92$ (43.22); $Er_2O_3 - 0.38 - 1.33$ (1.06); $Y_2O_3 - 40.21 - 48.92$ (43.22); $Er_2O_3 - 0.38 - 1.33$ -5,53 - 6,96 (6,26); Yb -3,44-5,14 (4,25); Dy₂O₃-3,58-5,22 (4,57); SiO₂-13,43--15,89 (14,39); TiO₂ -5,75-8,30 (6,77); SnO₂ -0,38-3,02 (1,72); ThO₂ -0,17-0,93 (0,50); H₂O[±]-6,76 (по 2 определениям суммарной воды); F – 11,40–16,29 (13,35); сумма 95,13-104,16 (107,23); - О ≈ F₂ - 5,62, сумма 101,61.

Эмпирическая формула (на основе пересчета средних значений): $(Y_{3,17}TR_{0,68}Pb_{0,11}Ca_{0,08}Th_{0,02})_{4,06}(F_{5,82}OH_{0,10})_{6,00}(Ti_{0,70}Fe_{0,11}Sn_{0,09}AI_{0,06})_{0,96} \cdot O[(Si_4O)_{1,98} \times I_{1,10}^{10}Ca_{0,08}Th_{0,02})_{4,06}(F_{5,82}OH_{0,10})_{6,00}(Ti_{0,70}Fe_{0,11}Sn_{0,09}AI_{0,06})_{0,96} \cdot O[(Si_4O)_{1,98} \times I_{1,10}^{10}Ca_{0,08}Th_{0,02})_{4,06}(F_{5,82}OH_{0,10})_{6,00}(Ti_{0,70}Fe_{0,11}Sn_{0,09}AI_{0,06})_{6,00} \cdot O[(Si_4O)_{1,98} \times I_{1,10}^{10}Ca_{0,08}Th_{0,10})_{6,00}(F_{5,82}OH_{0,10})_{6,00}($ × (OH)0 08] · 2,98 H₂O [1]. Имеет место изовалентный и гетеровалентный изоморфизм по предположительным схемам: $Y \rightarrow TR$; Ca \rightarrow Pb; (Y, TR) (O, OH) \rightarrow \rightarrow (Pb, Ca) (OH, H₂O); F \rightarrow OH; Ti \rightarrow Sn; Fe³⁺ \rightarrow Al³⁺; (Ti, Sn)O \rightarrow (Fe, Al) (OH)₂; $SiO_4 \rightarrow (OH)_4$.

Состав редкоземельных элементов (метод бумажной хроматографии) (Σ TR = 100%): La - 0,9; Ce - 8,5; Pr - 0,0; Nd - 7,6; Sm - 5,1; Eu - 0,4; Gd - 5,5; Tb - 0,8; Dy - 24,6; Ho - 3,4; Er - 20,8; Tu - 2,1; Yb - 18,2; Lu - 2,1. Отношения Y : TR = 2,4; Y : (La + Nd) = 14,3; Y : (Sm + Ho) = 6,1; Y : (Er-Lu) = 5,6 [2].

Формула по М. Флейшеру (1990) - (Y, Dy, Er)₄(Ti, Sn)O(SiO₄)₂(F, OH)₆, по Е.И. Семенову (1991) – Y_4 TiSi₂O₉F₆ · H₂O.

Фят. 6. Структура ифтисита-(Y) в проекции вдоль оси b (по Балко и Бакакину). Слева вокруг атомов Y показаны координационные полиздры

Нахожд. Обнаружен в качестве акцессорного минерала в небольшом участке метасоматически измененных щелочных гранитов Кольского п-ова. Приурочен к участкам интенсивного окварцевания жильных щелочных гранитов в зоне контакта с крупными телами габбро-анортозитов. Образует мелкую вкрапленность среди выделений таленита в ассоциации с кварцем, галенитом, цирконом, касситеритом и другими минералами [1, 2]. В ифтисите при микрозондовом изучении отмечены фазы: иттрий-свинец-титановая (TiO₂ ~ 60%, PbO ~ 14%, Y₂O₃ ~ 9%), кремниевая SiO₂) и фторид иттрия-р.з.э. (Y₂O₃ > 67%, F ~ 31%, TR-16) [1].

Упоминалось [1, 2] о находке в аналогичных образованиях Казахстана рторсиликата р.з.э., близкого по параметрам элем.яч. к ифтиситу Кольского п-ова.

Изм. Легко гидратируется. Этим, по-видимому, объясняются "замутненность" этдельных индивидов ифтисита и заниженные значения измеренного уд.в. по сравнению с вычисленным [1].

> Межплоскостные расстояния ифтисита-(Y) с Кольского п-ова [2] FeK_{а,в}-излучение, D = 66 мм

**	I	d (Å)	hkl	I	d (Å)	hkl	I	d (Å)
	2	4,49	710	2	2,102	316β;572	5	(1,266)
ויי	2	4,25	423β	2	(2,046)	406β;045	3ш	(1,248)
<u>1218</u>	2	(4,13)	640β	2	(2,009)	282	4	1,229
-)02β	2	(3,89)	641β;133	6ш	(1,949)	426β	Ip	(1,216)
221	7	3,727	352β	lp	(1,894)	11.3.2	2p	1,201
JN2	7	3,526	423	4	1,865	190;006	6	1,1752
31B	2p	(3,44)	640	9	1,821	11.3.4β;316	5ш	(1,1436)
4)1	i	3,353	641;004	10	1,766	406	5	1,1279
m	1	3,265	552β:352	10	(1,714)	682	6	1,1158
-10	2	3.18	642	4	1,622	426	7	1,1038
1718	10	3.099	643B	2	(1,595)	10.6.2	7	1,0908
140	2p	(2.949)	134	lp	1,573	606	3	1,0682
10	5	2,891	005β;552	8	(1,559)	954	5	1,0584

Силикаты с одиночными кремнекислородными тетраздрами

hkl	1	d (Å)	hkl	I	d (Å)	hkl	I	d (Å)
402β;421	2	(2,817)	10.0.0	5	1,504	626	2_{D}	1,0479
041β	1	(2,739)	643	8	1,442	11.3.4	5	1.0355
040	10	2,667	425β;005	5	(1,411)	14.0.2	3p	1.0281
402	5	2,506	572β	2	(1,393)	12.4.3	3p	1,0207
041	4p	2,499	444	2	1,375	11.7.1	4	1.0078
512β;132	4p	2,463	282β	2ш	(1,349)	806	2p	1.0000
113	3	2,287	405	3	1,322		•	
512	3	2,237	190β;081	2ш	(1,305)			
133β;023	6	(2,153)	425;734	3	(1,282)			

Литература

- 1. Плетнева Н.И., Полежаева Л.И. // Новые данные о минералах Кольского п-ова. Апатиты, 1979. С. 62.
- 2. Плетнева Н.И., Денисов А.П., Елина Н А. // Материалы по минералогии Кольского п-ова. Л.: Наука, 1971. Т. 8. С. 176.
- 3. Балко В.П., Бакакин В.В. // Журн. структур. химин. 1975. Т. 16, № 5. С. 837.
- 4. Fleisher M., Jamber J. // Amer. Miner. 1977. Vol. 62, N 3/4. P. 396.
- 5. Белов Н.В., Белова Е.Н. // Минерал. сб. Львов. 1978. № 32, вып. 1. С. 5.

СТРУКТУРА ТИПА ДЖАСМУНДИТА

	Сингония	a_0	c_0	Уд.в.
Джасмундит Ca ₁₁ [SiO ₄] ₄ O ₂ S	Тетраг.	10,461	8,813	3,03

Джасмундит Jasmundite

Ca₁₁[SiO₄]₄O₂S

Назван в честь немецкого минералога К. Ясмунда [1]. Синон. Ясмундит (Семенов, 1991).

Характ. выдел. Неправильные зерна и кристаллы размером в несколько миллиметров.

Структ. и морф. крист. Тетраг. с. $D_{2d}^9 - I4m2$. $a_0 = 10,461$, $c_0 = 8,813$ Å; $a_0:c_0 = 1,1869$; Z = 1 [2]. Для синтетического [3]: $a_0 = 10,452$, $c_0 = 8,6977$ Å; V = 950,1 Å³.

Структура состоит из изолированных кремнекислородных тетраэдров, связанных кальциевыми полиэдрами [1]. Три из четырех Ca²⁺ ионов имеют неправильную октаэдрическую координацию, соединяясь с четырьмя [SiO₄]-тетраэдрами, O²⁻ и S²⁻; четвертый Ca²⁺ координирован 8 атомами O [2]. Изоструктурен с искусственным минералом алинитом Ca₂₁Mg(Si_{0,75}Al_{0,25}O₄)₈O₄Cl₂ [3], от которого отличается меньшим содержанием Mg и Al, так как присутствие S²⁻ в тех же позициях, что и Cl⁻ в алините, не требует компенсации отрицательных зарядов.

Межатомные расстояния (в Å) [2]: Si–O(1) = 1,631; Si–O(2) = 1,638; Ca(1)–O(1) = 2,301; Ca(1)–O(2) = 2,413; Ca(1)–O(4) = 2,723; Ca(1)–S = 3,079; Ca(2)–O(1) = 2,296; Ca(2)–O(2) = 2,370; Ca(2)–O(3) = 2,554; Ca(2)–S = 3,270; Ca(3)–O(2) = 2,352; Ca(3)–O(3) = 2,231; Ca(3)–O(4) = 2,175; Ca(4)–O(1)=2,511.

Кристаллы изометрические, с доминирующими простыми формами (110) и (101) и подчиненными (100) и (001) [1].

Физ. св. Изл. раковистый. Тв. -5. Уд.в. 3,03 (вычисл. 3,23). Цв. темно-бурый, иногда зеленовато-бурый или буровато-зеленый. Бл. смоляной (на свежей поверхности).

Микр. Светло-бурый. Одноосный (+). n_o = 1,715, n_e = 1,728,

Хим. Теор. состав Ca₂₂(SiO₄)₈O₄S₂: CaO - 70.644: SiO₂ - 27.524: S²⁻ - 3.672: -0 = S = 1.84

Анализ (микрозонл., анал. Абрахам) [1]: MgO – 0.9; CaO – 67.6; FeO – 0.8; Al-O₃ - 0.4; SiO₂ - 27,3; S² - 2.7; -O = S - 1.4; CVMMa 98.3.

Эмпирическая формула: (Ca21 2Mg0 4Fe0 2Al01)21 9Si8O 36.5S1.5. Формулы по У Флейшеру (1990) и по Е.И. Семенову (1991) соответственно: Са₁₁(SiO₄)₄O₂S и J₁₁Si₄O₁₈S.

Лиагн. исп. Растворяется в разбавленной HCl со слабым выделением газа H₂S.

Нахожл. Опин из главных составляющих темных частей известковистого менолита, захваченного лейшит-тефритовой давой превнего вулкана Беллерберг твертичное вулканическое поле восточной части Эйфеля, Германия). Тесно спастается с майенитом, браунмиллеритом, ларнитом, портландитом и эттрингитом, В пороле присутствует также акцессорный пирротин, который, вероятно, был

точником серы при образовании джасмундита.

Искусств. Образуется в цементе при добавлении в исходную шихту солей -сры [3].

Практ. знач. Важный компонент низкотемпературных, энергосберегающих - ментов.

Межплоскостные расстояния джасмундята из Беллерберга (Германня) [2]
СuК _α -излучение, λ = 1,5407 Å. Камера Гинье	

<u>م</u>	1	<i>d</i> (Å)	hkl	1	d(Å)	hkl	1	<i>d</i> (Å)
010	1	7,396	051	6	2,036	163	3	1,4840
57 1	1	6,741	143	16	1,920	071	1	1,4734
¥22	3	4,405	251	1	1,896	006	3	1,4690
••	8	4,128	224	4	1,892	145	2	1,4477
-12	1	3,367	440	34	1,849	453	3	1,4278
-	6	3,306	350	2	1,795	271	7	1,4186
- 11	42	3,242	060	6	1,743	444	8ш	1,4168
222 013	100	2.832	015	3	1,735	552	2	1,4029
24	17	2,756	442; 053	17ш	1,706	354	2	1,3914
12	12	2,645	442; 053	17ш	1,704	462	1	1,3782
ъr	35	2,615	044	13	1,6844	0,64,226	2ш	1,3676
. 23	6	2,487	260	3	1,6542	345	2	1,3489
-1	6	2,437	334	2	1,6433	073	Ιш	1,3220
:40	14	2,339	062,253	10	1,6205	372	2	1,3121
₩1.033	14	2,247	244	4	1,6038	080	5	1,3085
14	9	2,202	035	3	1,5732	471	2	1,2851
112	4	2,151	262	21	1,5491	280	1	1,2702
114	6	2,111	235	6	1,5067	082	1	1,2551
242		2,068						
	8ш							
713		2.064						

713

Литература

Hentschel G., Dent Glasser L.S., Lee C.K. // Neues Jb. Miner. Monatsh. 1983. H. 8. S. 337.

Dent Glasser L.S., Lee C.K. // Acta crystallogr. B. 1981. Vol. 37, pt 4. P. 803.

Ильинец А.М., Бикбау М.Я., Нудельман Б.И., Болотина Н.Б. // Кристаллография. 1989. Т. 34, № 1. C. 71.

СТРУКТУРА ТИПА АПАТИТА

Минералы, относящиеся к этому структурному типу, характеризуются общей формулой $A_{10}(XO_4)_6Z_2$, где A – Ca; X – P, S, Si, C; Z – F, OH и Cl [1]. Выделяются два изоморфных ряда: 1) в позиции X идет замещение P на S и Si по уравнению $SiO_4^{4-} + SO_4^{2-} = 2PO_4^{3-}$, конечными членами являются с одной стороны фосфат кальция (апатит), а с другой – сульфат-силикат кальция (эллестадит), углерод входит в данную позицию в небольших количествах; 2) в позиции Z изоморфизм идет между F, OH и Cl с тремя конечными членами для апатита (фторапатит, гидроксилапатит и хлорапатит) и эллестадита (флюорэллестадит, гидроксилэллестадит и хлорэллестадит). Учитывая это, общую формулу изоморфного ряда апатит–эллестадит можно записать следующим образом: $Ca_{10}(SiO_4)_{3-x}(SO_4)_{3-x}(OH, F, Cl)_2$, где x варьирует от 0 (эллестадит) до 3 (апатит) [1]. Минералы ряда имеют структуру апатита (гекс. с.), в которой P, S и Si находятся в кислородных тетраэдрах, а позиции Ca расположены на тройных осях [2]. Существует линейная зависимость между параметрами элементарной ячейки и содержанием P: с уменьшением содержания P a_0 и c_0 увеличиваются [1].

Увеличение содержания карбонат-иона в позиции X уменьшает a_0 (на каждые 1,66 мас.% CO₃ – 0,01 Å) и совсем немного c_0 [1]. Возрастание содержания Cl ведет к уменьшению c_0 и росту a_0 , а повышение количества OH – к увеличению обоих параметров [2].

Минералы с наименьшим содержанием фосфора относятся к группе эллестадита и характеризуются следующими атомными соотношениями: Si:S:P = = 28:26:4 и OH:F:Cl = 5:3:5 [1]. Встречаются в скарнах и терриконах угольных шахт.

Литература

1. Rouse C.R., Dunn P.J. // Amer. Miner. 1982. Vol. 67, N1/2. P. 90. 2. McConnell D. // Ibid. 1937. Vol. 22, N 9. P. 977.

ГРУППА ЭЛЛЕСТАДИТА

	Сингония	<i>a</i> 0	c_0	Уд.в.
Флюорэллестадит Ca ₁₀ [SiO ₄] ₃ (SO ₄) ₃ F ₂	Гекс.	9,485	6,916	3,03
Гидроксилэллестадит Ca ₁₀ [SiO ₄] ₃ (SO ₄) ₃ (OH,		9,491	6,921	3,018
C1, F) ₂				
Хлорэллестадит Ca ₁₀ [SiO ₄] ₃ (SO ₄) ₃ (Cl, OH, F) ₂	"	9,53	6,91	3,068
Маттхеддлеит Pb ₂₀ [SiO ₄] ₇ (SO ₄) ₄ Cl ₄	,,	9,963	7,464	6,96

Флюорэллестадит Fluorellestadite

 $Ca_{10}[SiO_4]_3(SO_4)_3F_2$

Назван в честь американского исследователя Р.Б. Эллестада, по химическому составу и аналогни с синтетической фазой [1].

Характ. выдел. [1]. Кристаллы (длиной до 3 мм) и мелкозернистые агрегаты.

Структ. и морф. крист. Гекс. с. $P6_3/m$. $a_0 = 9,485$, $c_0 = 6,916$ Å; $c_0 : a_0 = 0,7292$; Z = 1 [1].

Изоструктурен с апатитом [2].

Кристаллы – гексагональные призмы с плохо выраженными конечными гранями [1].

Физ. са. [1]. Сп. отсутствует. Изл. раковистый. Тв. 4,5. Уд.в. 3,03 (вычисл. 3,09). Цв. от ярко-голубого (иногда синего) до светло-голубовато-зеленого. Тонкие иглы бесцветны. Черта белая со слабым голубоватым оттенком. Бл. от стеклянного до жирноватого. Прозрачен (кристаллы), просвечивает (мелкозернистые arperaты).

Плавкость около 5 (в острых краях сплавляется в фарфоровидную массу). После остывания цвет неоплавленных частей становится снова ярко-голубым.

В ультрафиолетовых лучах не люминесцирует.

Микр. [1]. Бесцветный. Одноосный (-). Погасание прямое, удлинение (-). $n_g = 1,638$, $n_p = 1,632$, $n_g - n_p = 0,006$.

Хим. [1]. Состав (анал. Баженова): Na₂O – 0,33; K₂O – 0,01; MgO – 1,38; CaO – 55,00; MnO – 0,18; Al₂O₃ – 1,84; Fe₂O₃ – 0,11; CO₂ – 0,66; SiO₂ – 15,30; P₂O₅ – 1,31; SO₃ – 20,75; H₂O⁺ – 0,30; F – 3,60; сумма 100,76; –O=F₂–1,52; сумма 99,24. Присутствуют примеси: MgO (периклаз), Al₂O₃ и 3% CaO (трехкальциевый алюминат), H₂O⁺ и 1% CaO (портландит), Fe₂O₃ (сребродольскит), Na₂O (алюминаты).

Эмпирическая формула (на сумму S + Si + P + C = 6,00): $(Ca_{9,97}Mn_{0,03})_{10,00} \times \times [(SiO_4)_{2,79}(SO_4)_{2,84}(PO_4)_{0,20}(CO_3)_{0,17}]_{6,00}F_{2,08}$. Идеальная формула: $Ca_{10}(SiO_4)_3 \times \times (SO_4)_3F_2$.

Диагн. исп. [1]. В HCl разлагается с выделением скелета кремнезема (форма исходного кусочка сохраняется) и очень слабо вскипает (CO₂). Дает положительные реакции на SO_4^{2-} и фосфор. Окрашивает пламя в красноватый цвет (Ca). В закрытой трубке налетов не выделяет.

Повед. при нагр. [1]. На кривых ДТА и ДТГ термические эффекты не проявились. ТГ-кривая имеет вид почти прямой: потеря массы при нагревании до 1000° составляет около 1%.

Нахожд. [1]. Обнаружен в терриконах угольных шахт г. Копейска (Челябинский угольный бассейн, Южный Урал). Находится в центральных частях обожнных кусков окаменелого дерева в виде удлиненных пропластков (до 5–8 см в длину и до 2–3 мм в толщину) среди землистой массы, состоящей в основном из продуктов послеобжигового изменения извести (портландит, кальцит, гидрокарбонаты), периклаза, брусита, алюминатов кальция и натрия и других дисперсных

продуктов с редкими включениями сребродольскита, магнезиоферрита, гематита, спуррита, ларнита и др. Игольчатые и длиннопризматические кристаллы встречаются на границе центральной части и внешней ангидритовой оболочки на стенках полостей. Является типичным минералом, возникающим при обжиге окаменелого дерева в очаах самовозгорания углесодержащих пород терриконов.

Искусств. [3]. Получен путем спекания компонентов при 1200° по травнению 3 $Ca_2SiO_4 + 3 CaSO_4 + - CaF_2 = Ca_{10}Si_3S_3O_{24}F_2$.

Межплоскостные расстояния флюорэллестадита с Южного Урала [1] FeK_n-излучение, D = 57,3 мм

hkl	I	d (Å)	hki	1	d (Å)
111	1	3,90	312	5	1,904
002	5	3,46	213	8	1,852
102	2	3,19	321	5	1,819
210	4	3,11	410	5	1,792
211	10	2,84	402	6	1,766
112	6	2,80	004	7	1,729
300	9	2.74	322	2	1,654
202	5	2,65	502	5	1,486
310	6	2,28	324	6	1,463
311	3	2.16	511	1	1,445
222	7	1,954			-

Литература

- 1. Чесноков Б.В., Баженова Л.Ф., Бушмакин А.Ф. // Зап. ВМО. 1987. Ч. 116, вып. 6. С. 743.
- 2. McConnell D. // Amer. Miner. 1937. Vol. 22, № 9. P. 977.
- 3. Dihn P., Klement R. //Ztschr. Electroch. angew. phys. Chem. 1942. Bd. 48. S. 331.

Гидроксилэллестадит Hydroxylellestadite Ca₁₀[SiO₄]₃(SO₄)₃(OH, Cl, F)₂

Назван по химическому составу [1].

Характ. выдел. [1]. Крупные ксеноморфные выделения (весом до 100 кг) и спайные выколки по оси с (до 2 см).

Структ. и морф. крист. Гекс. с. $C_{6h}^2 - P6_3/m$. $a_0 = 9,491$, $c_0 = 6,921$ Å; $a_0: c_0 = 1:$: 0,729; V = 540 Å³ [1]. Анализ одного кристалла [2] показал: мон. с. $P2_1/m$, $a_0 = 9,476$, $b_0 = 9,508$, $c_0 = 6,919$ Å, $\gamma = 119,53^\circ$. Предполагалось [1] существование кристаллов гидроксилэллестадита с разной сингонией (по аналогии с гидроксилапатитом) [3], что подтвердилось ренгеноструктурным исследованием низкосимметричного эллестадита состава Ca₁₀(Si_{3,14}S_{2,94}C_{0,08}P_{0,02})_{6.18}O₂₄(OH_{1,12}Cl_{0,316}F_{0,06})_{1.50}: монокл. с. $P2_1$; $a_0 = 9,526$, $b_0 = 9,506$, $c_0 = 6,922$ Å; $\gamma = 119,99^\circ$; V = 542,89 Å³ [4]. Понижение симметрии от $P2_1/m$ до $P2_1$ является следствием распространения анионов необычного состава в кристаллической структуре: тетраэдры [SiO₄]⁴⁻ и (SO₄)²⁻ распределены статистически по трем позициям T с малой степенью упорядоченности, катионы Ca²⁺ – в семи- и девятивершинниках, вершины которых занимают O, OH⁻ и Cl⁻; анионы Cl⁻ находятся в каналах.

Средние межатомные расстояния (в Å): Т-О = 1,538, 1,554 и 1,538; Са-О = =2,480-2,584.

Физ. св. [1]. Сп. вдоль оси с совершенная. Тв. 4,5. Уд.в. 3,018 (вычисл. 3,080). Цв. бледно-пурпурный. Бл. стеклянный. Просвечивает.

Полосы поглощения ИК-спектров (в см⁻¹): 3600, 1470, 1420, 1140, 920, 845, 640 и 610.

Микр. [1]. Одноосный (-). $n_o = 1,654, n_e = 1,65$.

Хим. [1]. Анализ (Чичибу, Япония, анал. Накао, Нагашиме): Na₂O – 0,34; K₂O – 0,07; MgO – сл.; CaO – 54,51; MnO – 0,04; SrO – 0,28; Al₂O₃ – сл.; Fe₂O₃ – 0,21; SiO₂ – 17,30; CO₂ – 1,65; P₂O₅ – 0,66; SO₃ – 21,56; H₂O⁺ – 2,04; H₂O⁻ – 0,72; F – 0,28; Cl – 0,91; сумма 100,57 – 0,32 = 100,25.

Эмпирическая формула (на сумму Si + S + C + P = 6,00): (Ca_{9,656}Na_{0,109}Sr_{0,027}× \times Fe_{0,026}K_{0,015}Mn_{0,001}) (SiO₄)_{2,860} (SO₄)_{2,675} (CO₃OH)_{0,373} (PO₄)_{0,092} (OH)_{1,877}Cl_{0,255}F_{0,146}× \times O_{24,556}.

Повед. при иагр. [1]. На кривой ДТА проявляются эндотермические понижения при 160, 181, 800 и 1180°. При нагревании от 0 до 200° теряет в весе 0,7%, а от 600 до 1300° – 3,42%. Прокаливание при 1200° в течение 1 ч приводит к появлению на рентгенограмме нескольких сильных отражений ангидрита и ряда неидентифицированных рефлексов.

Нахожд. [1]. Встречен в виде крупных выделений в дорудных скарнах рудного проявления Дошинкубо месторождения Чичибу (Япония) в ассоциации с диопсидом, волластонитом, ксантофиллитом, везувианом и кальцитом. На месторождении гранат-волластонитовых скарнов Аримао-Норте, пров. Сьенфуэгос (Куба), в одной из буровых скважин в интервале от 35 до 100 м вскрыта практически моно-

минеральная эллестадитовая пороза (участки керна длиной до нескольких метров) [5]. Месторождение расположено в западной части кристаллического массива Эскамбрай и приурочено к зоне контакта мраморно-сланцевой толщи пород с гранодиоритами. Эллестадитовая порода массивная, мелкозернистая размер зерен до 1,0–1,5 мм), серая розоватым оттенком с небольшой 2–4%) примесью граната (гроссугяр-андрадит), пирита и слоистого силиката (стильпномелан?) (устное сообщение М.А. Лицарева).

Искусств. [6]. Получен при вызорживании смеси Ca_2SiO_4 , $CaSO_4$ и CaF_2 в печи при повышенном завлении водяного пара, при этом F полностью замещается гидрокснлом.

Межплоскостные расстояния гидроксилэллестадита из Чичибу (Япоиия) [1]

 CuK_{α} -излучение, Ni-фильтр. Дифрактометр

hkl	l	<i>d</i> (Å)	hki	1	<i>d</i> (Å)
100	8	8,230	113	3	2,075
101	5	5,267	203	3	2,013
110	3	4,744	222	16	1,960
200	5	4,113	312	5	1,905
111	7	3,919	230	3	1,886
002	40	3,462	213	43	1,853
102	4	3,187	321	5	1,822
210	9	3,110	410	5	1,792
211	100	2,839	402	12	1,767
112	44	2,801	004	14	1,730
300	60	2,739	322	5	1,656
202	45	2,655	133	3	1,621
301	3	2,554	501	1	1,600
212	4	2,317	214	5	1,503
310	10	2,282	502	20	1,484
221	1	2,242	324	10	1,464
311	5	2,165	511	2	1,444

Литература

- 1. Harada K., Nagashima K., Nakao K., Kato A. // Amer. Miner. 1971. Vol. 56, N 9/10. P. 1507.
- 2 Sudarsanan K. // Acta crystallogr. B. 1980. Vol. 36, pt 12. P. 1636.
- 3. Rouse C.R., Dunn P.J. // Amer. Miner. 1982. Vol. 67, N 1/2. P. 90.
- ∴ Органова Н.И., Расцветаева Р.К., Кузьмина О.В., Арапова Г.А., Лицарев М.А., Финько В.И. II Кристаллография. 1994. Т. 39, N 2. C. 278.
- 5. Задов А.Е., Чуканов Н.В., Органова Н.И., Белаковский Д.И., Федоров А.В., Карташов П.М., Кузьмина О.В., Лицарев М.А., Мохов А.В., Лоскутов А.Б., Финько В.И. // Зап. ВМО. 1995. Ч. 124, вып. 2. С. 36.
- 6. Dihn P., Klement R. // Ztschr. Electroch. angew. phys. Chem. 1942. Bd. 48. S. 331.

Хлорэллестадит Chlorellestadite Ca₁₀[SiO₄]₃(SO₄)₃(Cl, OH, F)₂

Назван в честь исследователя Р.Б. Эллестада (Университет шт. Миннесота, США) и по томическому составу (первоначально назывался эллестадит) [1].

Характ. выдел. [1]. Нитевидные кристаллы.

Структ. и морф. крист. Гекс. с. $C_{6h}^2 - P6_3/m$. $a_0 = 9,53$, $c_0 = 6,91$ [1] и 6,914 Å [2]; $a_0 = 0,7251$ [1] и 0,7255 [2]; V = 544 [1] и 543,8 Å³ [2].

Физ. св. [1]. Сп. несовершенная. Хрупок. Тв. 4,5. Уд.в. 3,068 (вычисл. 3,046). Цв. бледно-розовый.

Микр. [1]. Одноосный (-). $n_o = 1,655, n_e = 1,650.$

Хим. Анализы:

	I	2		1	2
CaO	55,18	55,7	CO ₂	0,61	-
MgO	0,47	-	SiO ₂	17,31	16,8
MnO	0,01	-	P ₂ O ₅	3.06	3,2
Fe_2O_3	0,22		SO3	20,69	21,2
Al ₂ O3	0.13				

	1	2		1	2
H ₂ O⁺	0.45	_	Cl	1,64	1,7
	0,08*		Сумма	100,52	98,4
H ₂ O	0,10	-	$-0 = F_2, Cl$	0,61	
F	0.57	0,3	Сумма	99,91	
* Вы	делена при	300°.			
1,2 -	Крестмор	, Калифор	ония, США: 1 – а	нал. Элл	естад [1]

2 – микрозонд. [2].

Эмпирическая формула, полученная из ан. 1, пересчитанная на 100% после вычитания примесей Са, Mg, Fe, и Al: $[Ca_{10,01}Mg_{0,06}]_{10,07}[(SiO_4)_{2,85}(SO_4)_{2,64}(PO_4)_{0,44} \times (CO_3)_{0,14}]_{6,07}[(OH)_{0,51}F_{0,31}Cl_{0,47}]_{1,29}$ [1].

Отл. [1]. От вилкеита отличается по содержанию P₂O₅ (21% в вилкеите и до 3% в хлорэллестадите).

Нахожд. Обнаружен на месторождении Крестмор (округ Риверсайд, Калифорния, США) в скарновых породах в ассоциации с вилкеитом, везувианом, кальцитом, волластонитом, диопсидом, окенитом и др. [1].

Межплоскостные расстояния хлорэллестадита из Калифорнии (США) [1]

		FeK _α -и	злучение		
hkl	1	d(Å)	hkl	1	<i>d</i> (Å)
002	3	3,452	222	6	1,961
120;210	2	3,118	132;312	2	1,909
300β	0,5	3,034	123;213	6	1,857
202β	0,5	2,920	231;321	3	1,827
121;211	>10	2,845	140;410	3	1.802
112	4	2,798	402	3	1,771
300	6	2,750	004	3	1,727
202	3	2,647	232;322	1	1.661
301	0,5	2,557	240,420	0,5	1.560
130β	0,5	2,523	331	0.5	1.548
122;212	0,5	2,315	124;214	0,5	1.511
130;310	3	2,289	502;304	2	1.490
222β	1	2,161	233;323	3	1.464
113	0,5	2,074	151:511	2	1.451
123β	0,5	2,046			
231β	0,5	2,013			

Литература

1. McConnell D. // Amer. Miner. 1937. Vol. 22, N 9. P. 977.

2. Rouse C R., Dunn P.J. // Ibid. 1982. Vol. 67, N 1/2. P. 90.

Маттхедлеит Mattheddleite Pb₂₀[SiO₄]₇(SO₄)₄Cl₄

Назван в память выдающегося шотландского минералога Маттью Форстера Хеддле [1].

Характ. выдел. Розетковидные агрегаты (до 0,2 мм в диаметре) мелких кристаллов ($100 \times 10-20$ мкм).

Структ. и морф. крист. Гекс. с. $P6_3/m$. $a_0 = 9,963$, $c_0 = 7,464$ Å; c : a = 0,749; V = 642 Å³.

Кристаллы – гексагональные призмы (сканирующий электронный микроскоп)

Физ. св. Уд. в. 6,96 (вычисл.). Цв. кремово-белый. Черта белая. Растирается в белый порошок. Бл. алмазный.

ИК-спектр сходен с таковым гидроксилэллестадита.

В ультрафиолетовом свете (в коротковолновой области) флюоресцирует темножелтым.

Микр. Бесцветный. Во многих кристаллах наблюдается внутренняя перистая структура. Одноосный (-). $n_o = 2,017$, $n_e = 1,999$; $n_o - n_e = 0,018$.

Хим. Теор. состав: PbO – 84,6; SiO₂ – 7,9; SO₃ – 6,0; Cl – 2,7.

Анализы (микрозонд.):

	1	2	3*
РьО	83,5	83,7	83,60
SiO ₂	7,3	8,0	7,65
SO3	6,1	5,9	6,00
Cl	2,5	2,3	2,40
Сумма	99,4	99,9	99,65
$-O = Cl_2$	0,6	0,5	0,54
Сумма	98,8	99,4	99,65

* Среднее из ан. 1,2.

Эмпирическая формула на основе 24 (O + Cl) (ан. 3): $Pb_{10,25}[SiO_4]_{3,46}(SO_4)_{2,04} \times Cl_{1.85}$.

Нахожд. В мелких пустотах в кварце в музейных образцах из Лидхиллса Шотландия) в ассоциации с вторичными минералами – каледонитом, церусситом, шоторфитом, лидхиллитом, сузаннитом и макферсонитом.

Межплоскостные расстояния маттхедалента из Лидхиллса (Шотландия) СиК_о-излучение, D = 114,6 мм

st.	1	d (Å)	hLl	1	d(Å)	hkl	1	d (Å)
1 10	10	4,99	302	5	2,285	501;412	5	1,682
_00 £	40	4,31	113	5	2,236	420	Юш	1,627
11	40	4,16	400	5	2,154	304	15	1,570
002,201	5	3,71	222	20	2,076	323;510	15	1,549
-	3	3,57	312	15	2,019	332;511	15	1,517
102	20	3,44	320; 213	15	1,977		5	1,359
210	30	3,26	321	15	1,916		10	1,329
112;211	100	3,004	004;402	20	1,876		10	1,296
300	40	2,880	322;114	2	1,741			

Примечание. Дифрактограмма сходна с таковой синтетического Рb-гидроксилапатита.

Литература

Livingstone A., Ryback G., Fejer E.E., Stanley C.J. // Scott. J. Geol. 1987. Vol. 23, pt 1. P. 1.

СТРУКТУРА ТИПА ДАТОЛИТА

ГРУППА ДАТОЛИТА

В группе описаны ранее (т. III, вып. 1, с. 371): датолит, бакерит, гомилит, гадолинит и гаррельсит (отнесен условно).

	Сингония	<i>a</i> 0	b_0	<i>с</i> 0	β	Уд. в.
Минасжерайсит-(Y) Y ₂ CaBe ₂ [SiO ₄] ₂ O ₂	Монокл.	9,833	7,562	4,702	90,46°	4,25 4,90 (вычисл.)
Хинганит-(Се) (Се, Y, Nd)(Ц, Fe ²⁺)Be ₂ [SiO ₄] ₂ × ×(O, OH) ₂		9,996	7,705	4,792	90,06	(<i>obi inciny</i> _
Хинганит-(Yb) (Yb, Y) ₂ Be ₂ [SiO ₄] ₂ (OH) ₂	•	9.888	7.607	4,740	90,45	4,83
Хинганит-(Y) (Y, Yb, Er) ₂ Be ₂ [SiO ₄] ₂ (OH) ₂	••	9,888	7,607	4,740	90,45	-

Минасжерайсит изоструктурен гадолиниту. Структура и состав хинганитов близки таковым гадолинита $Y_2Fe^{2+}Be_2[SiO_4]_2O_2$. В хинганите-(Y) широко проявлен изовалентный изоморфизм $Y^{3+} \rightarrow TR^{3+}$, идущий вплоть до образования самостоятельных минеральных видов: хинганита-(Yb) и хинганита-(Ce). Максимальное вхождение легких лантаноидов наблюдается в железистых разновидностях и тяжелых – в маложелезистых. Изоморфная примесь Fe, видимо, способствует образованию хинганита-(Ce), о чем свидетельствует нахождение на месторождении Тахара (Япония) железистые разности хинганита-(Y) повышенных количеств TR_{Ce} .

Минасжерайсит-(Y) Minasgeraisite-(Y) $Y_2CaBe_2[SiO_4]_2O_2$

Назван по месту находки в шт. Минас-Жерайс [1]. Образует изоморфиый ряд с гадолинитом: $Y_2Fe^{2+}Be_2[SiO_4]_2O_2 \rightarrow Y_2CaBe_2[SiO_4]_2O_2$.

Синон. Минасжерансит - minasgeraisite (Семенов, 1991).

Характ. выдел. Микрокристаллы (до 3-5 мкм) и их розетко- и сноповидные сростки (от 0,2 до 1,0 мм в диаметре).

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1/a$. $a_0 = 9,833$, $b_0 = 7,562$, $c_0 = 4,702$ Å; $\beta = 90,46^\circ$; $a_0 : b_0 : c_0 = 1,3003 : 1 : 0,6217$; V = 349,60 Å³; Z = 2 (параметры рассчитаны по порошкограмме).

Предположительно значительная часть Са занимает позицию Fe²⁺ в структуре гадолинита [1].

Физ. св. Сп. совершенная по (100) и хорошая по (001). Тв. 6–7. Уд.в. выше 4,25 (вычисл. 4,90). Цв. бледно-лиловый (краевые части розеток) до лилово-пурпурного (в ядрах розсток). Изменение окраски от светлой в краевой части до темной в ядрах предположительно связывается с замещением Са на Mn²⁺. Черта бледно-пурпурная. Бл. матовый до полустеклянного. Не люминесцирует. Не магнитен.

Микр. Отчетливо плеохроирует: по Ng – лилово-пурпурный, по Nm – сероватожелтый, по Np – бесцветный. Двуосный (+). $n_g = 1,786$, $n_m = 1,754$, $n_p = 1,740$; $2V = 68^\circ$. Дисперсия очень слабая, r > v. Характерна мозаичная текстура.

Хим. Теор. состав: CaO - 12,40; BeO - 11,07; Y₂O₃ - 49,95; SiO₂ - 26,58.

Ан	ализы:							
	1	2		1	2		1	2
\a_ 0	<0,1	<0,1	Ce ₂ O ₃	0,20	0.0	Tm ₂ O ₃	0,75	0.6
BeO	7.8	7,8	Pr ₂ O ₃	0,13	0,1	Yb ₂ O ₃	7,86	5,9
MgO	0,61	0,6	Nd ₂ O ₃	0,50	0,2	Lu ₂ O3	1,71	1,5
CaO	11,47	8,1	Sm ₂ O ₃	0,26	0,1	Y ₂ O ₃	16,38	11,3
MnO	2,83	3,5	Eu ₂ O3	0,00	Не оби.	SiO ₂	26,37	24,5
FeO	0,69	0,7	Gd ₂ O ₃	0,32	0,2	TiO ₂	0,02	0,0
ZnO	0,35	0,3	Tb ₂ O ₃	0,23	0.1	ZrO ₂	<0,02	0,0
Ou	0,14	0,1	Dy ₂ O ₃	1,26	1,3	Al ₂ O ₃	0,32	0,0
B ₂ O ₃	1,45	1,5	Ho ₂ O ₃	0,37	0,3	P ₂ O ₅	1,21	1,2
B ₂ O ₃	14,7	28,5	Er ₂ O ₃	1,94	1,3	Сумма	100,24*	100,0*
La O1	0.25	0.2						

* В оригинале 99,8 и 99,9 соответственно.

I – метод индуктивно-связанной плазмы (ИСП). навеска 10,6 мг. Ві₂O₃ определен с помощью втомно-абсорбционной спектроскопии, сумма TR₂O₃ – 32,2 мас.%; 2 – участок, обогащенный Ві; FeO, MgO, TiO₂. P₂O₅, BeO, CuO, ZnO, ZrO, Dy₂O₃ – мегодом ИСП, остальные элементы – микрозонд.

Содержание Bi_2O_3 , специально определенное разными методами, варьирует от и до 28,5 мас.%. Предполагается существование Bi-содержащего члена группы гадолинита. Краевые зоны радиальных сноповидных образований богаче Ca (до 12,5 мас.% CaO) и TR₂O₃ (до 35,2 мас.%) и беднее Mn (2,6 мас.% MnO) по сравнению с црами, содержащими больше Mn (3,5 мас.% MnO) и Bi (28,5 мас.% Bi_2O_5) и есньше Ca (8,1 мас.% CaO) и TR (23,1 мас.% TR₂O₃). Химическая зональность совпадает с зональной окраской сноповидных выделений.

Кристаллохимическая формула (рассчитана на 10 атомов О): ($Y_{0,72}TR_{0,41} \times$

- $Ca_{0,56}Bi_{0,31})_{2,00}$ ($Ca_{0,45}Mn_{0,20}Mg_{0,08}Fe_{0,05}^{2+}Zn_{0,02}Cu_{0,01}\Box_{0,19})_{1,00}$ ($Be_{1,55}Si_{0,24}B_{0,21})_{2,00}$ ×
- · (Si1,95P0,08)2,03O10.

Диаги. исп. В горячих H₂SO₄ и HCl растворяется и желатинирует.

Нахожд. В незначительных количествах обнаружен в Жагуараку, шт. Минас-Аерайс (Бразилия), в зоне замещения бериллсодержащего гранитного пегматита. Срастается с мусковитом, миларитом, альбитом, кварцем, редко с другими минерачами. В качестве акцессорных минералов отмечаются небесно-голубой эльбаит, пигит, церуссит, пироморфит, анатаз. Образовался в позднюю стадию формирования в тегматита.

Отл. От гадолинита отличается по составу и физическим свойствам.

Межплоскостные	расстояния минасжерайсита-(Y) из Бразилия [1]
	CuK_{α} -излучение, $D = 114$ мм

hkl	1	d (Å)	hkl	1	d (Å)	hkl	1	d (Å)
110	30	5,99	002	15	2,350	422	15	1,555
001	20	4,70	012	30	2,250	620	10	1,504
210	10	4,12	112	30	2,190	213	10	1,468
īn	30	3.71	411	7	2,100	621	30	1,435
120	15	3.53	420	7	2,060	223	10	1,392
201	30	3.41	231	20	2,030	4 03	20	1,326
211	100	3.11	122	25	1,960	052;622	20	1,272
220:310	15	3.000	222	30	1.855	160	10	1,250
021	15	2,945	511	35	1,768	712	15	1,195

hkl	1	d (Å)	hkl	1	d (Å)	hkl	1	d (Å)
121	100	2,830	132	10	1,695	811	15	1,177
311	90	2,540	4 12	30	1,665			
400	10	2,460	232	30	1,625			

Литература

1. Foord E., Gaines R., Crock J., Simmons W., Barbosa C. // Amer. Miner. 1986, Vol. 71, N 3/4, P. 603.

Хинганит-(Ce) Hingganite-(Ce)

(Ce. Y. Nd)([]. Fe²⁺)Be₂[SiO₄]₂(O, OH)₂

Назван согласно принятой КНМ ММА классификации редкоземельных минералов [1]. Синон. Хинганит цериевый [1].

Характ. выдел. Кристаллы (до 5 мм), отдельные зоны (1-10 мкм) в зональных кристаллах (до 12 мм) гадолинита.

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1/c$. $a_0 = 9,996$, $b_0 = 7,705$, $c_0 =$ = 4,792 Å; β = 90,06°; $a_0: b_0: c_0$ = 1,2973 : 1 : 0,6219 [1]. Кристаллы короткопризматические, уплощенные.

Физ. св. Сп. отсутствует. Цв. светло- или красновато-коричневый. Прозрачен. Хим. Теор. состав Ce₂Be₂[SiO₄]₂(O, OH)₂: BeO - 9,69; Ce₂O₃ - 63,55; SiO₂ -23.27; H₂O - 3.49.

Анализ (микрозонд.) хинганита-(Се) из Японии [1]: ВеО – 9,27 (расч.): СаО – 0,39; FeO = 5,65; $Y_2O_3 = 10.91$; La₂O₃ = 3,40; Ce₂O₃ = 16,77; Pr₂O₃ = 3,50; Nd₂O₃ = -9,79; $Sm_2O_3 - 4,70$; $Gd_2O_3 - 4,18$; $Tb_2O_3 - 0,50$; $Dy_2O_3 - 3,28$; $Ho_2O_3 - 3,28$; $Er_2O_3 - 3,28$; Er_2 1,84; Yb₂O₃ - 1,02; Lu₂O₃ - 0,30; SiO₂ - 33,27; H₂O - 1,90 (расч.); сумма 101,29.

Эмпирическая формула (при O + OH = 10): (Ce_{0.54}Y_{0.51}Nd_{0.31}Sm_{0.14}Gd_{0.12}La_{0.11} × $\times Pr_{0.11}Dy_{0.11}Er_{0.05}Ho_{0.03}Yb_{0.03}Tb_{0.01}Lu_{0.01})_{2.08}Fe^{2+}_{0.41}Be_{1.96}Si_{1.96}O_{8.87}(OH)_{1.13}$

Хинганит-(Се) из Монголии характеризуется, по данным неполного микрозондового анализа, большим преобладанием Се над Y (неопубликованные данные П.М. Карташова): ВеО – 10,06 (определен из отдельной навески); СаО – 1,23; $Al_2O_3 - 0.30$; FeO - 3.77; $Y_2O_3 - 2.39$: $La_2O_3 - 2.75$; $Ce_2O_3 - 11.98$; $Pr_2O_3 - 3.77$; $Nd_2O_3 - 11,32$; $Sm_2O_3 - 2,24$; $TiO_2 - 0,02$; $ZrO_2 - 0,05$; $ThO_2 - 0,77$; $H_2O - 1,93$.

Нахожд. Обнаружен в миароловых пегматитах в районе Тахара (преф. Гифу, Япония) [1] в друзовых полостях в ассоциации с кварцем, полевым шпатом, слюдой, касситеритом, стокезитом, флюоритом и хлоритом. В соседних участках в сходной обстановке встречен хинганит-(Ү). Наблюдался в щелочноземельном пегматите Татьяна на горе Улын-Хурэн (Монгольский Алтай) в виде микроскопических зон в богатых TR_{Ce} зонах кристаллов хинганита-(Y) (устное сообщение П.М. Карташова), описанных ранее как гадолинит-Ш [2].

Межплоскостные расстояния хинганита-(Се) из Тахара (Япония) [1]

СиКо-излучение. Камера Гинье

hkl	1	d (Å)	hkl	1	d (Å)	hkl	1	d (Å)
110	Cp.	6,086	221;221	Сильн,	2,565	ī22;122	Cp.	1, 99 0
200	Слаб.	5,003	320	Слаб.	2,555	312;312	Cp.	1,886
001	Сильн.	4,799	400	Слаб.	2,503	331	Оч.слаб.	1,878
210	Cp.	4,204	130	Слаб.	2,483	331	Оч.слаб.	1,868
TII	Cp.	3,761	002	Слаб.	2,395	240	Слаб.	1,795

hkl	ı	d (Å)	hkl	1	d (Å)	hkl	I	d (Å)
120	Ср.	3,595	410	Слаб.	2,381	041	Слаб.	1,777
201;201	Cp.	3,460	230	Слаб,	2,281	520	Слаб.	1,762
211;211	Оч.сильн.	3,159	031	Слаб.	2,261	4 12	Слаб.	1,689
310	Cp.	3,056	321;321;112	Слаб.	2,230	4 31;431	Слаб.	1,680
220	Cp.	3,041	4 01:401;131	Слаб	2,212	600	Слаб.	1,666
021	Cp.	3,002	411	Слаб.	2,128	521	Оч.слаб.	1,662
ī21	Сильн.	2,874	212;212	Оч.слаб.	2,085	232;232	Слаб.	1,652
121	Сильн.	2,870	231;231	Слаб.	2,057	003	Оч.слаб.	1,596
311:311	Сильн.	2,577						

V = (0) V = (0)

Литература

1. Miyawaki R., Nakai I., Nagashima K., Okamoto A., Isobe T. // J. Miner. Soc. Jap. 1987. Vol. 18, N 1. P. 17. 2. Карташов П.М., Волошин А.В., Пахомовский Я.А. // Зап. ВМО. 1993. Ч. 122, вып. 3. С. 66.

Хинганит-(Yb) Hingganite-(Yb) (Yb,Y)Be[SiO₄](OH)

Назван по составу. согласно принятой КНМ ММА классификации минералов [1]. Синон. Хинганит иттербиевый [1].

Характ. выдел. Сферические агрегаты (до 2 мм) тонкоигольчатых кристаллов (0,1-0,2 мм).

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1/a$. $a_0 = 9,888$, $b_0 = 7,607$, $c_0 = 4,740$ Å; $\beta = 90,45^{\circ}$; $a_0: b_0: c_0 = 1,300: 1:0,623: Z = 4$ [2].

Физ. св. Сп. отсутствует. Тв. 6,5–7. Уд.в. 4,83 (вычисл.). Бесцветный. Прозрачен. Бл. стеклянный. В ультрафиолетовом свете не люминесцирует. ИК-спектр близок гадолинитовому. Основная по интенсивности полоса поглощения с тремя максимумами (100, 980 и 907 см⁻¹) относится к валентным колебаниям связей Si–O, что свидетельствует об искажении формы тетраэдров SiO₄. Максимумы 795 и 770 см⁻¹ отвечают, вероятно, валентным колебаниям Ве–O, 495 и 430 см⁻¹ – деформационным колебаниям связей SiO₄ [1]. Максимумы при 3500 и 3450 см⁻¹ принадлежат валентным колебаниям гидроксила, 907 см⁻¹ – возможно, деформационным колебаниям групп OH.

Микр. Двуосный (+). Пл. опт. осей (010); $cNg = 23^{\circ}$, $aNp = 20^{\circ}$; $n_g = 1,760$, $n_m = 1,738$, $n_p = 1,725$; $n_g - n_p = 0,035$; $2V = 65^{\circ}$ [1].

Хим. Анализ (микрозонд., среднее из анализов нескольких зерен): CaO – 1,14; BeO – 10,90; Gd₂O₃ – 0,11; Tb₂O₃ – 0,05; Dy₂O₃ – 2,47; Ho₂O₃ – 1,03; Er₂O₃ – 8,22; Tm₂O₃ – 3,10; Yb₂O₃ – 34,07; Y₂O₃ – 8,56; Lu₂O₃ – 4,50; SiO₂ – 22,11; H₂O – 3,74 (по разности); сумма 100,00.

Эмпирическая формула (на 5 атомов О):

 $(Yb_{0.45}Y_{0.20}Er_{0.11}Lu_{0.06}Ca_{0.05}Tm_{0.04}Dy_{0.03}Ho_{0.01})_{0.95}Be_{1,13}Si_{0.96}O_{3.92}(OH)_{1.08}$ [1].

Нахожд. Обнаружен в амазонитовых пегматитах горы Плоской, Западные Кейвы, Кольский п-ов [1]. Образует сферические агрегаты тонкоигольчатых кристаллов, нарастающие на грани кристаллов плюмбомикролита [1] либо заключенные в гнездах белой гидрослюды среди фиолетового иттрофлюорита II генерации в тесной ассоциации с кейвиитом-(Yb) [2]. Является поздним минералом пегматитов, образующимся за счет переработки богатого Yb белого иттрофлюорита I генегации.

	Fe-излучение, <i>D</i> = 114,6 мм								
hkl	1	d (Å)	hki	1	d (Å)	hkl	1	d (Å)	
110	7	6,06	330	1	2,016	313	2	1,396	
20 0	2	4.96	122)			631	4	1,329	
001	6	4,76	122	8	1,977	052	2	1,282	
210	4	4,16	040	2	1,907	622	2	1,271	
111;111	6	3,74	312	5	1,878	160	1	1,259	
120	5	3,57	33 <u>1</u>	5	1,857	451	3	1,247	
201;201	6	3,45	430	6	1,776	50 3	1	1,239	
211;211	10	3,13	520	3	1,759	702	3	1,217	
310	4	3,03	402	2	1.706	632	2	1,197	
021	5	2,97	412	1	1,682	352	2	1,191	
121	10	2,85	412	5	1,665	004	2	1,185	
311	8	2,572	431	5	1,656	243	2	1,181	
311	8	2,542	521	5	1,641	722	2	1,152	
130	2	2,465	232	5	1,633	603	1	1,136	
002	4	2,378	42 <u>2</u>	2	1,567	124	1	1,125	
410	4	2,355	. 601	2	1,552	533	2	1,113	
230	5	2,262	620	2	1,511	46 <u>1</u>	1	1,098	
321	6	2,206	53ī	2	1,486	262	3	1,091	
202	1	2,133	051	4	1,447	911	2	1,063	
411	2	2,103	44 1	2	1,438	54 3	3	1,038	
231;231	1	2,038	242	1	1,418				
			522	2	1.409				

Межплоскостные расстояния хинганита-Yb с Кольского п-ова [1]

Литература

- 1. Волошин А.В., Пахомовский Я.А., Меньшиков Ю.П., Поваренных А.С., Матвиенко Е.Н., Якубович О.В. // ДАН СССР. 1983. Т. 270, № 5. С. 1188.
- 2. Волошин А.В., Пахомовский Я.А. Минералы и эволюция минералообразования в амазонитовых пегматитах Кольского п-ова. Л.: Наука, 1986. 168 с.

Хинганит-(Y) Hingganite-(Y) (Y,Yb,Er)₂Be₂[SiO₄]₂(OH)₂

Назван первоначально хинганитом по месту находки в хр. Большой Хинган (Китай) [1], позднее хинганитом-(Y), согласно принятой КНМ ММА классификации редкоземельных минералов. Ранее описывался как "минерал из Тувы" [2] или минерал Б (т. 11], вып. 1, с. 419).

Синон. Иберисилит – yberysilite [3], иттроцеберисит – yttroceberysite [4], ксинганит – xinganite [1], иттриевый хинганит [4].

Характ. выдел. Кристаллы (до 1 см), сноповидные, радиально-лучистые (до 2-3 мм в диаметре) и волокнистые агрегаты.

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1/a$.

	<i>a</i> ((Å)	b_0	<i>c</i> ₀	β	$a_0: b_0: c_0$	Z
1	9,888	7,607	4,740	90,45°	1,2998 : 1 : 0,6231	2
2	10,20	7.80	4,90	92	1,3076 : 1 : 0,6282	2
3	4,790	7,547	9,989	91	0,6346 : 1 : 1,3235	4
4	4,74	7,50	9,88	90	0,6320 : 1 : 1,3173	4
5	4,768	7,676	9,930	90,17	0,6211 : 1 : 1,2936	4
6	9,861	7,605	4,720	89,65	1,2966 : 1 : 0,6206	-

1 – Кольский п-ов [5]; 2 – Тува [2]; 3–5 – Большой Хинган: 3 – [1], 4 – [6], 5 – [7]; 6 – искусств. YBeSiO₄, V = 354,0 Å³ [8].

Фиг. 7. Кристаллическая структура хинганита-(Ү) (по Якубович и др.)

a – чередование слоев Y-восьмивершинников и Fe-октаэдров со слоями Be- и Si-тетраэдров вдоль оси *c*, *б* – проекция *xy*: на переднем плане (справа) – стенка Y-, Fe-полиэдров, глубже (слева) – Si-, Be-стенка состава [SiBeO₄(OH)]^{3–}

Для структуры (состав образца ($Y_{0,51}$ Yb_{0,23}TR_{0,13}Ca_{0,13})Fe_{0,07}Be[SiO₄](OH)) [5] характерны аналогичные гадолинитовым слои из связанных по общим ребрам Y-восьмивершинников и Fe-октаэдров, чередующиеся вдоль оси с со слоями из Beи Si-тетраэдров (фиг. 7,*a*). Октаэдры Fe заселены на 13% в отличие от полностью заселенных в структуре гадолинита. Компенсация возникающего отрицательного заряда достигается заменой 1 атома О на OH-группу. Слои другого типа представляют собой сетки из связанных через общие вершины Be- и Si-тетраэдров (см. фиг. 7,*6*). Хинганит-(Y) можно рассматривать также как слоистый бериллосиликат с анионным радикалом [BeSiO₄(OH)]³⁻.

Кристаллы короткопризматические.

Физ. св. Сп. отсутствует. Тв. около 6,9 [2], 5-5,5 [6]. Микротвердость 1100 кгс/мм² [2], 415-467 кгс/мм² [6]. Уд.в. 4,42-4,57 (вычисл. 4,45-4,72) [1, 2, 6, 7]. Цв. белый, бледно-розовый, светло-коричневый, бледно-желтый до зеленоватого. Прозрачен. Бл. стеклянный на гранях, жирный на сколах. В ультрафиолетовых лучах не люминесцирует. ИК-спектр, характеризующийся полосами поглощения при 300, 380, 450, 500, 590, 700, 790, 915, 980, 1440, 1620 и 3500 см⁻¹, подобен гадолинитовому; отличается присутствием интенсивных узких полос поглощения при 3500 и 600 см⁻¹, отвечающих валентным и деформационным колебаниям ОН-групп [1, 8].

Микр. Двуосный (+). $cNg = 13^{\circ}$, Nm = b, $aNp = 14^{\circ}$; $n_g = 1,765$, $n_m = 1,753$, $n_p = 1,741$; $n_g - n_p = 0,021$ [1]. По другим данным, $n_g = 1,783$, $n_m = 1,765$, $n_p = 1,748$; $n_g - n_p = 0,035$ [6]. Дисперсия сильная, r < v [1].

Хим. Анализы (2, 3, 5, 6 – микрозонд.):

	1	2	3	4	5	6
BeO	11,13	10,50	12,02*	10,41	10,06 ^{2*}	10,91
MgO	0,28	Не опр.	He onp.	0,09	He onp.	He oup.
CaO	6,98	2,38	3,34	0,96	1,95	1,36
FeO	1,26	-	1,63	0,89	4,79	2,83
PbO	He onp.	0,52	He onp.	0,38	Не опр.	He onp.
Al ₂ O3	1,50	0,10	-	1,70	-	-
Fe ₂ O ₃	-	1,46	-	1,63	2,78	-
Y ₂ O ₃	13,181	24,83	31,87	15,73	16,37	36,27
La ₂ O3	0,471	-	He onp.	3,60	1,46	0,12
Ce ₂ O ₃	1,901	-·	0,47	13,60	8,68	0,64
Pr ₂ O ₃	0,691	-	Сл.	1,78	1,59	0,11
Nd ₂ O ₃	1,951	-	0.76	6.84	8,64	-
Sm ₂ O3	1,921	_	1,03	2,60	3,00	He oup.
Eu ₂ O3	0,131	-	Сл.	0,05	0,75	0,13
Gd ₂ O ₃	2,111	0,45	2,71	3,45	4,12	2,99
Tb ₂ O ₃	0,291	0,33	0,68	0,61	0,37	He onp.
Dy ₂ O ₃	1,581	2,13	3,87	3,71	3,40	5,50
Ho ₂ O3	0,241	0,21	1,18	0,56	0,17	0,57
Er ₂ O ₃	0,791	6,47	2,50	1,31	1,26	2,05
Tm ₂ O3	0,151	1,38	Сл.	0,07	0,13	He oup.
Yb ₂ O ₃	0,871	17,02	3,53	0,57	0,53	2,44
Lu ₂ O3	0,161	1,87	0,94	0,09	Не опр.	Не опр.
SiO ₂	32,50	26,43	28,86	25,20	22,87	26,20
H ₂ O	8,92	3,923 ^{3*}	3,96 ^{2*}	2,94	1,93 ^{2*}	3,44*
Сумма	98,954 ^{4*}	100,00	99,35	100,03 ^{5*}	94,57	95,56
Уд. в.	3,44	-	-	4,42	-	-

* Расчетное значение. ^{2*} Определено из отдельной навески. ^{3*} Определено по разности. ^{4*} В том числе ThO₂ − 1,32, P₂O₅ − 4,95, Nb₂O₅ − 3,78. ^{5*} В том числе K₂O − 0,77, Na₂O − 0,39, TiO₂ − 0,10.

1 – "минерал из Тувы" из сподумен-альбитового пегматита Тастык (Тува), анал. Казакова [2]; 2 – из амазонитовых пегматитов горы Плоской, Зап. Кейвы (Кольский п-ов) [9]; 3 – из миароловых пегматитов Тахара, преф. Гифу (Япония) [10]; 4 – из гранитных пегматитов гор Синаньлинь, пров. Хейлунцзян (Китай) [1]; 5, 6 – из щелочногранитного пегматита Татьяна (Монгольский Алтай): 5 [11], 6 – неопубликованные данные П.М. Карташова.

Эмпирические формулы (на 10 атомов О):

2 - $(Y_{1,02} Yb_{0.04} Ca_{0.20} Er_{0.16} Dy_{0.05} Lu_{0.04} Tm_{0.03} Gd_{0.01} Tb_{0.01} Ho_{0.01})_{1,93} Fe_{0,09}^{2+} Be_{1.95} Al_{0.01} Si_{2,04} \times O_{7,98}(OH)_{2,02};$

 $3 - (Y_{1,22} Ca_{0,26} Dy_{0,09} Yb_{0,08} Gd_{0,07} Er_{0,06} Sm_{0,03} Nd_{0,02} Tb_{0,02} Ho_{0,03} Lu_{0,02} Ce_{0,01})_{1,91} Fe_{0,09}^{2+} Be_{2,08} Si_{2,08} O_{8,09} \times (OH)_{1,91}.$

Повед. при нагр. После нагревания до 1000° на воздухе теряет воду и распадается на β -Y₂Si₂O₇ и BeO [8].

Нахожд. Редкий минерал гранитных пегматитов и редкометальных гранитоидов. Найден [1] в Ве- и ТR-содержащих гранофирах гор Синаньлинь (пров. Хейлунцзян, Китай).

В амазонитовых пегматитах горы Плоской (Запалные Кейвы, Кольский п-ов) стречен [4] как позлний гидротермальный минерал в краевых зонах гнезд иттро-• поорита и в пустотах растворения по их периферии, по трещинам в кварце и золевом шпате: отмечался в виде сферолитов по трешинам зерен ксенотима. Более талний по отношению к хинганиту-(Yb).

В миароловых пегматитах Тахара (преф. Гифу, Япония) [10] ассоциирует с гелулитом-(Y), хинганитом-(Ce) и неизвестным минералом, по составу близким хин-CHERTY.

В шелочногранитном пегматите Татьяна (гора Улын-Хурэн, Монгольский Алтай) наблюдался в виде зональных кристаллов (описаны ранее [11] как - илолинит-II), содержащих микроскопические зоны хинганита-(Се). Встречается в жих роклин-кварцевом замещающем комплексе осевой части жилы в ассоциации с аланитом, TR-эпидотом, циртолитом, TR-торитом, бритолитом-(Се), гентгельви-- ум. бавенитом, ксенотимом, кальцитом, пиритом; в зонах окварцевания – с фергуунитом, чевкинитом, алланитом [11]. В альбитовом пегматите, секущем карбонатчю толицу, на месторожлении Тастык (Тува) [2] ассоциирует со сподуменом, <исковитом, пирохлором.

Отмечался в редкометальных катаклазированных гранит-порфирах месторожния Шок-Карагай (Северный Казахстан) с алланитом, иттриалитом, цирконом, т⊲рриторитом, бастнезитом, монацитом, ксенотимом и флюоритом (устное сооб-:ние Б.С. Никонова).

Искусств. [8]. Синтезирован из геля в гидротермальных условиях при 600°, _ кбар за 72 ч. При нагреве смеси оксидов и гидроксидов хинганитового состава чтучены оксибритолит и другие фазы.

Отл. От других радиально-лучистых редкоземельных силикатов отличается по . К-спектру: от кейвиита-(Y) – по наличию полосы поглощения ОН-группы, от кай-· энта-(Y), кайсикхита-(Y) и иимориита-(Y) – по отсутствию полосы поглощения, ютветствующей СО3-группам.

		nicada.oc	noemble pase ion					
			Fe-излучени	е. Дифр	актометр			
hki	I	d(Å)	hkl	1	d (Å)	hkl	1	d (Å)
#0 1	30	6,004	113;122	60	2,569	213;040	50	1,880
€02	20	4,994	0,23;004	10	2,491	115;034	40	1,791
100	50	4,790	200;014	30	2,377	115	40	1,781
u12	30	4,178	210;032	20	2,279	042	30	1,768
œ0;11ī	40	3,772	130;211	20	2,222	141	10	1,725
621	40	3,577	131	20	2,208	214;214	50	1,681
:02	50	3,462	202;114	10	2,142	125;125	50	1,658
12,11	100	3,148	024;212	20	2,080	224	30	1,567
@13;022	20	3,041	132	20	2,041	303	20	1,456
120	20	2,991	221;22Ī	50	1,985	303	20	1,441
121;12 <u>1</u>	100	2,865	203	20	1,923	313	10	1,417

Межи поскостные расстояния хинганита-(У) из Китая [1]

Литература

Ding Xiaoshi, Bai Ge, Yuan Zhongxin, Liu Jinding // Acta petrol. miner. et anal. 1984. Vol. 3, N 1. P. 45.

- Семенов Е.И., Дусматов В.Д., Самсонова В.С. // Кристаллография. 1963. Т. 8, № 4. С. 677.

• Поваренных А.С. Кристаллохимическая классификация минеральных видов. Киев: Наук. думка, 1966. 548 c.

: Вилошин А.В., Пахомовский Н.А. Минералы и эволюция минералообразования в амазонитовых стматитах Кольского п-ова. Л.: Наука, 1986. 168 с.

- 5. Якубович О.В., Матвиенко Е.Н., Волошин А.В., Симонов М.А. // Кристаллография. 1983. Т. 28, № 3. С. 457.
- 6. Ding Xiaoshi, Bai Ge, Yuan Zhongxin, Sun Luren // Geol. Rev. China. 1981. Vol. 27, N 5. P. 459.
- 7. Ximen Lulu, Zhizlong Peng // Acta miner. Sinica. 1985. Vol. 5. P. 289.
- 8. Ito J., Hofner S.S // Amer. Miner. 1974. Vol. 59, N 7/8. P. 700.
- 9. Волошин А.В., Пахомовский Я.А., Меньшиков Ю.П., Поваренных А.С., Матвиенко Е.Н., Якубович О.В. // ДАН СССР. 1983. Т 270, № 5. С. 1188.
- 10. Miyawaki R., Nakai I., Nagashima K., Okamoto A., Isobe T. // J. Miner. Soc. Jap. 1987. Vol. 18, N 1. P. 17.
- 11. Карташов П.М., Волошин А.В., Пахомовский Я.А. // Зап ВМО. 1993. Ч. 122, вып. 3. С. 65.

СТРУКТУРА ТИПА ХЛОРИТОИДА

ГРУППА ХЛОРИТОИДА

Ранее описаны хлоритоид и его марганцевая разновидность оттрелит (т. III, вып. 1, с. 481). Последний рассматривается теперь как самостоятельный минеральный вид (Clark, 1993; Fleischer, Mandarino, 1995).

	Сингония ·	a_0	b_0	<i>c</i> ₀	α	β	γ	Уд.в.
Хлоритоид	Монокл.	9,4818	5,4842	18,1824	-	101,74°	_	3,56
(Fe ²⁺ , Mg) ₂ Al ₄ × × [SiO ₄] ₂ O ₂ (OH) ₄	Трикл.	9,46	5,50	9,15	97,05°	101,56	90,10°	3,62
Магнезиохлоритоид	Монокл,	9,460	5,471	18,182	-	101,4	-	3,33
$(Mg, Fe^{2+})_2Al_4 \times [SiO_4]_2O_2(OH)_4$	Трикл. (искусств.)	9,43	5,44	9,13	96,4	101,1	90,0	-
Оттрелит	Монокл.	9,48	5,48	18,20	-	102,0	-	3,57
$(Mn^{2+}, Fe^{2+}, Mg)_2Al_4 \times$ × $[SiO_4]_2O_2(OH)_4$	Трикл.	9,48	5,48	9,10	97	102	90,0	_

Для хлоритоида (chloritoid) приведены уточненные структурные данные [1, 2].

Основу структуры минералов группы составляют чередующиеся октаэдрические катионные слои двух типов – M(1) и M(2), перпендикулярные оси с и связанные между собой ортосиликатными группами. Триоктаэдрические бруситоподобные слои M(1) содержат две позиции – M(1A) и M(1B), занимаемые катионами Fe²⁺, Mn^{2+} , Mg и Al, Fe³⁺ соответственно. Корундоподобные слои M(2) заселены атомами Al. Моноклинная и триклинная модификации хлоритоида имеют очень близкие структуры, но различаются характером заполнения позиций M(1A) и M(1B) [1, 2]. В моноклинной форме позиция M(1A) содержит 0,9 Al и 0,1 Fe³⁺, M(1B) – 0,85 Fe²⁺(Mn) и 0,15 Mg. Обе позиции (A и B) слоя M(2) заняты атомами Al. В триклинной форме позиция M(1B) заселена катионами Fe²⁺(Mn) и Mg не полностью (0,96), а в M(1A) содержание Fe³⁺ по сравнению с моноклинной формой выше. Структура триклинной модификации чаще неупорядоченная, что приводит к появлению диффузных линий на рентгенограммах.

Структура характеризуется наличием водородных связей между слоями за счет атомов Н гидроксильных групп и атомов О соседнего слоя.

Литература

1. Hanscom R. // Acta crystallogr. 1975. Vol. 83, pt 3. P. 780.

2. Hanscom R. // Amer. Miner. 1980. Vol. 65, N 5/6. P. 534.

Mагнезиохлоритоид Magnesiochloritoid (Mg, Fe²⁺)₂Al₄[SiO₄]₂O₂(OH)₄

Назван по химическому составу – преобладающему октаэдрическому катнону [1, 2].

Характ. выдел. [3, 4]. Порфиробласты (от нескольких мм до 6 см), неправильтые мелкие зерна (до нескольких мм).

Структ. и морф. крист. Монокл. с. $C_{2h}^6 - C2/c_1$. $a_0 = 9,460$, $b_0 = 5,471$, = 18,182; $\beta = 101,4^\circ$; V = 922 Å³; Z = 8 [2]. Трикл. (искусств.) P1 или P1. $a_0 = 9,43$, $\gamma_0 = 5,44$, $c_0 = 9,13$; $\alpha = 96,4$, $\beta = 101,1$, $\gamma = 90,0^\circ$; Z = 4 [5].

В отличие от хлоритоида среднее межатомное расстояние М-О в позиции M(1B) уменьшено от 2,163 до 2,150 Å; атомы Mg и Fe²⁺ распределены статистически. В образцах преобладает моноклинная фаза, триклинная встречается значигельчо реже [2].

Средние межатомные расстояния (в Å): Si-O = 1,645 и 1,646; Al-O = 1,896, 1.897, 1,912, 1,938, 1,952; (Mg, Fe)-O = 2,150 и 2,169.

Известны полисинтетические срастания и прорастания со слюдой и хлоритом II (001) [2].

Фнз. св. Уд.в. 3,332 (вычисл. для монокл. разности) [2]. Цв. светло-зеленоватый 2], темно-голубой [5], серый [3] в зависимости от содержания Fe³⁺.

Микр. Бесцветен, реже зеленоватый со слабым плеохроизмом: по Ng – желтозатый, по Nm – голубовато-зеленоватый, по Np – зеленоватый. Удлинение (–). 2V(+) = 30–40°. n_g – n_p = 0,006. Дисперсии не наблюдается [4]. В бесцветных разностях с максимальным содержанием Mg: угол Ng с нормалью к (001) от 0 до 15°. n_g = = 1,695, n_m = 1,688, n_p = 1,685; n_g – n_p = 0,010; 2V(+) = 46°. Дисперсия слабая, r > v [3].

Хим. Теор. состав MgAl₂[SiO₄]O(OH)₂: MgO – 18,30; Al₂O₃ – 40,28; SiO₂ – 27,25; H₂O – 8,17. Максимально установленное содержание Mg-минала – 74 мол.% [2, 5]. Анализы (2–6 – микрозонд.):

	1	2	3	4	5	6
Na ₂ O	0,1	He oup.	Не опр.	0,00	0,01	_
K ₂ O	0,3	-		0,01	0,00	
MgO	10,8	9,20	11,20	10,56	12,32	12,14
CaO	0,2	-	-	0,00	-	-
MnO	0,1	-	_	0,05	0,03	-
FeO	8,9	12,81	11,56	12,17	9,02	10,32
Al ₂ O ₃	43,8	43,85	43,18	43,29	43,57	44,18
Fe ₂ O ₃	3,0	-	-	-	_	-
SiO ₂	24,7	25,50	26,04	27,73	26,01	27,37
H ₂ O ⁺	7,7	7,77*	7.77*	-	-	-
Сумма	99,6	99,13	99,75	93,81**	90,97	94,01

* По аналогии с близкими анализами хлоритоида [6].

** В оригинале сумма 91,81.

1 – нз офнолитовой зоны Церматт, Западные Альпы (Швейцария) [7]; 2, 3 – из офнолитовой зоны, кантон Вале, Западные Альпы (Швейцария) [6]; 4–6 – из масснва Монте Роза, Западные Альпы (Италия): 4, 5 – [8], 6 – [2].

Эмпирические формулы:

$$1 - (Mg_{1,26} Fe_{0,76}^{2+})_{2,01} AI_{4,06} [SiO_4]_{1,94} O_2(OH)_{4,01};$$

$$2 - (Mg_{1,07} Fe_{0.84}^{2+})_{1,91} Al_{4,02} [SiO_4]_{1,99} O_2(OH)_{4,00};$$

3 -
$$(Mg_{1,29} Fe_{0,75}^{2+})_{2,04} Al_{3,93} [SiO_4]_{2,01} O_2 (OH)_{4,00}$$
.

Повед. при нагрев. На кривой нагревания наблюдается широкий эндотермический максимум с двумя пиками – при 658 и 765° [2]. До 700° объем и параметры решетки увеличиваются (преимущественно в направлении оси *c*): $a_0 = 9,515$, $b_0 = 5,516$, $c_0 = 18,300$ Å, $\beta = 101,3^\circ$, V = 942,0 Å³. Изменение обратимо. В интервале 725–750° – полное обезвоживание с разрушением структуры. Нагревание при 750° в течение 12 ч приводит к аморфизации.

Нахожд. Связан с процессами метаморфизма (t = 500°, P = 16 кбар по [8] или 550-700° и 10-15 кбар по [6]) пород офиолитовой зоны Альп.

Наиболее высокомагнезнальные разности (до 74 мол.% MgAl₂[SiO₄]O(OH)₂) обнаружены в массивах Гран Парадизо, Монте Роза и Дора Мария, Западные Альпы (Италия), в ассоциации с тальком, хлоритом, кварцем, кианитом и фенгитом среди тальк-хлоритоидных кварцитов [5. 9]. Среди метагаббро зоны Церматт (Швейцария) развивается по оливину совместно с тальком, кианитом, гранатом, хлоритом и омфацитом [3, 6, 7]. В массиве Высокий Тауэрн в Восточных Альпах (Австрия) находится в линзах филлитов среди эклогитов в ассоциации с тальком, кианитом, кварцем или хлоритом, а среди слюдяных сланцев также с гранатом. Кианит образует включения в крупных кристаллах магнезиохлоритоида [10, 11]. Предполагаемая последовательность формирования минеральных парагенезисов при метаморфизме пелитов: хлорит-иллит-кварц; хлорит-фенгит-кварц; талькхлоритоид-фенгит ± кварц, что свидетельствует о повышении роли Mg в минералообразовании с ростом давления и температуры [9, 11, 12].

Искусств. При синтезе чистого MgAl₂[SiO₄]O(OH)₂ из безводной смеси MgO, Al₂O₃ и SiO₂ под P_{H_2O} свыше 30 кбар при 600–700° получена смесь монокл. и трикл. модификаций. Последняя ($a_0 = 9,43$, $b_0 = 5,44$, $c_0 = 9,13$, $\alpha = 96,4$, $\beta = 101,1$, $\gamma = 90,0^\circ$) преобладает, и ее содержание увеличивается с ростом температуры. Искусственный чисто магниевый хлоритоид в противоположность природным образцам несовместим с кварцем [5, 12].

Отл. От хлоритоида отличается пониженными показателями преломления и меньшими параметрами элементарной ячейки.

Литература

1. Halferdahl L.B. // J. Petrol. 1961. Vol. 2, N 1. P. 49.

2. Ivaldi G., Catti M., Ferraris G. // Amer. Miner. 1988. Vol. 73, N 3/4. P. 358.

3. Bearth P.B. // Schweiz. miner. und petrogr. Mitt. 1963. Bd. 43, H. I. S. 269.

- 4. Wetzel R. // Ibid. Bd. 52, H. 2. S. 161.
- 5. Chopin Ch., Schreier W. // Amer. J. Sci. 1983. Vol. 283-A, N 1. P. 72.
- 6. Chinner G A., Dixon G.E. // J. Petrol. 1973. Vol. 14, N 2. P. 185.
- 7. Bearth P.B. // Beitr. Geol. Karte Schweiz. 1967. N 132. S. 130.
- 8. Chopin Ch., Monier W. // Contrib. Mineral. and Petrol. 1984. Vol. 87, N 2. P. 388.
- 9. Chopin Ch. // J. Petrol. 1981. Vol. 22, N 4. P. 628.

10. Miller C. // Tschermaks miner. und petrogr. Mitt. 1977. Bd. 24. S. 221.

11. Holland T.G.B. // J. Geol. 1979. Vol. 87, N 1. P. 1.

12. Chopin Ch. // Bull. miner. 1983. Vol. 106, N 6. P. 715.

Оттрелит Ottrelite

 $(Mn^{2+}, Fe^{2+}, Mg)_2Al_4[SiO_4]_2O_2(OH)_4$

Назван по месту находки в Оттре, Арденны (Бельгия) [1]. Синон. Сальмит – salmite [1].

Характ. выдел. Кристаллы (до 6 см длиной), удлиненные порфиробласты (0,3–0,5 мм), неправильные, частью расщепленные чешуйки (3–4 мм) [2].

Структ. и морф. крист. Монокл. с. C_{2h}^6 -C2/c. $a_0 = 9,48$, $b_0 = 5,48$, $c_0 = 18,20$ Å;

 $\beta = 102^{\circ}$; V = 929,5 Å³; Z = 8 [1]; трикл. с. P1 или $P\overline{1}$, $a_0 = 9,48$, $b_0 = 5,48$, $c_0 = 9,10$ Å; $\alpha = 97$, $\beta = 102$, $\gamma = 90^{\circ}$; Z = 4 [2].

Кристаллы таблитчатые.

Физ. св. Сп. совершенная по (001) и несовершенная по плоскостям, пересекающимся под углами 120 и 60°. Уд.в. 3,52 (вычисл.) [1]. Цв. оливково-, фисташковозеленый, иногда черный. Бл. на (001) алмазный.

В ИК-спектре проявлены основные (частью комбинированные) полосы поглощения: 900, 750, 680 и 460 см⁻¹; полосы 3460 и 3040 см⁻¹ относятся к валентным, 1083 и 801 см⁻¹ – к деформационным колебаниям групп ОН, включающих водородные мостиковые связи (2,85 и 2,7 Å) [2].

Микр. Плеохроизм: по Ng – оливково-желтый, по Nm – бледно-желтый, по Np – светло-желтый, иногда серый до бесцветного. Пл. опт. осей \perp (010), угол Np с нормалью к (001) = 11–23° [2, 3]. $n_g = 1,732-1,716$, $n_m = 1,726-1,712$, $n_p = 1,725-1,709$ (обнаруживают тенденцию к снижению при увеличении содержания магния); $n_g-n_p = 0,016-0,006$ [1, 2]. Для образца из Оттре: $n_g = 1,716$, $n_m = 1,712$, $n_p = 1,709$; $n_g-n_p = 0,007$; $2V(+) = 60-70^\circ$. Дисперсия слабая, r > v.

Хим. Teop. состав Mn²⁺Al₂[SiO₄]O(OH)₂: MnO – 28,9; Al₂O₃ – 40,64; SiO₂ – 23,90; H₂O – 7,17.

Мп изоморфно замещается Fe²⁺ и Mg. Обычно содержит 40-50 мол.% Мп-минала (12-16% MnO). Большее количество Мп (более 50 мол.% Мп-минала, 16,2-16,6% МпО) обнаружено только в двух образцах [1, 2, 4].

Анализы (2-4 - микрозонд.):

	1	2	3	4	
MgO	4,39	3,45	2,49	3,67	
CaO	0,11	0,04	He oup.	He onp.	
MnO	12,60	12,20	10,20	10,63	
FeO	8,02	10,60	13,72	12,53	
Al ₂ O ₃	40,69	41,00	39.59	39,14	
Fe ₂ O ₃	1,67	1,48	_	-	
SiO ₂	23,88	24,40	25,35	25,16	
H ₂ O⁺	7,15	Не опр	6,90*	6,90*	_
Сумма	99,91	93,20	98,25	97,97	
<i>a</i> ₀ (Å)	9,505	9,500	-	-	
<i>b</i> 0	5,484	5,501	-	-	
<i>c</i> ₀	18,214	18,211	-	-	
β, °	101,46	101,99	-	-	
V(Å ³)	929,0	930.9	-	-	

* По аналогии с хлоритоидом.

1, 2 – Оттре (Бельгия): 1 – анал. Спитжан и Франсоле (образец с примесью кварца – 1,4% [2]), 2 – Fe²⁺/Fe³⁺ определено мессбауэровским методом [5]; 3, 4 – массив Высокий Фенн, Арденны (Бельгия) [3].

Эмпирическая формула (ан. 1): $(Mn_{0,88} Fe_{0,55}^{2+}Mg_{0,54}Fe_{0,03}^{3+})_2(Al_{3,93}Fe_{0,07}^{3+})_4 \times \times (Si_{1.97}Al_{0.03})_2 O_{10.03}(OH)_{3.94}.$

См. также ан. 6 в т. III, вып. 1, с. 735 (оттрелит из Оттре). Повед. при нагрев. [2]. На кривой ДТА, сходной с таковой хлоритоида, имеется

3. Минералы т. IV, вып. 3

эндотермический максимум при 670–880° с пиком 770° (потеря основной массы вопы). Обшая потеря всса по кривой ПТГ – 4.68%, меньше истинной (7.15%) из-за увеличения веса на 2,31% при окислении МпО и FeO. По 500° не изменяется, при 600° – буреет, сохраняя структуру; в интервале 700-800° происходит интенсивная пегипратания, при 770° – разрушение с образованием новых фаз. По 800° Fe и Мп сохраняют двухвалентную форму в виде окислов (биксбиита или браунита): при 900° - возможна аморфизация; в интервале 1000-1200° образуются шпинель, муллит и кордиерит.

Нахожл. Связан с гидоотермальными кварцевыми жилами, залегающими среди пород зеленосланцевой фации метаморфизма (образуется при $t = 360-400^\circ$. в условиях повышенной по сравнению с хлоритоидом $f_{O_{2}}$).

Близ Оттре (Бельгия) распространен среди меловых сланцев и секущих кварцевых жил (до 1 м мощностью) в ассоциации с кварцем, ди-триоктаэдрическим хлоритом, пирофиллитом, даврекситом, андалузитом, рутилом и поздними каолинитом и гематитом [2], В массиве Высокий Фенн (Арденны, Бельгия) находится в аналогичной обстановке среди пород зеленосланцевой фации. Ассоциирует с фенгитом, парагонитом, хлоритом, гранатом, кварцем, гематитом, спорадически – с андалузитом и пирофиллитом [3]. Обнаружен также среди филлитов и сланцев с жилами кварца в южной части Индии (шт. Андра Прадеш) в ассоциации с кварцем, серицитом и полевым шпатом (в филлитах), с андалузитом и гидробиотитом (в метасланцах) [6].

	141034	LIOCKOCIMBIC	расстояния от тре	an lay v	ларе (велы в	IN [2]	
		Fe H	<α-излучение. Диф	ракто	метр		
	I	d (Å)	hkl	I	d(Å)	1	d (Å)
	15	8,91	314	10	2,517	5	1,881
Г	10	4,737	023	25	2,461	5	1,855
	10	4,680	(022);(312)	40	2,430	5	1,835
	100	4,460	402;22ī	20	2,375	10	1,819

002	15	8,91	314	10	2,517	5	1,881
110;201	10	4,737	023	25	2,461	5	1,855
111	10	4,680	(022);(312)	40	2,430	5	1,835
004	100	4,460	402;22 1	20	2,375	10	1,819
204	5	3,601	222	10	2,343	10	1,813
113	5	3,530	221;313	15	2,312	5	1,752
114	5	3,433	(203);(113)	15	2,290	5	1,737
(112);(112)	5	3.256	(221);(221)			10	1,650
114	10	3,087	404	5	2,26 0	5	1.633
006	80	2,973	008;222	10	2,230	5	1,606
206	10	2,774	(313);(023)	10	2,134	10	1,585
020;311	10	2,741	223	15	2,121	15	1,561
115;021	10	2,715	118	10	2,101	15	1,559
(310)	45	2,686	(312)	5	2,074		
313;116	10	2,643	406	5	2,046		

Литература

1. Halferdahl L.B. // J. Petrol. 1961. Vol. 2, N 1. P. 49.

hkl

- 2, Fransolet A.M. // Bull. miner. 1978. Vol. 101. P. 548.
- 3. Kramm U. // Contrib. Mineral. and Petrol. 1973. Vol. 41. P. 179.
- 4. Bethune P // Bull. Soc. géol. belg. 1977. Vol. 86, fasc. 1. P. 9.
- 5. Halenius U., Annersten H., Langer K. // Phys. Chem. Miner. 1981. Vol. 7, N.3. P. 117.
- 6. Rao T.R. // Geol. Mag. 1970. Vol. 106, N 5. P. 452.

СТРУКТУРА ТИПА ВЕЛИНИТА

ГРУППА ВЕЛИНИТА

Велинит описан ранее (т. III, вып. 1, с. 95). Здесь приведены формула и сингония [1].

	Сингония	a_0	<i>c</i> ₀	Уд.в.
Велинит Mn ₃ ²⁺ (W, Mg, □)[SiO ₄](O,OH) ₃	Триг.	8,155	4,785	4,41
Францисканит $Mn_3^{2+}(V_{\chi}, \Box_{I-\lambda})$ [SiO ₄](O,OH) ₃ ;	"	8,1518	4,8091	4,1
$x \simeq 0.5$				
Эребруит Мп ²⁺ (Sb ⁵⁺ , Fe ³⁺)[SiO ₄](O,OH) ₃	**	8,1837	4.7569	4,77

Францисканит и эребруит являются соответственно V- и (Sb, Fe)-аналогами велинита [1,2]. Для единообразия все формулы приведены в соответствии со структурной формулой францисканита.

Литература

. Dunn P.J., Peacor D.R., Erd R C, Ramik R A. // Amer. Miner. 1986. Vol.71, N 11/12. P. 1522. 2. Pertlik F. // Neues Jb. Miner. Monatsh. 1986. H. 11. S. 493.

Францисканит Franciscanite

$$Mn_{3}^{2+}(V_{x} \Box_{1-x})$$
 [SiO₄](O,OH)₃; $x \approx 0.5$

Назван по францисканскому комплексу пород в Калифорнин (США) [1].

Характ. выдел. Неправильные зерна до 1 мм в диаметре.

Структ. и морф. крист. Триг.с. $C_3^{\dagger} - P3$. $a_0 = 8,1518$, $c_0 = 4,8091$ Å; a_0 : $c_0 = 1:0,5899$; Z = 2 [2].

Основу структуры составляет каркас из MnO₆-октаэдров, в пустотах которого находятся SiO₄-тетраэдры (фиг. 8). Катионы Mn²⁺ занимают две независимые позиции – Mn (1) и Mn (2). Характерная деталь каркаса – тройные группировки Mn₃O₁₃, соединенные атомами Si. Атомы V (предположительно четырехвалентного) имеют искаженную октаэдрическую координацию; соединенные общими ребрами, они располагаются в каналах, параллельных [001].

Межатомные расстояния (в Å): Мп(1)-O = 2,05-2,34 (среднее 2,20); Мп(2)-O = = 2,11-2,33 (2,22); V(1)-O = 1,79 и 2,15; V(2)-O = 1,77 и 2,30; Si(1)-O = 1,66 и 1,68; Si(2)-O = 1,58 и 1,66. Из 33 атомов O 2 атома – O(1) и O(11) относятся, вероятно, к гидроксильным группам и связаны только с Мп и V, но не с Si.

Физ.св. Сп. отсутствует. Тв. около 4. Уд.в. 4,1 (вычисл. 3,93). Цв. темнокоричневато-красный (первоначально – ярко-красный, со временем темнеющий). Бл. стеклянный. Умеренно прозрачный. Изл. неровный. Слабо магнитный, возможно, за счет посторонних мелких включений.

Микр. Плеохроизм сильный: по No – винно-красный, по Ne – темно-красный, очти черный. $Ne \ge No$. Одноосный (+). Первоначально минерал имеет $n_e = 1,876$, $n_e = 1,859$, со временем показатели преломления несколько изменяются: $n_e = 1,882$, = 1,856, возможно, за счет окисления Mn^{2+} до Mn^{3+} или Mn^{4+} .

Хим. Формула приведена на основании изучения структуры минерала [2]. Анализ (микрозонд.) [1]: МпО – 64,9; V₂O₅ – 13,5; H₂O – 3,4 (вычисл.); сумма 100,2.

. •

Фиг. 8. Структура францисканита (по Пертлик)

Эмпирическая формула (для Si = 1): $Mn_{2,98}(V_{0,49} \square_{0,51})$ Si(O,OH)₋₇. Mg, Al, Fe, As, Sb, W не обнаружены.

Нахожд. Встречен во францисканском комплексе кремнистых пород на месторождении Пенсильвания в округе Санта-Клара, шт. Калифорния (США), в ассоциации с браунитом, сонолитом, гаусманнитом, гагеитом и кариопилитоподобным минералом.

	Меж	сплоскостные	е расстояния	і франці	нсканита из К	алифорния ((США)	[1]		
FeK _α -излучение, <i>D</i> = 114,6 мм										
hkl	I	d(Å)	hkl	1	d (Å)	hki	I	d (Å)		
110	20	4,07	212	70	1,785	421	1	1,285		
101	30	3,97	302	15	1,680	133	2	1,240		
111	90	3,105	401	15	1,656	511	5	1,226		
201	90	2,844	320	5	1,619		10	1,166		
210	40	2,668	140	50	1,538		2	1,139		
002	10	2,404	113	2	1,490		2	1,128		
211	100	2,331	411	2	1,465		2	1,0501		
301	5	2,111	123	30	1,373		5	1,0452		
112	5	2,071	331	2	1,306		10	1,0225		
310	1	1,959	412	5	1,297		10	0,9864		
311	20	1,812								

Литература

1. Dunn P.J., Peacor D.R., Erd R.C., Ramik R.A. // Amer. Miner. 1986. Vol. 71, N 11/12. P. 1522.

2. Pertlik F. // Neues Jb. Miner. Monatsh. 1986. H. 11. S. 493.

Эребрунт Örebroite

Mn₃²⁺(Sb⁵⁺, Fe³⁺) [SiO₄](O,OH)₃

Назван по месту находки вблизи г. Эребру (Швеция) [1]. Синои. Ореброит (Флейшер, 1990).

Характ. выдел. Поликристаллические сростки, массивный.

Структ. и морф. крист. Триг.с. C_3^1 -P3. $a_0 = 8,1837$, $c_0 = 4,7569$ Å; $a_0: c_0 = 1: 0.581; Z = 2$.

Предполагается, что Mn^{2+} занимает позицию M(2), а (Sb⁵⁺, Fe³⁺), аналогично V, \Box) в структуре францисканита, – позицию M(1).

Физ.св. Сп. отсутствует. Тв. около 4. Уд.в. (вычисл.) 4,77. Цв. темно-бурый. Черта красновато-бурая. Бл. стеклянный. Изл. неровный. Почти непрозрачный. Слабо магнитный благодаря включениям магнетита.

Микр. Плеохроизм не заметен. Одноосный (+). n_e = 1,875, n_o = 1,857.

Хим. В работе [1] и у М. Флейшера (1990) формула дана для Z = 1: Mn₆(Sb⁵⁺, Fe³⁺)₂Si₂(O,OH)_{~14}. Здесь она приведена в соответствии с францисканитом, для которого изучена структура [2].

Анализ (микрозонд.) [1]: MgO – 0,8; MnO – 54,6; A1₂O₃ – 0,3; Fe₂O₃ – 9,2; SiO₂ – 15,2; V₂O₅ – не обн.; As₂O₅ – 1,6; Sb₂O₅ – 15,8; WO₃ – не обн.; H₂O – 2,8 (вычисл.); сумма 100,3.

Эмпирическая формула (на 1 атом Si) [1]: (Fe³⁺_{0,45}Sb⁵⁺_{0,40}As⁵⁺_{0,05}Mg_{0,08}Al_{0,02})× × Si(O,OH)_{~7}.

Повед. при нагр. Общая потеря веса составляет 6,4% (H₂O минерала и CO₂ за тчет примеси кальцита). Пик на кривой нагревания при 570° указывает на наличие в структуре OH-групп.

Нахожд. Встречен на сурьмяном месторождении Сьё вблизи г. Эребру (Швеция) в тесной ассоциации с кальцитом, слагая с ним плотные тонкокристаллические агрегаты.

FeK_{α} -излучение, $D = 114,6$ мм									
hkl	1	d (Å)	hKI	I	d(Å)	1	d (Å)		
100	1	7,01	112	2	2,056	2	1,346		
110	30	4,08	202	5	1,971	1	1,317		
101	20	3,94	311	10	1.818	5	1,300		
20 0	1	3,54	212	90	1,778	2	1,234		
111	100	3,096	302	10	1,677	5	1,1705		
201	50	2,838	401	2	1,663	1	1,1505		
210	40	2,680		50	1,550	5	1,1364		
002	20	2,370		2	1,475	1	1,1251		
211	70	2,334		1	1,446	5	1,0866		
301	10	2,116		5	1,364				

Литература

Dunn P.J., Peacor D.R., Erd R.C., Ramik R.A // Amer. Miner. 1986. Vol. 71, N 11/12. P. 1522. Pertlik F. // Neues Jb. Miner. Monatsh. 1986. H. 11. S. 493.

СТРУКТУРА ТИПА ГУМИТА

ГРУППА ГУМИТА

Ранее в группу гумита входили: норбергит, хондродит, гумит, клиногумит, аллеганит и сонолит (т. Ш. вып. 1, с. 295).

	Сингония	<i>a</i> ₀	b_0	<i>c</i> 0	β	Уд.в.
Мангангумит (Mn, Mg) ₇ [SiO ₄] ₃ (OH) ₂	Ромб.	4,815	10,580	21,448	_	3,83
Джерриджиббсит Mn ₉ [SiO ₄] ₄ (OH) ₂		4,85	10,70	28,17	-	4,00
Райнхардбраунсит Ca ₅ [SiO ₄] ₂ (OH,F) ₂	Монокл.	11,458	5,052	8,840	108°55'	2,85
Сонолит* Mn ₉ [SiO ₄](OH) ₂		4,872	10,669	14,287	100 30 (α)	3,9

Минералы включены в группу гумита на основании структурного сходства с ранее известными минералами группы: мангангумит изоструктурен с гумитом, являясь его Mn-аналогом; джерриджиббсит – ромбический полиморф сонолита, райнхардбраунсит – природный аналог искусственного кальциохондродита.

У М. Флейшера (1990) группа гумита, кроме того, включает лейкофёницит и риббеит, которые в данной книге помещены в разделе "Силикаты с дефектными мотивами из двух связанных по ребру кремнекислородных тетраэдров" (см. с. 188).

Mангангумит Manganhumite (Mn, Mg)₇[SiO₄]₃(OH)₂

Назван по составу и сходству с гумитом [1]. Синон. Мп-аналог гумита [2].

Характ. выдел. Неправильные зерна размером до 1 мм [1].

Структ. и морф. крист. Ромб. с. $D_{2h}^{16} - Pbnm. Z = 4.$

a_0	b_0	с ₀	$a_0: b_0: c_0$	Местонахождение	Ссылка
4,815	10,580	21,448	0,455:1:2,027	Браттфорс (Швеция)	[2]
4,822	10,54	21,45	0,457:1:2,035	Тоже	[1, 3]
4,879	10,670	21,787	0,457:1:2,042	Бэлд-Ноб (США)	[3]

В структуре средние межатомные расстояния в двух кристаллографически независимых кремнекислородных тетраэдрах – 1,628 и 1,632 Å; апикальные расстояния Si-O = 1,600 и 1,604 Å в минералах группы. Распределение Mn, Mg по трем типам позиций носит упорядоченный характер:

Тип окта-	Mg/(Mg+	Cp. pac-	Физ. св. [1]. Сп. совершенная по (010). Тв.
эдра	+ Mn)	стояние М-О, Å	4. Уд.в. 3,83 (вычисл. 3,84 [1]; 4,053 [3]). Цв. от светло- до темно-буровато-оранжевого. Бл. по-
M(1)O ₆	0,3	2,170	луалмазный.
M(2)O ₆	0,0	2,222	Микр. [1]. Очень светло-оранжевый, без
M(2)O5OH	0,0	2,206	плеохроизма Пвуосный (+) $n_{1} = 1.732$, $n_{2} = 1.732$
M(3)O4(OH)2	0,75	2,117	$= 1,712, n_p = 1,707; n_g - n_p = 0,025; 2V = 37^{\circ}.$

Дисперсия заметная, r > v. По [3]: $n_g = 1,781$, $n_m = 1,772$, $n_p = 1,761$; $n_g - n_p = 0,020$; $2V = 84^\circ$.

Хим. Теор. состав Mn₇[SiO₄]₃ (OH)₂: MnO – 71,49; SiO₂ – 25,92; H₂O – 2,59.

Изоморфизм проявляется в основном в катионной части: Мп замещается главным образом на Mg, менее – на Fe, Ca; Si – незначительно на Al и Ti. Возможно существование полного твердого раствора между Mn- и Mg-конечными членами (мангангумит-гумит). Образец из месторождения Браттфорс, Швеция (ан. 1) определяется как магнезиальный мангангумит с Mn²⁺ > Mg²⁺ [1].

Анализы (микрозонд.):

	1	2	3	4	
MgO	14 ,2	0,81	0,78	0,76	
CaO	0,34	0,06	0,13	0,09	
FeO	0,98	1,30	1,13	0,93	
MnO	57,1	68,87	69,75	68,62	
Al ₂ O ₃	Сл.	0,21	0,10	0,10	
SiO ₂	29,8	26,19	26,21	25,73	
TiO ₂	_	0,41	_	-	
P ₂ O ₅	Сл.	-	_	_	
Н₂О	_	1,84	2,00	1,87	
F	-	1,41	1,30	1,47	
Сумма	102,42	101,10	101,40	99,56	_
$-O = F_2$		0,59	0,54	0,61	
		100,51	100,86	98,95	

1 – из месторождения Браттфорс (Нордмарк, Вермланд, Швеция), среднее нз пяти зерен [1]; 2–4 – нз месторождения Бэлд-Ноб (Северная Каролина, США); H₂O вычислена по уравнению OH (моль) = 2–F-2Ti–Al [3].

Эмпирические формулы:

 $1 - (Mn_{0.68}Mg_{0.30}Fe_{0.01}Ca_{0.01}) (SiO_4)_3 (OH)_2;$

 $2 - (Mn_{6.67}Mg_{0.14}Fe_{0.12}Ca_{0.01})$ (Si_{2.99}Al_{0.03}Ti_{0.03}O_{12.07}) (OH_{1.40}F_{0.51});

 $3 - (Mn_{6.73}Mg_{0.13}Fe_{0.11}Ca_{0.02}) (Si_{2.99}Al_{0.01}O_{11.98}) (OH_{1.52}F_{0.47});$

 $4 - (Mn_{6,76}Mg_{0,13}Fe_{0,09}Ca_{0,01}) (Si_{2,99}Al_{0,01}O_{11,99}) (OH_{1,45}F_{0,54}).$

Диагн. исп. Легко растворяется в теплой разб. HCl [1].

Нахожд. Установлен в скарнах железо-марганцевого месторождения Браттфорс Нордмарк, Вермланд, Швеция) в ассоциации с катоптритом, манганостибитом, чагнуссонитом, сонолитом, галакситом и др. [1]. Приурочен к контактам магнетитманганозитовых руд. Содержит небольшие включения катоптрита и магнетита.

Встречен [3] на марганцевом месторождении Бэлд-Ноб (округ Аллегейни, шт. Северная Каролина, США) в тесной ассоциации с другими марганцевыми минералами группы гумита – аллеганитом, сонолитом, а также галакситом и кутнагоритом.

Возможны находки в других марганцевых месторождениях; в тесных сратаниях с марганцевыми минералами группы гумита его трудно диагностировать.

Отл. Отличается от аллеганита, сонолита и других марганецсодержащих гумиовых минералов только по характерным отражениям на рентгенограмме – . = 3,78 и 3,43 Å [3].

			-			•	
hkl	Ι	d (Å)	hkl	1	d (Å)	1	d (Å)
022;101	4	4,78	133;040	50	2,672	3	1,864
103	5	4,05	107;042	9	2,602	5	1,840
113	21	3,78	117;134	86	2,545	100	1,803
006;120	6	3,61	043	16	2,505	14	1,747

Межплоскостные расстояния мангангумита из Бэлд-Ноб (США) [3]

hki	1	d (Å)	hkl	1	d (Å)	1	d (Å)
121	8	3,56	200;028	9	2,433	8	1,727
411	58	3,43	135;044	14	2,393	13	1,690
115	9	3,11	127	33	2,355	9	1,657
124;026	1	3,00	140	20	2,343	5	1,631
130	51	2,872		3	2,217	8	1,601
131	75	2,849		5	2,152	14	1,590
116	50	2,811		1	2,053	9	1,569
132;125	18	2,779		8	1,955	36	1,556
008	16	2,725		8	1,888	44	1,544
027	25	2,689					

Литература

1. Moore P.B. // Miner. Mag. 1978. Vol. 42, N 321. P. 133.

2. Francis C.A., Ribbe P H. // Amer. Miner. 1978. Vol. 63, N 9/10. P. 874.

3. Winter G.A., Essene E.J., Peacor D.R. // Ibid. 1983. Vol. 68, N 9/10. P. 951.

Джерриджиббсит Jerrygibbsite

 $Mn_9[SiO_4]_4(OH)_2$

Назван в честь американского минералога Джеральда В. Джиббса [1].

Характ. выдел. Массивные агрегаты неправильных зерен размером до 0.5×2.0 мм [1].

Структ. и морф. крист. Ромб. с. D_{2h}^{16} -*Pbnm* или $C_{2\nu}^{9}$ -*Pbn*2₁. $a_0 = 4,85$, $b_0 = 10,70$, $c_0 = 28,17$ Å; $a_0: b_0: c_0 = 0,453: 1: 2,632;$ Z = 4 [1]. $C_{2\nu}^{9}$ -*Pbn*2₁. $a_0 = 4,875$, $b_0 = 10,709$, $c_0 = 28,18$ Å; Z = 4 [2].

Первоначально [1], по данным дебаеграмм, описан как новый минерал, сходный с лейкофёницитом (аналогия в последовательности катионных слоев) и сонолитом (ячейка является удвоенной ячейкой сонолита). Исследованием монокристаллов [2] показано, что минерал действительно является полиморфом сонолита (фиг. 9) с удвоенной ячейкой (за счет операции скольжения b/4), но с иной последовательностью укладки слоев (аналогичной лейкофёнициту). Отличие от лейкофёницита – отсутствие характерных для последнего сдвоенных по ребру кремнекислородных тетраэдров. Наблюдается частичная неупорядоченность в стыковке отдельных блоков структуры или срастание их с блоками сонолита, оливина и лейкофёницита.

Межатомные расстояния (в Å): Si-O = 1,47–1,79 (среднее 1,63–1,70); в девяти независимых MO_6 -октаэдрах Mn-O = 2,16–2,27 и близки к таковым в структуре сонолита.

О структурной близости с сонолитом свидетельствуют их смешанослойные срастания по (001) и периодическое двойникование в масштабе элементарных ячеек, приводящее к сложной сверхпериодичности (высокоразрешающая просвечивающая электронная микроскопия) [3].

Физ. св. [1]. Сп. несовершенная по (001). Тв. 5,5 Уд.в. 4,00 (вычисл. 4,045). Цв. фиолетово-розовый; в тонких срезах светло-розовый. Черта светло-розовая. Бл. стеклянный. Не флюоресцирует в ультрафиолетовых лучах.

Микр. [1]. Светло-розовый. Не плеохроирует. Двуосный (-). Ng = a, Nm = b, Np = c; $n_g = 1,789$, $n_m = 1,783$, $n_p = 1,772$; $n_g - n_p = 0,017$; $2V = 78^\circ$. Дисперсия средняя до сильной, r > v.

Фиг. 9. Структура джерриджиббсита в проекции вдоль осн а (по Като н др.)

В прозрачных шлифах наблюдается пластинчатая структура: переслаивание прозрачных и полупрозрачных оптически идентичных пластин. Возможно, это связано с присутствием газово-жидких включений разной плотности [1].

Хим. Теор. состав: MnO – 71,19; SiO₂ – 26,80; H₂O – 2,01. Мп изоморфно замещается на Mg, Zn, Ca, Fe²⁺. Для двух анализированных образцов отношение Mn²⁺ : Si = 8,85 : 4,00 и 8,78 : 4,00, что отвечает таковому у сонолита (9 : 4). Образцы незначительно различаются лишь по содержанию Zn [1]

Анализы (микрозонд., Н₂О определялась методом Пенфилда):

	1	2		1	2
MgO	1,4	1,1	SiO ₂	27,1	26,6
CaO	1,4	1,0	Н ₂ О	2,13	2,25
MnO	64,1	62,1	F ·	0,00	Не опр.
FeO	0,3	0,3	Сумма	- 99,33	98,65
ZnO	3.9	5.3			

1, 2 – образцы из Франклина (шт. Нью-Джерси, США) [1].

Количество атомов на 1 форм. ед. (в тех же образцах):

	1	2		1	2
Si	16,00	15,71	Fe	0,15	0,15
Mn	32,05	31,05	Zn	1,70	2,31
Mg	1,23	0.97	H ₂ O	8,38	8,86
Ca	0.25	0.63			

Нахожд. [1]. Обнаружен в музейных образцах "лейкофёницита" из местоождения Франклин (шт. Нью-Джерси, США) в очень красочных сростках, чеющих метаморфогенную текстуру и сложенных франклинитом и сонолитом; г огда встречается вместе с лейкофёницитом, но не в непосредственном контакте. В то же время, как показывают исследования в просвечивающем электронном чикроскопе, содержит (до ~5%) тонкие вростки лейкофёницита. Образование джерриджиббсита, так же как и лейкофёницита, стабилизируется присутствием Zn, Ca при отсутствии F.

Отл. От сонолита отличается по рентгенограммам, от лейкофёницита – также по химическим данным. По сравнению с лейкофёницитом более бурый и более фиолетовый.

		Межпло из месторожд	жкостные рассто ения Франклин,	яния дже шт. Нью	рриджиббсита Э-Джерси (США	A) [1]	
		(СиК _α -излучение.	Дифрак	гометр		
hki	I	d (Å)	hkl	1	d (Å)	1	d (Å)
021	9	5,25	029	46	2,702	100	1,806
110	11	4,40	041;134	34	2,661	18	1,730
024	9	4,25	042	3	2,631	10	1,712
114	24	3,74	135;119	100	2,557	11	1,692
121;026	5	3,56		16	2,416	9	1,661
008;115	29	3,48		11	2,377	26	1,567
116;027	14	3,21		39	2,362	34	1,550
130;131	78	2,869		28	2,342	18	1,458
00.10:132	9	2,813		4	2,225		
118;133	49	2,752		5	2,118		

Литература

1. Dunn P.J., Peacor D.R., Simmons W.B. // Amer. Miner. 1984. Vol. 69, N 3. P. 546.

2. Kato T., Ito Y., Hashimoto N. // Neues Jb. Miner. Monatsh. 1989. H. 9. S. 410.

3. Yau Y.C., Peacor D.R. // Amer. Miner. 1986. Vol. 71, N 7/8. P. 985.

Райнхардбраунсит Reinhardbraunsite Ca₅[SiO₄]₂(OH, F)₂

Назван по имени немецкого минералога Райнхарда Браунса [1].

Характ. выдел. Ксеноморфные зерна (до 3 мм).

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1/a$. $a_0 = 11,458$, $b_0 = 5,052$, $c_0 = 8,840$ Å; $\beta = 108^{\circ}55'$; V = 484.1 Å³; Z = 2 [1].

Физ. св. Сп. по (001) отчетливая. Изл. раковистый. Тв. 5-6. Уд.в. 2,85 (вычисл. 2,885). Цв. светло-розовый. Черта белая. Бл. стеклянный.

В ИК-спектре образца, прогретого при 600° в течение 24 ч, наблюдались полосы 3560 и 3480 см⁻¹ [1].

Микр. Бесцветный. Двуосный (-). Ng = b, $cNp = 18^{\circ}$; $n_g = 1,620$, $n_m = 1,617$, $n_p = 1,606$; $2V = 44-50^{\circ}$. Дисперсия отчетливая, r > v. Иногда наблюдаются двойники по (001) [1].

Хим. Теор. состав (при F = OH): CaO – 66,67; SiO – 28,57; H₂O – 2,14; F – 4,52; –O = F₂ = 1,9.

Анализ (микрозонд., среднее из 9) из шлаков вулкана Эттрингер-Беллерберг: CaO – 65,68; FeO – сл.; Al₂O₃ – сл.; P₂O₅ – 0,69; SiO₂ – 26,97; F – 4,24; H₂O – 2,66; сумма 100,24; O = F = 1,78; сумма 98,46 (H₂O вычислена по избытку Ca²⁺) [1]

Диагн. исп. Растворим в HNO₃, в HCl желатинизируется [1].

Повед. прн нагр. На кривой ДТА отмечается сильный эндотермический пик при 1025°. В продуктах разложения рентгеновским методом обнаружены β- и γ-Ca₂SiO₄, и флюорит [1].

Нахожд. Найден в тефритовых шлаках, заполняющих кратер вулкана Эттринrep-Беллерберг близ г. Майен (Германия). Образовался в ксенолитах известняка (от 1 до 100 см в поперечнике) при их контактовом метаморфизме и декарбонатизации в виде зерен (до 3 мм), насыщенных жидкими и твердыми включениями. Зерна заключены в агрегат эллестадита, куспидина, геленита, браунмиллерита, майенита, периклаза. В постмагматическую стадию под воздействием насыщенных газами флюидов райнхардбраунситсодержащие породы частично были замещены вторичными минералами (кальцит, фатерит, доломит, гипс, флюорит, брусит, портландит, гидрокалюмит, эттрингит, таумасит, гидрогранат, афвиллит), при этом райнхардбраунсит перекристаллизовался в агрегат сдвойникованных кристаллитов (30–300 мкм) и частично заместился криптокристаллическими продуктами [1].

Искусств. Синтезированы конечные члены серии Ca₅[SiO₄]₂(OH)₂-Ca₅[SiO₄] F₂, для которых соответственно $a_0 = 11,4481$ и 11,492; $b_0 = 5,0759$ и 5,046, $c_0 = 8,9207$ и 8,777; $\beta = 108,32$ и 109,09°; V = 492 и 481 Å³; уд.в. 2,822 и 2,918; $n_m = 1,630$ и 1,60. Искусственный Ca₅[SiO₄]₂(OH)₂ назван кальциохондродитом [1, 3, 4].

Межплоскост	ные расстоя	ния райнхард	браунсита
из шлаков вулкан	а Эттрнигер	-Беллерберг	(Германяя) [1]
0 1/		W	-

СиКα-излучение. Камера Гинье

hkl	1	d (Å)	hki	1	d(Å)	hki	1	d(Å)
001	< 5	8,43	020	5	2,526	ē03;600	30	1,807
201	20	5,421	213;212	35	2,509	313	15	1,802
110	< 5	4,574	411	20	2,492	205;204	5	1,769
011	10	4,324	120	15	2,462	4 23	10	1,727
002	10	4,180	ī21	< 5	2,410	514	10	1,722
202:201	20	3,997	403	10	2,365	4 05;403	20	1,691
111	40	3,806	121	< 5	2,317	005	30	1,674
221;210	15	3,697	113	5	2,251	130	< 5	1,665
ī 12	50	3,322	ī22	< 5	2,189	604;601	45	1,658
012	5	3,226	222;221	5	2,137	315	20	1,653
212	5	3,136	512	5	2,051	131	< 5	1,648
311	80	3,035	214;213	5	2,023	131	< 5	1,617
310	50	2,941	114	10	2,010	415	< 5	1,602
112	75	2,903	510	10	1,993	ī32	< 5	1,574
203;202	20	2,893	314	< 5	1,966	712	30	1,555
4 01	10	2,866	223;222	100	1,902	331	5	1,541
003	10	2,790	421	50	1,894	330;314	10	1,526
312	40	2,775	023	5	1,873	132	5	1,521
4 02;400	20	2,711	422;420	15	1,848	332	< 5	1,502
311	35	2,571	511	10	1,821			
ī13	40	2.542	114	10	1.813			

Литература

¹. Hamm H.-M., Hentschel G. // Neues Jb. Miner. Monatsh. 1983. H. 3. S. 119.

2 Kirfel A., Hamm H.-M., Will G.// Tschermaks. miner. und petrogr. Mitt. 1983. Bd. 31, H. 1/2. S. 137.

3. Buckle E.R., Taylor H.F.W. // Amer. Miner. 1958. Vol. 43, N 9/10. P. 818.

4. Gutt W., Osborne G.Y. // Trans. Brit. Ceram. Soc. 1966. Vol. 65, N 9. P. 521.

Сонолит* Sonolite Mn₉[SiO₄](OH)₂

Без структурных данных с формулой $4Mn_2[SiO_4] \cdot Mn(OH, F)_2$ описан ранее (т. III, вып. 1, с. 322). Согласно [1]: $C_{2h}^5 - P2_1 / b$. $a_0 = 4,872$, $b_0 = 10,669$, $c_0 = 14,287$ Å; $\alpha = 100,3^\circ$; V = 732,7Å³; Z = 2.

Относится к ряду Mn-гумита, структура состоит [1] из изолированных ортосиликатных анионов [SiO₄] и катионных блоков [MO₆]-октаэдров, объединенных по общим ребрам в зигзагообразные цепи (фиг. 10). Атомы Si занимают две позиции. Исследованный образец содержал ионы Ca и Mg. Катионы Mn(Ca, Mg) распределены по пяти независимым позициям (M) в соответствии с их размерами: ион Mg²⁺, имеющий минимальный радиус, сконцентрирован преимущественно в позиции M(3), крупный ион Ca²⁺ – в позициях M(2)₅ и M(2)₆ (см. фиг. 10). Два атома H гид-

Фяг. 10. Структура сонолита в проекции вдоль оси а (по Като и др.)

роксильных групп статистически распределены по четырем позициям. Межатомные расстояния (в Å): в H-связях O-H(1) = 0,95 и 2,126, O-H(2) = 0,64 и 2,38; в тетраэдрах [SiO₄] Si(1)-O = 1,619-1,651 (среднее 1,636), Si(2)-O = 1,612-1,642 (среднее 1,633); в M-октаэдрах (среднее) $M(1)_e$ -O = 2,190, $M(1)_N$ -O = 2,202, $M(2)_6$ -O = 2,245, $M(2)_5$ -O(O, OH) = 2,28, M(3)-O(O, OH) = 2,173.

Литература

1. Kato T., Ito Y., Hashimoto N. // Neues Jb. Miner. Monatsh. 1989. H. 9. S. 410.

СТРУКТУРА ТИПА ВЮАНЬЯТИТА

ГРУППА ВЮАНЬЯТИТА

	Сингония	a_0^*	<i>b</i> ₀	<i>c</i> ₀	Уд.в.
Вюаньятит CaA1[SiO₄](OH)	Ромб.	7,055	8,542	5,683	3,20-3,25
Моцартит CaMn ³⁺ [SiO ₄](OH)	•1	5,838	7,224	8,690	3,63

* Наименование осей сохранено в соответствни с данными авторов.

Минералы имеют формулу типа CaM³⁺[SiO₄](OH) и сходные структуры [1, 2]. В основе структуры находится постройка ("стержень" [3]) из связанных общими ребрами линейных цепочек, состоящих из двух октаэдров MO₄(OH)₂, к вершинам которых через общие атомы кислорода присоединены изолированные [SiO₄]-тетраэдры. Последовательно чередующиеся слои из таких "стержней" соединены водородными связями [3]. Пустоты в структуре занимают полиэдры CaO₇(OH), соединенные ребрами с M³⁺-октаэдрами. Структуры минералов различаются величиной межатомных расстояний и геометрией полиэдров, что связано с неодинаковыми размерами атомов Al и Mn³⁺, занимающих октаэдрические M³⁺-позиции в структурах этих минералов.

Литература

1. Sarp H., Bertrand J., McNear E. // Amer. Miner. 1976. Vol. 61, N 9/10. P. 825.

2. McNear E., Vincent M.G., Parthe E. // Ibid. P. 831.

3. Basso R., Lucchetti G., Zefiro L., Palenzona A. // Canad. Miner. 1993. Vol. 31, pt 2/3. P. 331.

Вюаньятит Vuagnatite CaAl[SiO₄](OH)

Назван в честь проф. Вюанья из университета в Женеве [1]. Впервые найден в 1966 г. в округе Мендосино, шт. Калифорния (США), но назван и детально изучен только в 1976–1977 гг. после находки его в Турции [1–3].

Характ. выдел. Кристаллы, удлиненные по оси с (до 0,03-0,5 мм), с квадратными, ромбическими или гексагональными сечениями.

Структ. и морф. крист. Ромб. с. $D_2^4 - P2_12_12_1$. $a_0 = 7,055$, $b_0 = 8,542$, $c_0 = 5,683$ Å; $a_0 : b_0 : c_0 = 0.825 : 1 : 0.665; Z = 4$ [1, 2].

В структуре [1, 2] соединенные ребрами AlO₄(OH)₂-октаэдры образуют в направлении оси с цепочки, которые соединяются общими вершинами с SiO₄-тетраэдрами и общими ребрами – с CaO₇(OH)-полиэдрами (фиг. 11).

Межатомные расстояния (в Å): Al-O = 1,834–2,053, Si-O = 1,615–1,691, Ca-O = 2,328–2,507; углы O-Al-O = 173,21–175,91°. Группы (OH) осуществляют связь между атомами в тетраэдрах, O(2) и O(5) в октаэдрах. Расстояния (в Å): O(5)-H = 0.945; O(2)-H = 1,595; O(2)-O(5) = 2,530; угол O(2)-H-O(5) = 178°.

Кристаллы плохо образованы. Судя по поперечным сечениям, главными формами являются (001), (010), (100) и (110). Редкие второстепенные формы представлены, по-видимому, (0kl), (h0l) или (hkl) [1].

Физ. св. Сп. отсутствует. Уд.в. 3,20–3,25 (вычисл. 3,42), разница обусловлена присутствием мелких посторонних включений. Цв. белый, в тонких срезах бесцветный. Бл. стеклянный [1].

Фиг. 11. Структура вюаньятита в проекции вдоль оси *а* (по Мак Нир и др.). Цифры – высота атомов (×100)

Микр. Пл. опт. осей (010). Np = c, Nm = b, Ng = a. Удлинение (-). Двуосный (-). $n_g = 1,730$, $n_m = 1,725$, $n_p = 1,700$; $n_g - n_p = 0,030$; $2V = 48^\circ$. Дисперсия очень сильная, r > v.

Хим. Теор. состав: CaO – 31,83; Al₂O₃ – 28,95; SiO₂ – 34,10; H₂O – 5,12. Анализ вюаньятита из Турции (микрозонд., среднее из 25 определений) [1]: CaO – 31,52; Al₂O₃ – 27,76; SiO₂ – 33,59; H₂O – не опр.; сумма 92,87; отмечены: К (~1000 ррт, Mn (~400 ррт), Ті и Р (~120 ррт). Потеря воды при нагревании – 5,11 [3].

Диагн. исп. П.п. тр. плавится со вспучиванием, образуя пузырчатое стекло, растворимое в кислотах [3].

Повед. при нагр. Нагревание в течение 20 ч при температурах около 300, 355, 435, 475, 520, 560 и 612° не приводит к потере веса и изменению оптических свойств. При дальнейшем нагревании (при 665° в течение 20 ч и при 725° в течение 19 ч) на рентгенограмме появляются сначала слабые линии геленита, а затем гексагональной фазы CaAl₂Si₂O₈, которая при 950° превращается в анортит. Потеря веса наступает после нагревания при 725° в течение 38 ч [3].

Нахожд. Впервые в виде мелких кристаллов обнаружен [3] в округе Мендосино, шт. Калифорния (США), в метаморфических породах Францисканской формации позднемезозойского возраста. Находится в тесной ассоциации с гидрогроссуляром; образовался при сравнительно низкой температуре, но при высоком $P_{\rm H_2O}$. Там же встречены лавсонит, розенханит и кимрит. В горах Таурус (Юго-Западная Турция) обнаружен [1] в секущих гарцбургит-серпентиниты дайках анортозитового габбро, которые частично или полностью родингитизированы. Образует тонкие прожилки в ассоциации с пренитом, гидрогроссуляром, томсонитом, везувианом, цоизитом, кальцитом; известен как продукт замещения плагиоклаза. Упоминается о находке вюаньятита в Японии и в родингитах Гватемалы [1].

Отл. Внешне похож на цоизит, отличается от него отсутствием спайности.

Межплоскостные расстояния вюаньятита из Турция [1]

			Cura	nonyna	inc.			
hkl	1	d (Å)	hkl	1	d(Å)	hki	1	d (Å)
110	15	5,44	230; 202	40	2,212	203; 322	10	1,665
111	40	3,94	212	40	2,14	0,51; 420	30	1,632
200	25	3,53	231; 320	15	2,07	332	30	1,528
201	100	2.993	140	10	2.04	430; 402	10	1,50
002	30	2.84	22 2	15	1,96	233; 152	10	1,44
220	5	2.72	132	40	1,93	060; 004	10	1.43
130; 102	70	2,635	113; 312	10	1,77	510, 143; 150	10	1,38
112	60	2,517	400	15	1.767	Кроме тог бых линий	о, боле	е 10 сла-
221	50	2,453	023; 331; 410	10	1,726			
131	60	2,391	042	25	1,71			

Литература

1. Sarp H., Bertrand J., McNear E. // Amer. Miner. 1976. Vol. 61, N 9/10. P. 825.

2. McNear E., Vincent M.G., Parthe E. // Ibid. P. 831.

3. Pabst A. // Neues Jb. Miner. Monatsh. Abh. 1977. Bd. 129, Hf. 1. S 1.

Моцартит Mozartite CaMn³⁺[SiO₄](OH)

Назван в честь Вольфганга Амадея Моцарта, в связи с 200-летием со дия его рождения, совпавшим по времени с находкой минерала [1].

Характ. выдел. Неправильные зерна (0,1-0,5 мм) и единичные кристаллы.

Структ. и морф. крист. Ромб. с. $D_2^4 - P2_12_12_1$ (монокристальная съемка). $a_0 = 5,838, b_0 = 7,224, c_0 = 8,690$ Å; $a_0 : b_0 : c_0 = 0,8080 : 1 : 1,2029;$ V = 366,5 Å³; Z = 4 [1]. Изоструктурен с вюаньятитом (фиг. 12). Отличается от него смещениями в относительном положении октаэдрических (M³⁺)-позиций вследствие замещения меньшего по размерам атома на больший и соответственным изменением геометрии полиэдров: межатомных расстояний и углов связей.

Межатомные расстояния (в Å): Si-O = 1,624-1,662; Mn-O(5) = 1,858-1,873; Mn-O(1,34) = 2,024-2,171; Ca-O = 2,329-2,629. Углы: O-Si-O = 100,80-114,77; O-Mn-O = 85,20-98,21; O-Ca-O = 62,75-108,78°.

Кристаллы короткопризматические, вытянутые по [100]; доминирующая призма заканчивается ромбическим тетраэдром.

Физ. св. Сп. отсутствует. Изл. раковистый. Хрупок. Уд.в. 3,63 (вычисл. 3,68). Цв. темно-красный. Черта красная. Бл. стеклянный. Прозрачный. Не флюоресцирует.

Микр. Плеохроизм сильный: по Ng – оранжево-красный, по Nm – желтый, по Np – желто-бурый. Двуосный (+). $Np = c. n_g = 1,920, n_m = 1,855, n_p = 1,840; n_g - n_p = 0,080.$ Удлинение (+). $2V = 50^{\circ}$ (вычисл. 52,8°).

Хим. Теор. состав: CaO – 27,46; Mn₂O₃ – 38,70; SiO₂ – 29,43; H₂O – 4,41.

Анализ (микрозонд., среднее из 6): MgO – 0,05; CaO – 27,08; Al₂O₃ – 0,49; $Mn_2O_3 - 38,72$; SiO₂ – 29,75; H₂O – 4,41 (рассчитано по разности, совпадает с теоретическим); сумма 100,00.

Фиг. 12. Расположение октаздров и тетраздров в структуре моцартита (по Бэссо и др.). Пуиктиром показаны Н-связи

Эмпирическая формула (на основе 5 атомов О): Ca_{0.98}(Mn_{1.00}Al_{0.02})× ×(OH)_{1.00}Si_{0.99}O_{4.00}. Состав кристаллов гомогенный.

Нахожд. Обнаружен среди выполнения крупных жил, секущих массивные браунитовые руды, переслаивающиеся с офиолитовыми метасланцами, на марганцевом руднике Сергиара в Восточной Лигурии (Италия). Наблюдался в ассоциации с пектолитом и небольшими количествами кальцита, кварца и гаусманнита.

Межплоскостные расстояния моцартита из Италии [1] МоК_л-излучение. Дифрактометр

hkl	1	d (Å)	hkl	I	d(Å)	hkl	I	d (Å)
011	Сильи.	5,558	212	Оч. слаб.	2,296	311	Оч. слаб.	1,836
111	Слаб.	4,025	220	Слаб.	2,269	231	Слаб.	1,817
020	Слаб.	3,613	023	Слаб.	2,260	040	Оч. слаб.	1,806
120	Сильи.	3,070	221	Слаб.	2,197	302	Оч. слаб.	1,775
022	Оч. слаб.	2,776	004	Оч. слаб.	2,173	133	Слаб.	1,765
013	Сильн.	2,687	032	Оч. слаб.	2,106	204	Слаб.	1,743
211	Оч. сильн.	2,584	014	Оч. слаб.	2,081	320	Оч. слаб.	1,713
122	Слаб.	2,509	222	Слаб.	2,013	342	Слаб.	1,669
113	Слаб.	2,441	132	Оч. слаб.	1,980	313	Оч. слаб.	1,577
202	Оч. слаб.	2,422	114	Оч. слаб.	1,959	224	Оч. слаб.	1,570
031	Оч. слаб.	2,320	024	Слаб.	1,862	233	Слаб.	1,565
						240	Оч слаб	1 538

Литература

1. Basso R., Lucchetti G., Zefiro L., Palenzona A. // Canad. Miner. 1993. Vol. 31, pt 2, P. 331.

ТИПА ПАНТАЛИТА СТРУКТУРА

	Сингония	<i>a</i> ₀	<i>c</i> 0	Уд.в.
анталит CaAl ₂ [SiO ₄](OH) ₄	Тетраг.	4,952	23,275	2,8

HI:

Шанталит Chantalite

CaAl₂[SiO₄](OH)₄

Назван по имени Шанталь Сарп, жены первооткрывателя минерала [1].

Характ, выдел. Скопления мелких неправильных зерен (0,1-0,3 мм) или таблитчатых кристаллов $(0, 1 \times 0, 1 \times 0, 2 \text{ мм})$ [1].

Структ. н морф. крист. Тетраг.с. $C_{4b}^6 - I4_1/a$ [2]. $a_0 = 4,952$, $c_0 = 23,275$ Å; $a_0:c_0 = 1:4,700; \beta = 109,5^\circ; Z = 4$ [2]. $a_0 = 4,945, c_0 = 23,268$ Å; $a_0:c_0 = 1:4,705;$ $V = 568.9 \text{ Å}^3$ [1].

В структуре участвуют CaO₈-, AlO₆- и SiO4-полиэпры (фиг. 13) [2]. Октаэдры AlO6 соелинены: общими ребрами в зигзагообразные цепочки, перпендикулярные оси с. В элементарной ячейке четыре цепочки расположены одна над другой, каждая последующая перпендикулярна предыдушей. Коорцинаты атомов в цепочке: 0, 1/4, 1/2, 3/4. Цепочки связаны изолированными SiO₄-тетраэдрами и искаженными CaO8-полиэдрами с центрами по $z = \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}$. Между параллельными цепочками AlO₆ имеются каналы, вдоль которых локализованы водородные связи О(2)-Н...О(1). Высокая степень симметрии структуры отразилась на симметрии полиздров SiO₄, AlO₆ и CaO₈.

Межатомные расстояния (в Å): Si-O(1) = = 1.642; Al-O = 1.864-1.960; Ca-O == 2,386-2,554; H-O(2) = 1,05; H-O(1) = 2,20;•Э(1)-O(2) = 3,218; угол O(2)-H-O(1) = 161° [2].

Форма кристаллов близка к пластинчатой.

Физ. св. [1]. Сп. отсутствует. Уд.в. 2,8-2.9 (вычисл. 2,97). Бесцветный или белый. Бл. стеклянный.

Микр. Плеохроизм отсутствует. Одноосный (-). $n_e = 1,653, n_o = 1,642; n_e - n_o = 0,011;$ погасание волнистое.

Хим. Теор. состав: CaO - 22,31; Al₂O₃ -±0,23; SiO₂ − 23,90; H₂O − 13,54.

Анализ (микрозонд., среднее из 8): Na₂O -.06; MgO - 0.06; CaO - 21.83; FeO - 0.02; Al₂O₃ – 38,67; SiO₂ – 23,90; H₂O – 15,46 (анал. Бизар).

Эмпирическая формула (по сумме катионов=4): Ca_{1.00}Al_{1.974}Si_{1.023}(OH)_{4,42}.

Фиг. 13. Структура шанталита (по Либау и др.)

Нахожд. Найден среди серпентинитов офиолитовой зоны Таврических гор Юго-Западной Турции в метасоматически измененных (родингитизированных) дайках диабазов и анортозитовых габбро [1]. Ассоциирует с типичными для процесса родингитизации силикатами кальция – пренитом, цоизитом, гидрогроссуляром, вюаньятитом, везувианом, диопсидом. Среди таблитчатых зерен шанталита встречаются мелкие включения вюаньятита ромбической или треугольной формы. Минералы образуются в одинаковых *P*–*T* условиях (500° и средние *P*).

Межилоскостные расстояния шанталита из Юго-Западной Турцин [1]

		Сик _α -излучение								
hkl	1	d(Å)	hkl	1	d (Å)	hkl	1	d(Å)		
004	25	5,810	125	15	1,996	138	5	1,373		
101	45	4,828	00.12	15	1,939	233	5	1,354		
103	70	4,171	208	15	1,887	30.11	25	1,301		
112	60	3,349	127	20	1,846	12.15	5	1,272		
114	10	3,0	220	25	1,749	20.16	5	1,256		
008	10	2,90 9	10.13	20	1,683	40 0	10	1,239		
116	100	2,598	303	5	1,609	30.13; 11.18	10	1,213		
20 0	15	2,472	305	10	1,553	10.19; 143	5	1,187		
109	15	2,284	12.11	25	1,529	12.17	5	1,164		
118	50	2,235	11.14	10	1,502	334	10	1,141		
121	35	2,202	10.15	5	1,481	22.16	5	1,118		
123	15	2,127	00.16	60	1.453	24 0	10	1,109		
206	5	2,088	12.13		1,393	40.10	10	1.090		

Литература

1. Sarp H., Deferne J., Liebich B.W. // Schweiz. miner. und petrogr. Mitt. 1977. Bd. 57, H. 2. S. 149. 2. Liebich B.W., Sarp H., Parthe E. // Ztschr. Kristallogr. 1979. Bd. 150, H. 1/4. S. 56.

СТРУКТУРА ТИПА ЭЛЛЕНБЕРГЕРИТА

	Сингония	<i>a</i> ₀	c ₀	Уд.в
Элленбергерит (Mg, Ti, Zr, □) ₂ Mg ₆ ×	Гексаг.	12,247	4,929	3.15
\times (Al, Mg) _e [SiO ₄] _e [(Si, P)O ₂ (OH) ₂] ₂ (OH) _e		-	•	

Элленбергерит Ellenbergerite

 $(Mg, Ti, Zr, \Box)_2 Mg_6(Al, Mg)_6[SiO_4]_6[(Si, P)O_2(OH)_2]_2(OH)_6$

Назван по имени французского геолога Ф. Элленберга [1].

Характ. выдел. Включения (до 1 мм) в кристаллах пиропа, изредка кристаллы до 10 мм в длину.

Структ. и морф. крист. Гексаг. с. C_6^6 - $P6_3$ ($P6_3 mc - y$ кристаллов с высоким содержанием фосфора). $a_0 = 12,2471$ и 12,285, $c_0 = 4,9287$ и 4,939 Å; V = 640,20 и 645,5 Å³ при содержаниях TiO₂ = 4,0 и 1,3: ZrO₂ = 0,2 и 2,7; P₂O₅ = 0,3 и 3,7; Z = 1 [1, 2].

Кремнекислородный радикал представлен изолированными тетраэдрами [Si(O, OH)₄], Mg и Al находятся в октаэдрических позициях (фиг. 14). Октаэдры сгруппированы в цепочки двух типов, вытянутые вдоль оси с. Одинарные цепочки из M(2)-октаэдров, соединенных общими гранями, расположены на осях 6₃. В каждой из них пустые октаэдры закономерно чередуются с заселенными атомами Mg и Фиг. 14. Структура элленбергерита в проекцин на плоскость (010) (по Шопену и Ланге)

(Ті, Zг), атомы Ті и Zr смещены из центров октаэдров в сторону вакантных. Длина общих ребер M(2)-октаэдров (2,814 Å) меньше неразделенных (2,952 Å). Сдвоенные зигзагообразные цепочки октаэдров сложены парами неправильных $M(1)_1$ - и $M(1)_2$ -октаэдров, соединенных гранями. Больший из них занят Mg, меньший – Al. Оба катиона сдвинуты из центров октаэд-

ров, вследствие чего расстояние между ними увеличино от 2,368 до 2,842 Å. Вдоль цепочки эти пары сочленяются общими ребрами. Двойные цепочки объединены общими вершинами октаэдров. (Si, P)O₂(OH)₂-тетраэдры расположены на осях 3 порядка и имеют общие вершины с октаэдрами сдвоенных цепочек. Шесть SiO₄тетраэдров в общей позиции связывают одиночные и сдвоенные октаэдрические цепочки. Из 10 протонов 6 входят в состав двойных цепочек, 2 связаны с октаэдрами одинарных цепей и два образуют OH-группы свободных вершин (Si, P)тетраэдров [1–3].

Изучено изменение межатомных расстояний и координат атомов при увеличении t до 754° и P до 46 кбар [2]. Структура характеризуется чрезвычайно плотной чпаковкой атомов. Объем, приходящийся на 1 атом О, равен 16,8 Å³ (близок к таковому у коэсита).

Структурная формула в оригинальных работах [1–3] не приведена, но по эписанию структуры она может быть представлена в виде: $(Mg_{\chi}(Ti, Zr)_{\chi} \Box_{\chi})_2 \times$

 $\times Mg_6(Al, Mg)_6[(Si, P)O_3(OH)]_2[SiO_{3,66}(OH)_{0,33}]_6(OH)_6.$

Кристаллы редки, призматические, с гексагональным сечением [1].

Физ. св. Сн. отсутствует. Изл. плоскораковистый. Хрупкий. Тв. 6,5. Уд.в. 3.15–3,22 (вычисл. 3,10 для Ті-разновидностей, 3,17 для Zr-разновидностей). Цв. турпурный до сиреневого, центральные части зерен иногда розовые или дымчатые. Бл. стеклянный [1].

В ИК-спектре отмечается широкая полоса в области 3500 см⁻¹ с отчетливым плечом при 3600 см⁻¹. В ультрафиолетовом свете не флюоресцирует. В электронном пучке наблюдалась слабая голубоватая катодолюминесценция [1].

В оптическом спектре (исследованы 27 точек в 5 кристаллах) наблюдается пирокая полоса поглощения с максимумом от 19 500 (для пурпурных зон) до 18 500 см⁻¹ (для зон с сиреневым оттенком). Корреляция частоты этой полосы с кимическим составом не обнаружена, но ее интенсивность возрастает при увеличении содержания (Ti + Fe_{общ}), т.е. поглощение обусловлено переносом заряда сжду Ti⁴⁺ и Fe²⁺ вдоль оси 6₃ в соседних M(2)-октаэдрах. Слабая широкая полоса -13000 см⁻¹ обусловлена переносом заряда в паре Fe³⁺–Fe²⁺. Обе полосы строго воляризованы параллельно оси с [3].

Микр. Сильный плеохроизм: по No – бесцветный, по Ne – от бесцветного до •емно-пурпурного или густо-сиреневого, почти непрозрачного. Одноосный (-). No ⊥ с. $n_o = 1,6553-1,6789$, $n_e = 1,6538-1,6697$ ($\lambda = 589$ нм). n_o коррелируется с отношением Ti/(Ti + Zr), n_e более зависит от содержания Р (см. табл. анализов). $n_o-n_e = 0,0015-0,0092$. Характерна отчетливая сложная зональность. Нередко зерна в центре розовые, с низким двупреломлением, внешние зоны окрашены интенсивнее и имеют более высокое двупреломление. Отмечались тонкие, вытянутые вдоль оси с включения, вероятно, жидкие [1].

Хим. Теор. состав $(Mg_{J_3}Ti_{J_3} \Box_{J_3})_2 Mg_6Al_6 Si_8O_{28}(OH)_{10}$: MgO – 22,42; TiO₂ – 4,45; Al₂O₃ – 25,52; SiO₂ – 40,10; H₂O – 7,51; для формулы $(Mg_{J_3}Ti_{J_3} \Box_{J_3})_2 \times Mg_6(Al_4 Mg_2)(Si_6P_2)O_{28}(OH)_{10}$: MgO – 29,04; TiO₂ – 4,76; Al₂O₃ – 16,95; SiO₂ – 29,97; P₂O₅ – 11,80; H₂O – 7,48. Колебания химического состава обусловлены главным образом замещениями SiAl \rightleftharpoons PMg и Ti \rightleftharpoons Zr. Кроме того, Mg частично замещается на Fe²⁺, в незначительном количестве присутствует Fe³⁺. Возможны также замещения TiMg \rightleftharpoons AlAl и SiTi \rightleftarrows PAl. Содержание P обычно менее 8,5%, но отмечались кристаллы, содержащие 16% P₂O₅ и имеющие иную простр. гр. (см. выше). Содержание H₂O, определенное калориметрическим методом при 110°, равно 8,0 ± 0,4% [1].

Анализы (микрозонд., для 5 кристаллов 1 образца из массива Дора Мейр, Италия) [1]:

	1	2	3	4	5	6	7	8	9
MgO	21,80	22,48	22,09	22,33	22,58	22,57	22,76	24,38	25,80
FeO	0,40	0,20	0,30	0,25	0,24	0,15	0,23	0,41	0,41
Al ₂ O ₃	24,79	25,24	24,71	24,79	24,62	23,74	23,56	22,09	20,64
SiO ₂	38,61	39,30	38,77	38,56	38,53	37,30	37,08	35,07	32,61
TiO ₂	2,67	4,10	2,39	1,73	2,52	2,06	1,48	1,03	0,58
ZrO	1,92	0,00	1,95	3,10	1,65	2,11	2,82	2,42	2,13
P ₂ O ₅	0,00	0,44	0,55	0,89	1,46	1,90	2,39	5,55	8,26
Сумма	90,19	91,76	90,76	91,65	91,60	89,83	90,32	90,95	90,43
n _o	-	1,6789	1,6687	-	1,6719	1,6671	-	1,6553	-
n _e	-	1,6697	1,6645	-	1,6666	1,6617	-	1,6538	-
		I	Тересчет	анализо	в на 33 а	тома О:			
Si	7,98	7,91	7,94	7,86	7,80	7,72	7,65	7,16	6,69
Р	-	0,07	0,10	0,15	0,25	0,33	0,42	0,96	1,43
Al	6,03	5,99	5,97	5,95	5,88	5,79	5,73	5,32	4,99
Ti	0,42	0,62	0,37	0,26	0,39	0,32	0,23	0,16	0,09
Zr	0,19	-	0,19	0,31	0,16	0,21	0,28	0,24	0,21
Mg	6,71	6,74	6,75	6,79	6,82	6,96	7,00	7,43	7,89
Fe	0,07	0,03	0,05	0,04	0,04	0,03	0,04	0,07	0,07

Повед. при нагр. При повышении температуры от 20 до 754° с выдержкой в течение 2 ч через каждые 50° параметры элементарной ячейки возрастают: a_0 – от 12,2573 до 12,3311, c_0 – от 4,9316 до 4,9735 Å, V – от 641,7 до 654,9 Å³; после охлаждения снижаются: a_0 – до 12,2580, c_0 – до 4,9341 Å, V – до 642,1 Å³. Изменение интенсивности рефлексов на рентгенограмме, связанное, вероятно, с потерей протонов, начинается при t = 750°. Средний коэффициент термического расширения в интервале 20–800° по оси a = 8,2 · 10⁻⁶, по оси c = 11,5 · 10⁻⁶ град⁻¹ [2].

Нахожд. Обнаружен в кристаллическом массиве Дора Мейр (Западные Альпы, Италия) в коэситсодержащих фенгит-пироп-кварцитовых породах, где наряду с тальком, кианитом, клинохлором, рутилом, цирконом и глаукофаном образует

включения в крупных (2–20 см) порфиробластах пиропа. Образовался в условиях высокого давления (25–30 кбар) при t = 700–800° [1].

Отл. В шлифах трудноотличим от тулита (разновидность цоизита розового цвета) и пьемонтита. От дюмортьерита отличается более низким двупреломлением и одноосностью [1].

Межплоскостные расстоинии элленбергерита из метаморфических пород массива Дора Мейр (Италня) [1] Сц-излучение, Ni-фильтр, D = 114.6 мм

hkl	<i>l</i> *	d (Å) изм.	<i>d</i> (Å) вычисл.	hkl	<i>l</i> *	d (Å) изм.	d (Å) вычисл.
110	25	6,15	6,13	321	55	2,186	2,183
200	<	_	5,31	212	25	2,101	2,101
101	20	4,48	4,47	302	10	2,023	2,023
210	15	_	4,01	420	5	-	2,006
201	50	3,61	3,61	501	10	1,947	1,950
300	75	3,54	3,54	421	10	1,857	1,858
211**	100	_	3,11	402	20	1,806	1,806
220	55	3,06	3,06	511	30	1,778	1,778
301	<	2,879	2,875	322	15	1,731	1,733
400	70	2,653	2,653	521	10	1,607	1,607
311	25	2,526	2,528	332	10	1,573	1,573
002	10	2,465	2,466	611	30	_	1,538
320	<	_	2,435	440	30	1,534	1,532
401	30	2,336	2,337	213	10	1,523	1,521
112	20	2,287	2,288	531; 701	5	_	1.449
202	<5	_	2,236	522	10	1,398	1,399

* / из дифрактограммы.

** d (изм.) в оригинале не указано.

Литература

1. Chopin Ch., Klaska R., Medenbach O., Dron D. // Contrib. Miner. and Petrol. 1986. Vol. 92, N 3. P. 316. 2. Comodi P., Zanazzi P.F. // Europ. J. Miner. 1993. Vol. 5, N 5. P. 819, 831.

3. Chopin Ch., Langer K. // Bull. minér. 1988 Vol. 111, N 1. P. 17.

СТРУКТУРА ТИПА ПОЛДЕРВААРТИТА

	Сингония	<i>a</i> ₀ ·	b_0	<i>c</i> ₀	Уд.в.
Полдерваартит Ca(Ca _{0.5} Mn _{0.5})[SiO ₃ OH](OH)	Ромб.	9,398	9,139	10,535	2,91

Полдерваартит Poldervaartite Ca(Ca₀ ₅Mn₀ ₅)[SiO₃OH](OH)

Назван в честь Эйри Полдеваарта, профессора петрологии Колумбийского уннверситета [1].

Характ. выдел. Идиоморфные кристаллы (0,07 × 0,07 × 0,1 мм) и зернистые агрегаты.

Структ. и морф. крист. Ромб.с. D_{2h}^{15} -*Pbca*. $a_0 = 9,398$, $b_0 = 9,139$, $c_0 = 10,535$ Å; $a_0:b_0:c_0 = 1,028:1:1,153$; V = 904,8 Å³; Z = 8.

В структуре участвуют три вида полиэдров: слабо искаженные октаэдры M(1), заселенные атомами Са, в окружении 4 атомов О и двух групп ОН; сильно искаженные тригональные дипирамиды, где позиции M(2) заняты атомами Са (0,67) и Vin (0,3) с окружением из 3 ионов O²⁻ и двух групп ОН; тетраэдры Si, где 1 атом O

Фиг. 15. Структура полдерваартита (по Дэю и др.)

замещен группой ОН с образованием кислотного радикала $[SiO_3OH]^{3-}$, необычного для островных силикатов (фиг. 15). Полиэдры образуют чередующиеся вдоль оси *b*, плохо оформленные слои двух типов. Один слой состоит из последовательно соединенных ребрами цепочек полиэдров M(2) и Si (при y = 1/4или 3/4), расположенных вдоль оси *c* и, в свою очередь, соединенных в слой общими атомами О. Другой слой состоит из пар M(1)-октаэдров, имеющих общие ребра и скрепленных водородными связями, он явля-

ется промежуточным между двумя слоями M(2) + Si и скрепляет их через общие ребра полиэдров. Подобная полиэдрическая решетка обладает высокой прочностью, что объясняет отсутствие спайности в минерале.

Межатомные расстояния (в Å): M(1)-O = 2,506-2,447; M(2)-O = 2,259-2,807; Si-O = 1,619-1,696; H(1,2)-O(1,4) = 0,84; H(1,2)-O(5,3) = 1.81 и 2,38; углы O-Si-O = 104,5-114,8°.

Кристаллы призматические. Формы (110), (100), (010), (001).

Физ. св. Сп. отсутствует. Тв. 5. Уд.в. 2,91 (вычисл. 2,90). Внутренние части зерен бесцветны и прозрачны, оторочки – молочно-белого цвета, полупрозрачны. Бл. стеклянный, на поверхности зерен полустеклянный.

Микр. Плеохроизм слабый: по Ng – голубовато-серый, по Nm – светло-серый, по Np – бесцветный. Двуосный (+). Ng = c, Nm = a, Np = b. $n_g = 1,656$, $n_m = 1,640$, $n_p = 1,634$; $n_e - n_p = 0,022$. Дисперсия слабая, r < v.

Хим. Теор. состав Ca(Ca_{0,5}Mn_{0,5})[SiO₃OH](OH): CaO – 42,54; MnO – 17,96; SiO₂ – 30,38; H₂O – 9,12.

Анализы (микрозонд., среднее из 2): CaO – 41,5; MgO – 0,0; MnO – 18,7; FeO – 0,1; SiO₂ – 29,8; H₂O – 9,4 (среднее из данных TГА); сумма 99,5.

Эмпирическая формула (по сумме катионов = 3): $Ca_{1,47}Mn_{0,53}Si_{0,99}O_{3,96} \cdot 1,04 H_2O$.

Повед. при иагр. По данным ТГА, вода начинает выделяться выше 460°.

Нахожд. Обнаружен на руднике Вессель марганцеворудного поля Калахари (Южная Африка). Ассоциирует с бултфонтейнитом, браунитом, гаусманнитом, анритермьеритом, кальцитом и гематитом.

Межплоскостные расстояния полдерваартита из Калахари (Южная Африка) [1]
СиКа-излучение. Дифрактометр

hkl	1	d(Å)	hkl	1	<i>d</i> (Å)	hkl	1	d (Å)
002	11	5,24	230	23	2,554	422	12	1,939
210	45	4,18	104	12	2,531	242; 413	20	1,911
112	11	4,09	321	25	2,504	125	12	1,871
211	18	3,87	231	11	2,478	234; 431	12	1,829
121	11	3,82	114	11	2,436	243; 225	20	1,770
202	24	3,50	223	42	2,391	404	11	1,748
022	11	3,44	204	12	2,296	414	12	1,723

hk!	1	d (Å)	hki	1	d(Å)	hkl	1	d (Å)
220; 212	26	3,27	024; 410	13	2,276	315	14	1,713
122	100	3,231	041	10	2,229	144	20	1,696
113	14	3,091	124	13	2,215	433	14	1,647
311	42	2,846	331	11	2,137	325	21	1,634
131: 023	35	2,789	042	13	2,091	244	12	1,613
213: 302	16	2,685	420	13	2,085	442	20	1.559
123	17	2,665	233	15	2,063	434	13	1,522
004	26	2.624	142	28	2,042	425; 443	13	1,481
312	26	2,576	332; 241	9	2,019	245	13	1,467

Литература

1. Dai Y., Harlow G.E., McGhie A. // Amer. Miner. 1993. Vol. 78, N 9/10. P. 1082.

СТРУКТУРА ТИПА ГЕРСТМАННИТА

	Сингония	a_0	b 0	<i>c</i> 0	Уд.в
Герстманнит	Ромб.	8,185	18,650	6,256	3,68
MnMgZn[SiO ₄](OH) ₂					

Герстманнит Gerstmannite $MnMgZn[SiO_4](OH)_2$

Назваи в честь коллекционера минералов Эдварда Герстманна [1].

Характ. выдел. [1]. Кристаллы ($2 \times 2 \times 10$ см) и их розетковидные, перистые и спутанно-волокнистые агрегаты.

Структ. и морф. крист. [1]. Ромб. с. D_{2h}^{18} -Стса. $a_0 = 8,185, b_0 = 18,650, c_0 = 6,256$ Å; $a_0:b_0:c_0 = 0,4389:1:0,3354$ (СиК_а-излучение); $a_0 = 8,176, b_0 = 18,65, c_0 = 6,251$ Å; $a_0:b_0:c_0 = 0,4383:1:0,3352$ (МоК_а-излучение).

Структура основана на плотнейшей кубической упаковке атомов кислорода и гидроксильных групп, в которой плотно упакованные слои параллельны {130} фиг. 16). Может быть описана как упорядоченное чередование ориентированных параллельно {010} двух октаэдрических слоев состава [Mn, MgO₃(OH)₂]²⁻ с двумя тетраэдрическими слоями состава [ZnSiO₄]²⁻, соединенных в трехмерный каркас, что сближает ее со структурами типа ставролита, кианита, шпинели и манганостибита.

В октаэдрических слоях атомы Mg и (Mn, Mg) занимают независимые позиции. Центральные MgO₆-октаэдры соединены общими ребрами в цепочки, параллельные [001]. Боковые MnO₆-октаэдры имеют четыре общих ребра с выше- и нижележащими MgO₆-октаэдрами и одно – с симметрично-эквивалентным MnO₆-октаэдром и распределены в плоскости, параллельной (010). Атомы Si тетраэдрических слоев занимают пустоты в кубической плотнейшей упаковке из атомов O. Структурная формула MnMgZn[SiO₄](OH)₂.

Межатомные расстояния (в Å): Мп-OH = 2,090-2,372; Мп-O = 2,119-2,167; Мg-OH = 2,030-2,056; Мg-O = 2,155; Zn-O = 1,938-1,957; Si-O = 1,629-1,652. Углы: O-Mn-O = 70,1-117,0; O-Mg-O = 83,1-96,9; O-Zn-O = 98,4-117,5; O-Si-O = = 108,4-112,6°.

Физ. св. Сп. хорошая по (010). Тв. 4,5. Уд.в. 3,68 (вычисл. 3,66). Цв. белый до бледно-розового. Черта белая. Бл. стеклянный до субалмазного на спайных поверх-

Фиг. 16. Структура герстманнита (по Муру и Араки)

Идеализированиое изображение полиздров в проекции на (001): MgO-октаздры образуют цепочки, параллельные [001]; MnO-октаздры расположены на уровнях z = 0 и z = 1/2; тетраздры, изображенные как T--О ступеньки, находятся из уровнях z = 0 и 1/2 (Si), z = 1/4 и 3/4 (Zn)

ностях; в плотных массах шелковистый. Прозрачный до непрозрачного. В ультрафиолетовых лучах не флюоресцирует.

Микр. Двуосный (-). Ng || a, Nm || c, Np || b. $n_g = 1,678$; $n_m = 1,675$, $n_p = 1,665$; $n_g - n_p = 0,013$; $2V = 50-60^\circ$.

Хим. Теор. состав $(Mg_{0,625}Mn_{0.375})_2ZnSiO_4(OH)_2$: MgO – 19,2; MnO – 20,2; ZnO – 30,9; SiO₂ – 22,8; H₂O – 6,9.

Анализы (месторождение Стерлинг-Хилл, США):

	1	2	3		1	2	3
Na ₂ O	0,04	0.04	Нет	ZnO	30,5	31,7	29,6
CaO	2,2	_	•	SiO ₂	23,0	23,9	23,2
MgO	16.0	16,6	19,5	H ₂ O	Не опр.*	Не опр.	Не опр.
MnO	21,2	21,1	21,1	Сумма	93,4	93,4	93,4

* Из отдельной навески 121 мг в трубке Пенфильда определено 4,12% H₂O.

1 – с примесью кальцита (анал. Ито); 2 – пересчет ан. 1 после исключения примеси кальцита; 3 – микрозонд. (анал. Ирвинг).

Диагн. исп. Медленно растворяется в разб. НСІ при комнатной температуре; раствор прозрачен, бесцветен.

Нахожд. Наблюдался в виде прожилков в гидротермальных жилах франклинитвиллемитовых руд, залегающих в мраморах, на руднике Стерлинг-Хилл, Огденбург, округ Сусекс, шт. Нью-Джерси, США. Ассоциирует с виллемитом, содержащим зерна ярко-розового магнезиального аллеганита и остатки окисленного пирохроита, замещая эти минералы.

Межилоскостные расстоянии герстманина из месторождении Стерлинг-Хилл (США) [1]

				α				
hkl	1	d (Å)	hkl	1	<i>d</i> (Å)	hkl	1	d (Å)
020	85	9,326	222	25	2,403	282	5	1,7001
111	50	4,806	171	10	2,348	422	5	1,6842
040	25	4,661	080	75	2,332	313	5	1,6502
121	40	4,388	232	15	2,308	333	10	1,6010
200	10	4,088	270	30	2,232	292	10	1,5012
210	15	3,994	062	10	2,204	004	25	1,5644
131	5	3,881	242	5	2,193	0.12.0	45	1,5548
220	15	3,747	351	10	2,076	462	35	1,5002
230	80	3,418	400	5	2.046	2.10.2	10	1,4920
060	20	3,108	280	10	2,025	472	5	1,4403
240	20	3,078	420	20	1,9982	234	5	1,4223
151	60	2,983	191	35	1,9124	2.11.2	5	1,4003
250	75	2,758	082	25	1,8692	0.12.2	10	1,3920
042	100	2,598	272	10	1,8168	4.10.0	15	1,3787
311	25	2,480	153	5	1,7763	954	10	1,3603
912	50	2,466	381	5	1,7053			

Литература

1. Moore P.B., Araki T. // Amer. Miner. 1979. Vol. 62, N 1/2. P. 51.

СТРУКТУРА ТИПА СВЕРИГЕИТА

	Сингония	<i>a</i> ₀	b_0	<i>c</i> 0	Уд.в.
Сверигент	Ромб.	10,815	13,273	6,818	3,60
Na(Mg, Mn ²⁺) ₂ SnBe ₂ [SiO ₄] ₂ (OH)					

Сверигент Sverigeite Na(Mg, Mn²⁺)₂SnBe₂[SiO₄]₃(OH)

Назваи по месту иаходки – старому названию Швеции [1].

Характ. выдел. Пластинчатые выделения неправильной формы (до 10 мм), хорошо образованные кристаллы (длиной 2 мм) [1].

Структ. и морф. крист. Ромб. с. $D_{2h}^{28} - Imma$. $a_0 = 10,815$, $b_0 = 13,273$, $c_0 = 6,818$ Å; $a_0: b_0: c_0 = 0,815: 1: 0,513$ [2]; $a_0 = 6,818$, $b_0 = 13,273$, $c_0 = 10,815$ Å [1], Z = 4.

В структуре [2] выделяются три элемента: 1) октаэдрические колонки из SnO₆октаэдров и плоских NaO₄-групп, идущие параллельно [001] (фиг. 17,*a*); 2) волнообразные тетраэдрические цепочки, состоящие из чередующихся трех- и четырехчленных Be-Si-колец Be₂SiO₈(OH) и Be₂Si₂O₁₁(OH), расположенных параллельно [100] (см. фиг. 17,*6*); 3) дискретные M₂O₁₀-группы из MO₆-октаэдров (M – Mn, Mg), которые связывают октаэдрические колонки и тетраэдрические цепочки (см. фиг. 17,*в*). Минерал является ортосиликатом. Каждый Si-тетраэдр участвует двумя вершинами в связях с атомом Ве с образованием сложных тетраэдрических цепей. Если рассматривать Si- и Be-тетраэдры в качестве единого мотива, то минерал можно отнести к цепочечным берилло-силикатам (согласно классификации Золтаи) с формулой Na(Mg,Mn²⁺)₂Sn[Be₂Si₃O₁₂(OH)].

Фиг. 17. (в)

Предполагается наличие водородной связи О(5)-Н-О(4).

Средние межатомные расстояния (в Å): Sn-O = 2,030; М-O = 2,149; Na-O = = 2,433; Si-O = 1,614 и 1,644; Be-O = 1,629.

Кристаллы [1] удлинены по [001]. Наиболее развиты грани призмы (130), дипирамиды (121), а также (011)-призмы и (001)-пинакоида.

Физ. св. [1]. Сп. совершенная по (010), следы двух других неопределенных направлений спайности заметны на некоторых зернах в иммерсии. Тв. ~ 6,5. Уд.в. 3,60 (вычисл. 3,61). Цв. желтый. Черта светло-желтая. Бл. стеклянный на плоскостях спайности и трещин, грани кристаллов тусклые. В ультрафиолетовых лучах не флюоресцирует.

Микр. [1]. Плеохроизм умеренный: по Np – желтый; по Nm ~ Ng – бледножелтый. Np > Nm = Ng. Двуосный (+). Ng = b, Nm и Np – в плоскости преобтадающей спайности. $n_g = 1,699, n_m = 1,684, n_p = 1,678; 2V = 67^\circ$. Дисперсия сильная. r > v.

Хим. Теор. состав: Na₂O - 5,82; MgO - 7,58; MnO - 13,33; BeO - 9,40; SnO₂ -28,31; SiO₂ - 33,87; H₂O - 1,69.

Анализ (микрозонд.) [1]: Na₂O – 6,1; MgO – 8,1; MnO – 11,8; FeO – 0,3; ZnO – 1,2; BeO – 9,7; SiO₂ – 33,5; SnO₂ – 28,5; H₂O – 1,2; сумма 100,4. H₂O определена весовым методом Пенфильда, Be – методом атомной абсорбции. Спектральным анализом обнаружены следы Pb, Ba, Ca, Cu, Zr, B и Ti.

Эмпирическая формула (в пересчете по параметрам элементарной ячейки и удельному весу): Na_{4.18}Mg_{4.26}Mn²⁺₃₋₅₃Fe²⁺_{0.09}Zn_{0.31}Be_{8.23}Sn⁴⁺₄₀₁Si_{11 83}O_{48 77}H_{2 83}.

Нахожд. [1]. Найден в отвалах месторождения Лонгбан (Вемланд, Швеция) в марганцовистом кальците с миметитом, якобситом, амфиболом.

Межплоскостные расстояння сверигента из Швеции [1]

	D = 114,6 мм								
hkl	I	d (Å)	hkl	1	d (Å)	1	d (Å)		
020	50	6,63	310	5	2,240	20	1,528		
110	20	6,06	060	1	2,214	5	1.506		
101	7 0	5,77	204	5	2,117	2	1,469		
121	70	4,35	161; 105	20	2,064	5	1,455		
022	5	4,19	224	10	2,014	5	1,439		
130	5	3,71	125	2	1,965	10	1.410		
040	2	3,31	303	10	1,923	10	1.351		
220	60	2,98	341; 323	20	1,848	2	1,325		
202	100	2,884	163; 253	10	1,814	5	1,307		
042	90	2,826	244	30	1,784	2	1.291		
004	50	2,706		10	1,750	5	1,205		
222	60	2,644		10	1,705	1	1.174		
024	1	2,501		10	1,592	I	1.159		
240	5	2,379		10	1,582		•		
143	1	2,303		2	1,550				

Литература

1. Dunn P.J., Peacor D.R., Summons W.B., Gaines R.V. // Geol. fören. Stockholm förhandl. 1984. Vol. 106, N 2. P. 175.

2. Rouse R.C., Peacor D.R., Metz G.W. // Amer. Miner. 1989. Vol. 74, N 11/12. P. 1343.

	Синго- ния	a_0	<i>b</i> ₀	<i>c</i> 0	α	β	γ	Уд.в.
Кулиокит-(Y) Y ₄ Al[SiO ₄] ₂ (OH) ₂ F ₅	Трикл.	8,606	8,672	4,317	102,79°	97,94°	116,66°	4,3

СТРУКТУРА ТИПА КУЛИОКИТА(Y)

Кулиокит-(Y) Kuliokite-(Y) Y₄Al[SiO₄]₂(OH)₂F₅

Назван по месту находки в районе р. Кулнок (Кольский п-ов) [1].

Характ. выдел. Зерна, кристаллы от 0,5 мм [1] до 3 см [2], агрегаты кристаллов типа "розы".

Структ. и морф. крист. Трикл. с. C_i^{I} –*P*1. $a_0 = 8,606$, $b_0 = 8,672$, $c_0 = 4,317$ Å; $a_0: b_0: c_0 = 0.9924: 1:0.4978$; $\alpha = 102.79^\circ$, $\beta = 97.94^\circ$, $\gamma = 116.66^\circ$; V = 270.1 Å³; Z = 1 [1]. $a_0 = 8.607$, $b_0 = 8.687$, $c_0 = 4.318$ Å; $\alpha = 102.82^\circ$, $\beta = 97.96^\circ$, $\gamma = 116.65^\circ$; V = 270.7 Å³ – для норвежского образца [2].

В основе структуры [3] - тетраэдры [SiO₄], образующие с октаэдрами Al ленты

Фиг. 18. Структура кулиокита-(Y) в проекции, перпендикулярной оси с (по Соколовой др.)

фиг. 18), идущие в направлении оси с. Восьмивершинники иттрия образуют зигзагоподобные цепочки, объединение которых в плоскости (211) создает ажурный слой с миндалевидными пустотами. Трансляция такого слоя вдоль оси с приводит к образованию каналов, в которых располагаются Al-Si-ленты. Узлы элементарной ячейки минерала расположены в центрах Al-октаэдров.

Межатомные расстояния (среднее, Å): в Y-полиэдрах Y_I -F(O, OH) = 2,29, O-O = 3,10, Y_2 -F(O, OH) = 2,33, O-O = 2,94, Y_3 -F(O, OH) = 2,33, O-O = 2,94, Y_4 -F(O, OH) = 2,29, O-O = 2,70; в Si-тетраэдрах Si₁-O = 1,64, O-O = 2,68, Si₂-O = = 1.64, O-O = 2.67 [3].

Кристаллы пластинчатого облика [1], псевдомоноклинные [2]; содержат мельчайшие включения иттрофлюорита [2].

Физ.св. Сп. несовершенная по (010). Тв. 4–5. Уд.в. 4,3 (вычисл. 4,26). Бесцветный. Черта белая. Бл. алмазный. Прозрачный. В образце из Норвегии уд.в. - 20. Цвет светло-розовый [2].

В ультрафиолетовых лучах не люминесцирует, в катодных лучах светится келто-зеленым цветом.

ИК-спектр характеризуется двумя полосами поглощения с максимумами при .445 и 3420 см⁻¹, что указывает на присутствие гидроксильных групп.

Микр. Двуосный (-). $n_g = 1,703$, $n_m = 1,700$, $n_p = 1,656$; $2V = 19^\circ$ (вычисл. 29°). Дисперсия оптических осей ясная, r > v [1]. Для образца из Норвегии $2V = 10-15^\circ$ 2].

Хим. Анализы (микрозонд.):

	I	2		I	2
CaO	0,00	0,27	Dy ₂ O ₃	1,38	0,22
Al ₂ O ₃	7,36	7,94	Er ₂ O ₃	2,24	0,15
Y ₂ O ₃	56,40	57,52	Yb ₂ O ₃	2,71	0,56
Lu ₂ O ₃	0,11	0,15	Tm ₂ O ₃	0,10	-
Gd ₂ O ₃	0,39	1,45	Ho ₂ O ₃	0,19	0,53

	I	2		1	2
Tb ₂ O ₃	0,00	-	Сумма	102.08	102,12
Ce ₂ O ₃	-	1,59	$-O = F_2$	5,66	5,95
SiO ₂	17,75	17,60	Сумма	96,42	96,17
F	13,45	14,14	H ₂ O	3,58*	2,50**
			Сумма	100,0	98,67

*По разности. **По данным хим. анализа (анал. Брун). 1 – Кольский п-ов [1]; 2 – из района Хойдален, Норвегия [2]. Эмпирические формулы (на основе 7 катионов): I – (Y_{3.58}Yb_{0.10}Er_{0.09}Dy_{0.06}Gd_{0.02})_{23.85}Al_{1.04}Si_{2.12}O_{7.60}(OH)_{2.88}F_{5.08};

 $2 - (Y_{3.61}Y_{0.02}Er_{0.01}Dy_{0.01}Gd_{0.06}Ce_{0.07})_{\Sigma 3.78}Al_{1.10}Si_{2.07}O_{7.84}(OH)_{1.97}F_{5.27}$

Изм. [2]. Замещается псевдоморфно кайнозитом, карбонатсодержащими фазами, частично иттрофлюоритом, иногда агрегатами монацита, ксенотима и кайнозита, реже кальцитом и тенгеритом. Продуктом разрушения кулиокита, заключенного в гранате, является камфаугит-(Y) – Ca₂Y₂(CO₃)₄(OH)₂ · 3H₂O.

Отл. Макроскопически неотличим от таленита. Близок к нему по оптическим данным, отличаясь меньшими показателями преломления [1].

Нахожд. [1]. Обнаружен в амазонитовых пегматитах Кольского п-ова в виде включений во флюорите или тонкопластинчатых кристаллов по поздним трещинам в нем, а также в кварце. Находится в ассоциации с таленитом, ксенотимом, кайнозитом и бастнезитом.

В аналогичных породах и ассоциации встречен в районе Хойдален, Норвегия [2]. Образуется в конечные стадии постмагматического этапа минералообразования.

Fe-излучение, D = 114,6 мм										
hkl	I	<i>d</i> (Å)	hkl	I	<i>d</i> (Å)	hkl	1	<i>d</i> (Å)		
100	3	7,380	540	2	1,606	433	3	1,145		
210	5	4,270	422	2	1,578	513; 472	Ip	1,134		
200	9	3,710	451; 422	2	1,544	232; 760	I	1,122		
111	9	3,490	331	5	1,516	351; 731	I	1,117		
121	6	3,310	412	1	1,506	433	2	1,109		
101	1	3,210	541	3 1u	1,490	352	3	1,103		
011	2	3,150	550	I	1,472	601	2	1,100		
310; 210	10ш	2,793	512	1	1,426	761	3p	1,082		
311	5	2,544	551	4	1,402	431; 831	2	1,068		
300	8ш	2,459	302	lp	1,391	700; 480	I	1,057		
321	4р	2,366	411	2	1,366	633	lp	1,046		
321	5	2,234	342	2	1,354	382	lp	1,043		
331	7	2,144	303	2	1,347	251	2	1,038		
241	lp	2,081	452	I	1,335	171	1	1,031		
310	3ш	2,051	650	lp	1,322	771	2	1,028		
211	2	2,081	512	3	1,301	711	lp	1,024		
421; 212	5	1,985	233	1	1,295	860	I	1,022		
212	4ш	1,926	542	4	1.271	553	T	1.020		

Межплоскостные расстояния кулиокита-(Y), Кольский н-ов [1]

hkl	1	<i>d</i> (Å)	hkl	I	<i>d</i> (Å)	hkl	I	<i>d</i> (Å)
301	2	1,894	251	4p	1,253	353	I	1,018
431	6	1,855	432	2р	1,243	404	1	1,013
440	I	1,837	660	lp	1,226	612	lp	1,006
222	2	1,816	561; 331	4p	1,217	582	Ip	1,002
431	3	1,801	741	lp	1,195	244	3	0,999
132	6р	1,762	323	I	1,186	713	lp	0,991
141	8	1,702	513	1	1,178	762	lp	0,984
351	3	1,650	503	3р	1,166	710; 810	3	0,980
311; 441	1	1,637	372	3p	1,161			

Межплоскостные расстояния кулнокита-(Y) из Норвегии [2] FeK₀-излучение. Камера Гинье

hkl	I	<i>d</i> (Å)	hkl	I	<i>d</i> (Å)	hkl	I	<i>d</i> (Å)
100	5	7,379	311	20	2,535	401	5ш	1,890
110	20	4,276	300	10	2,468	400	30	1,850
120	20	4,245	030	20	2,448	302	10ш	1,827
011	20	4,167	22 1	20	2,226	222	10	1,811
101	50	4,049	231	80	2,135	321	10	1,794
200	90	3,697	022	5	2,078	132	10ш	1,778
111	80	3,475	310	5ш	2,055	222	20	1,738
021	50	3,297	4ĪĪ	10	2,011	142	30	1,693
211	20	3,151	212	50	1,977			
121	100	2,786	041	30	1,922			

Литература

Волошин А.В., Пахомовский Я.А., Тюшева Ф.Н., Соколова Е.В., Егоров-Тисменко Ю.К. // Минерал. жури, 1986. Т. 8, № 2. С. 94.

 Raade G., Sebo P.C., Austrheim H., Kristiansen R. // Еигор. J. Miner. 1993. Vol. 5, N 4. P. 691. Соколова Е.В., Егоров-Тисменко Ю.К., Волошин А.В., Пахомовский Я А. // ДАН СССР. 1986. Т. 289, № 6. С. 1378.

СТРУКТУРА ТИПА СЯНХУАЛИНИТА

	Сингония	Пр.гр.	a 0
Сянхуалинит* Hsianghualinite Li2Ca3Be3[SiO4]3F2	Кубич.	<i>T⁵</i> – <i>I</i> 2 ₁ 3	12,864

Описан как минерал с невыясненной структурой (т. III, вып. 1, с. 522).

Основу структуры [1] составляет смешанный каркас из тетраэдров [SiO₄]⁴⁻ и BeO₄]⁶⁻, аналогичный алюмосиликатному каркасу анальцима. Ве и Si находятся в равных количествах и строго упорядоченно чередуются по тетраэдрическим - озициям (фиг. 19). Относится к ортосиликатам.

Параллельно координатным плоскостям в каркасе выделяются слои, в которых имеются четверные кольца из Ве- и Si-тетраэдров, соединенные с четырьмя соседшми через одиночные тетраэдры с образованием крупных 12-членных петель. Угол 5:-О-Ве в кольцах составляет 121,7°, в мостиковых тетраэдрах – 140°. Слои наклавываются друг на друга так, что четверные кольца одного слоя центрируют ?2-членные петли соседних.

Фнг. 19. Структура сянхуалинита в проекции на плоскость (001) (по Расцветаевой и др.)

Са находится в восьмивершиннике (слегка скрученный куб), Li – в тетраэдрах из атомов О и F.

Межплоскостные расстояния (в Å) в тетраэдрах: Si-O = 1,617-1,636; Be-O = 1,61-1,67.

1. Расцветаева Р.К., Рехлова О.Ю., Андрианов В.И., Малиновский Ю.А. // ДАН СССР. 1991. Т. 316, № 3. С. 624.

СТРУКТУРА ТИПА СИТИНАКИТА

	Сингония	a_0	<i>c</i> 0	Уд.в.
Ситинакит $Na_2KTi_4[SiO_4]_2O_5OH \cdot 4H_2O$	Тетраг.	7,821	12,021	2,86

Ситинакит Sitinakite

Na2KTi4[SiO4]2O2OH ·4H2O

Назван по химическому составу (силикат титана, натрия, калия) [1]. Первоначально описан под условным названием "М46" [2].

Характ. выдел. Кристаллы $(1 \times 1 \times 2 \text{ мм} [1], \text{ от } 0,5-1 \text{ до } 2-3 \text{ мм} [2])$ и пластинчатые выделения до 3-5 см [2].

Структ. и морф. крист. Тетраг. с. $P4_2/mcm. a_0 = 7,821, c_0 = 12,021$ Å; Z = 2; V = 735,3 Å³ [1].

Основой структуры является новый тип октаэдрической колонки $[Ti_4O_{12}(O, OH)_2]_{\infty}$, состоящей из объединенных через общие вершины кластеров $[Ti_4O_{12}(O, OH)_4]$, сформированных четверками реберно-связанных Ti-октаэдров ((Ti-O)_{cp}=1,972 Å, длины ребер О-О варьируют от 2,912 до 2,526 Å) (фиг. 20, *a*-*e*).

Фиг. 20. Структура ситинакита (по Соколовой и др.) *a* – проекция *ab*; *б* – новый тип колонки из Ті-октаэдров [Ti₄O₁₂(O, OH)₂]_∞; *в* – чередование Siтетраэдров и Na-октаэдров вдоль оси *с*

Колонки связаны тетраэдрами [SiO₄] (Si–O = 1,628 Å при O–O = 2,617–2,691 Å) в мешанный Ti–Si-каркас, в котором вдоль диагоналей [110] и [110] протягиваются цепочки из искаженных Na-октаэдров. Вдоль оси 2_z Na-октаэдры и Si-тетраэдры чередуются, их общее ребро укорочено до 2,617 Å (см. фиг. 20,6). Каналы цеолитового характера [001] с сечением 5 Å статистически заполнены атомами K и H₂O.

Кристаллохимическая формула с учетом данных химического анализа: $a_2(H_2O)_2[(Ti_{3,80}Nb_{0,20})O_4(O_{1,5}OH_{0,5})_2(SiO_4)_2](K_{0,69}Na_{0,11})(H_2O)_{1,7}$, идеализированная формула: $Na_2(H_2O)_2[Ti_4O_5(OH)(SiO_4)_2]K(H_2O)_2$ [3].

В связи с аномальной оптической двуосностью минерала предполагается чокальное понижение симметрии при заполнении канала атомами К и молекулами H₂O. Возможно понижение симметрии до ромбической в образцах с большим содеранием примеси атомов Nb при упорядоченном их распределении по двум октаэдрисским позициям Ti [3].

Сходные колонки из четверных октаэдрических кластеров, связанных ортоетраэдрами [A₄O₁₂(BO₄)]_∞, где A – Ge⁴⁺, Fe³⁺, Ti⁴⁺; B – Ge⁴⁺, As⁵⁺, Si⁴⁺, отмечаются некоторых природных и синтетических соединениях (германогерманат натрия, ⊃армакосидерит и др.) [3].

Кристаллы кубовидные и короткопризматические, а также их сростки, включая чень характерные крестообразные [1, 2]. Хорошо развиты формы (100), (001) и экие грани (110). Отмечалась штриховка вдоль оси с [2].

Физ. св. Сп. совершенная по {100}, отдельность по {001}. Хрупкий. Излом ступенчатый. Тв. 4,5. Микротвердость 301–412 кгс/мм² (среднее 356), нагрузка 30– 5) г. Уд.в. 2,86 (вычисл. 2,89). Цв. светло-коричневый с бледно-розовым оттенком,

же бесцветный. Просвечивает, в тонких сколах прозрачный. Черта белая. Бл.

Минералы т. IV, вып. 3

стеклянный до перламутрового на плоскостях спайности. Флюоресценцией не обладает [1].

В ИК-спектре проявлены полосы поглощения 1660, 3000, 3350 и 3354 см⁻¹, что свидетельствует о присутствии молекул H₂O и OH-групп [1]

Микр. Одноосный, положительный. $n_0 = 1,780$, $n_e = 1,988$. Характерна аномальная двуосность ($2V = 10-11^\circ$) [1].

Хим. Анализы:

	1	2	3		l	2	3
Na ₂ O	10,79	10,79	10,68	Nb ₂ O ₅	5,05	5,05	7,46
K₂O	4.93	4,93	5,05	Ta_2O_5	0,05	0,05	-
CaO	0,05	0,05	Не обн.	TiO ₂	46,68	46,68	43,22
SrO	0,96	0,96	0,18	ZrO ₂	0,08	0,08	-
BaO	0,58	0,58	0,86	SiO ₂	17,80	17,80	18,32
Ce ₂ O ₃	0,12	-	-	H ₂ O	11,70	11,70	12,0
Fe ₂ O ₃	0,16	0,16	0,28	Сумма	98,95	98,95*	98,13**
* D most II		0.12					

* В том числе TR₂O₃ – 0,12.
 ** В том числе Al₂O₃ – 0,08.

Хибины (микрозонд., среднее из 3 анализов), H₂O определена термогравиметрическим методом
 [1]; 2 – Кукисвумчорр, анал. Полежаева [2]; 3 – Коашва, анал. Куликова, H₂O – расчетная [2].

Эмпирическая формула (на 18 атомов О): $(Na_{2,28}K_{0,68}Sr_{0,06}Ba_{0,02}Ca_{0,01})_{3,05} \times (Ti_{3,82}Nb_{0,25}Fe_{0,01})_{4,08}Si_{1,94}O_{13}(OH_{0,54}O_{0,46}) \cdot 3,98 H_2O. В упрощенном виде: Na₅KTi₄Si₂O₁₃(OH) \cdot 4 H₂O [1].$

Диаги. исп. В воде и кислотах (HCl и HNO₃) при комнатной температуре не растворяется [1].

Повед. при нагр. При нагревании от 180 до 700° удаляется 8,5% H₂O, от 700 до 1000 ° – медленно еще 3,2%. Суммарная потеря – 11,7%. Эндо- и экзотермические эффекты на кривой ДТА не выявлены. Структура минерала при прокаливании до 400° не меняется. При 500° минерал аморфизуется. От 600 до 1000° прокаленный материал дает рентгенограмму, идентичную таковой искусственного соединения Na₂Ti₅O₁₁. Прокаленное до 1000° вещество, сохраняя исходную форму кристаллов, становится молочно-белым. При 1100° первичный кристалл распадается на агрегат мельчайших игольчатых черных кристаллов рутила [1].

Нахожд. Установлен в Хибинском массиве в гидротермалите и двух пегматитовых жилах, залегающих в породах мельтейгит-уртитового ряда вблизи крупных апатитовых тел на горах Кукисвумчорр и Юкспор [1], а также в ряде точек центральной дуги массива [2]. Впервые был обнаружен как первичный гидротермальный минерал в натролитовых желваках зонального строения (от периферии к центру: натролит, виноградовит, эгирин) из полей центральной части гидротермалита. Встречается в основном в виноградовитовой зоне, в меньшей степени в натролите и среди эгирина вблизи виноградовитовой зоны. Кристаллизуется несколько позже виноградовита [1]. Как вторичный гидротермальный минерал, замещающий ранние титаносиликаты (предположительно щербаковит, ломоносовит и ненадкевичит), отмечается в пегматитах, где совместно с виноградовитом, эгирином и шариками органического вещества или с биотитом и ненадкевичитом слагает псевдоморфозы по неизвестному пластинчатому минералу [1].

n	n
ч	ч
,	,

Межплоскостные расстояния ситивакита из Хяби	œ [2]
--	-------

		many tennic. I p	афитовый монох	роматор	
hkl	I	d (Å)	hkl	1	d(Å)
100	100	7.84	006	70	2,003
002	100	6,02	304	10	1.970
111	40	5,04	400	20	1.955
102	20	4.77	106	30	1.942
200	30	3,91	410	30	1.895
210	10	3,49	402	20	1.859
211	50	3,36	404	30	1.638
113	80	3,25	414; 423	10	1.604
104	50	2,805	306	10	1.591
220	20	2,767	430	10	1.563
114	40	2,643	217	10	1.541
300	60	2,608	511	10	1.520
310	30	2,475	433	10	1.457
311	30	2,427	513	10	1.433
204	20	2,385	317	10	1.410
313	10	2.106	406	20	1.399
224	10	2,035	128	10	1.380

Монизлучение Графиторый монокран

Литература

- 1. Меньшиков Ю.П., Соколова Е.В., Егоров-Тисменко Ю.К., Хомяков А.П., Полежаева Л.И. II Зап. ВМО. 1992. Ч. 121, вып. 1. С. 94.
- 2. Хомяков А.П. Минералогия ультраагпантовых щелочных пород. М.: Наука, 1990. 200 с.
- 3. Соколова Е.В., Расцветаева Р.К., Андрианов В.И., Егоров-Тисменко Ю.К., Меньшиков Ю.П. // ДАН CCCP. 1989. T. 307, № 1. C. 114.

СИЛИКАТЫ СО СДВОЕННЫМИ КРЕМНЕКИСЛОРОДНЫМИ ТЕТРАЭДРАМИ

А. БЕЗ ДОПОЛНИТЕЛЬНЫХ АНИОНОВ

Структура типа келдышита Группа келдышита Келдышит Na₃HZr₂[Si₂O₇]₂ \cdot n H₂O Паракелдышит Na₂Zr[Si₂O₇] Хибинскит K₂Zr[Si₂O₇] Структура типа мелилита Группа мелилита Джеффрейит (Ca, Na)₂(Be, Al)[Si₂(O, OH)₇] Структура типа барилита Группа барилита Андремейерит ВаFe₂[Si₂O₇] Джунитоит $CaZn_2[Si_2O_7] \cdot H_2O$ Структура типа тортвейтита Группа тортвейтита Кейвиит-(Yb) (Yb, Y)₂[Si₂O₇] Кейвиит-(Y) (Y, Yb)₂[Si₂O₇] Гиттинсит CaZr[Si₂O₇] Структура типа эдгарбейлиита Эдгарбейлиит Hg₆[Si₂O₇]

Б. С ДОПОЛНИТЕЛЬНЫМИ АНИОНАМИ

Структура типа вердингита Вердингит (Mg, Fe)₂Al₁₄[Si₂O₇]₂(BO₃)₄O₁₁ Структура типа бафертисита Группа бафертисита Хейтманит Ba(Mn, Fe)₂Ti[Si₂O₇]O(OH, F)₂ Группа ломоносовита Вуоннемит Na₁₁TiNb₂[Si₂O₇]₂(PO₄)₂O₃F [Борнеманит] Na₇BaTi₂Nb[Si₂O₇]₂(PO₄)O₃F Структура типа перрьерита Группа перрьерита Стронциочевкинит Sr₂(La, Ce)_{1.5}Ca_{0.5}Fe²⁺_{0.5}Fe³⁺_{0.5}(Ti, Zr)₂Ti₂[Si₂O₇]₂O₈

```
Структура типа бельковита
                    Бельковит Ваз(Nb, Ti)6[Si2O7]2O12
Структура типа куспидина
            Группа куспидина
                   Багдадит Са<sub>3</sub>Zr[Si<sub>2</sub>O<sub>7</sub>]O<sub>2</sub>
                    Бурпалит Na<sub>2</sub>CaZr[Si<sub>2</sub>O<sub>7</sub>](F, OH)<sub>2</sub>
                   Янхаугит (Na, Ca)<sub>3</sub>(Mn, Fe)<sub>3</sub>(Ti, Zr, Nb)<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>]<sub>2</sub>(O, OH, F)<sub>4</sub>
                   Йортдалит (Na, Ca)<sub>4</sub>Ca<sub>8</sub>Zr<sub>2</sub>M<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>]<sub>4</sub>O<sub>3</sub>F<sub>5</sub>,
где M – Zr, Ti, TR, Y, Ca, Mn^{2+}, Fe<sup>2+</sup>, Nb
                   Пжаффент Сас[Si2O7](OH)с
            Группа сейдозерита
                   Накарениобсит-(Ce) NbNa<sub>3</sub>Ca<sub>3</sub>(Ce, La, Nd)ISi<sub>2</sub>O<sub>7</sub>l<sub>2</sub>OF<sub>2</sub>
Структура типа ферсманита
                   Ферсманит<sup>*</sup> Ca<sub>s</sub>Na<sub>3</sub>Ti<sub>3</sub>Nb[Si<sub>2</sub>O<sub>7</sub>]O<sub>8</sub>F<sub>2</sub>
Структура типа киллалаита
                   Киллалаит Саз+, H1-, [Si2O7](OH)
Структура типа ильваита
            Группа ильваита
                   Хенномартинит SrMn _{2}^{3+} [Si<sub>2</sub>O<sub>7</sub>](OH)<sub>2</sub> · H<sub>2</sub>O
Структура типа назонита
                   Hasohur Pb6Ca4[Si2O7]3Cl2
  труктура типа ганомалита
                   Ганомалит<sup>*</sup> Pb<sub>o</sub>Ca<sub>5</sub>Mn[Si<sub>2</sub>O<sub>7</sub>]<sub>3</sub>[SiO<sub>4</sub>]<sub>3</sub>
  труктура типа эпидота
           Группа эпидота
                   Стронциопьемонтит CaSr(Al, Mn<sup>3+</sup>, Fe<sup>3+</sup>)<sub>3</sub>[Si<sub>2</sub>O<sub>7</sub>][SiO<sub>4</sub>]O(OH)
                   Диссакисит-(Ce) CaCeMgAl<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>][SiO<sub>4</sub>]O(OH)
                   Долласеит-(Ce) CaCeMg<sub>2</sub>Al[Si<sub>2</sub>O<sub>7</sub>][SiO<sub>4</sub>]F(OH)
                   Христовит-(Ce) CaCeMgMnAl[Si<sub>2</sub>O<sub>7</sub>][SiO<sub>4</sub>]F(OH)
                   Макфаллит Са<sub>2</sub>Мп 3 [Si<sub>2</sub>O<sub>7</sub>][SiO<sub>4</sub>](OH)3
  <sup>-</sup>труктура типа пумпеллиита
           Группа пумпеллиита
                   Пумпеллиит-(Mn<sup>2+</sup>) Ca<sub>2</sub>(Mn<sup>2+</sup>, Mg)(Al, Mn<sup>3+</sup>, Fe<sup>3+</sup>)<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>][SiO<sub>4</sub>](OH)<sub>2</sub>.
                   · 0.5 H<sub>2</sub>O
                  Охотскит Ca<sub>2</sub>(Mn<sup>2+</sup>, Mg)(Mn<sup>3+</sup>, Al, Fe<sup>3+</sup>)<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>][SiO<sub>4</sub>](OH)<sub>2</sub>; Mn<sup>3+</sup>>
           > Mn^{2+}
                   Шуйскит Ca<sub>2</sub>(Mg, Al)(Cr, Al)<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>][SiO<sub>4</sub>](OH)<sub>2</sub> · H<sub>2</sub>O; Cr > Al
   - муктура типа квейтита
                  Квейтит Pb<sub>4</sub>Zn<sub>2</sub>[Si<sub>2</sub>O<sub>7</sub>][SiO<sub>4</sub>](SO<sub>4</sub>)
   - 🖓 уктура типа деллаита
                   Деллаит Ca<sub>6</sub>[Si<sub>2</sub>O<sub>7</sub>][SiO<sub>4</sub>](OH)<sub>2</sub>
   • ¬уктура типа рустумита
                  Рустумит<sup>*</sup> Ca<sub>10</sub>[Si<sub>2</sub>O<sub>7</sub>]<sub>2</sub>[SiO<sub>4</sub>](OH)<sub>2</sub>Cl<sub>2</sub>

    уктура типа самфоулерита

                  Самфоулерит Са14Мп3Zn2(Zn, Be)2Be6[Si2O2]4[SiO4]6(OH, F)6
```

А. БЕЗ ДОПОЛНИТЕЛЬНЫХ АНИОНОВ

СТРУКТУРА ТИПА КЕЛДЫШИТА

ГРУППА КЕЛДЫШИТА

	Сингония	<i>a</i> 0	<i>b</i> ₀	<i>c</i> 0	β	<i>V</i> (Å ³)	Уд.в.
Келдышит Na₃HZr₂[Si₂O ₇]₂ · n H₂O	Трикл. <i>Р</i> і	9,00	5,34	6,96	116°0′	300,4	3,22
Паракелдышит Na ₂ Zr[Si ₂ O ₇]	Трикл. Р	9,31	5,42	6,66	115 20	302,8	3,33
Хибинскит K ₂ Zr[Si ₂ O ₇]	Монокл. <i>C2/m</i>	19,22	11,10	14,10	116 30	2692,1	3,4

Группа объединяет структурно родственные, однотипные по формуле и близкие по свойствам щелочные силикаты циркония с общей формулой $A_2^+Zr[Si_2O_7]$, где A_2^+ – Н и/или щелочные катионы Na и K [1, 2]. Кроме келдышита, к группе относятся два безводных представителя – хибинскит [3] и паракелдышит [4]. По составу, свойствам и условиям образования к келдышиту также близок еще недостаточно изученный гидратированный Na-минерал, описанный первоначально как "фаза IV" [5–7], а позже как "минерал M34" [1] состава NaHZr[Si₂O₇] · n H₂O [5, 6].

Главная черта структуры минералов группы – послойное чередование Zr-октаэдров и диортогрупп [Si₂O₇], образующих каркас смешанного типа, в котором все "немостиковые" атомы кислорода диортогрупп одновременно являются вершинами Zr-октаэдров; щелочные катионы приурочены к крупным полостям и каналам, пронизывающим Si-Zr-каркас (фиг. 21, a, b) [4, 8, 9]. В структуре паракелдышита два типа крупных пустот заселены атомами Na₁ и Na₂, (фиг. 22, a), у келдышита отсутствует атом Na₁ (см. фиг. 22,b), позиция которого вакантна, и для компенсации отрицательного заряда каркаса в структуру внедряются атомы водорода. Слабая химическая связь части щелочных атомов со структурой объясняет низкую устойчивость келдышита, его способность легко замещаться более декатионированным соединением – "фазой IV". Поэтому в природе келдышит является минералогической редкостью, а "фаза IV" пользуется более широким распространением [4, 10].

Для триклинных келдышита и паракелдышита при различных линейных и угловых параметрах решетки характерна близость объемов ячейки. Ярко выражена тригональная псевдосимметрия, которая проявляется в характерном расположении сферического треугольника, связывающего полюса трех систем совершенной спайности по псевдоромбоэдру (100), $(\overline{1}11), (\overline{1}1)$ относительно двойниковой плоскости (001) [1, 10].

Кристаллическая структура хибинскита в основных чертах подобна структуре паракелдышита [9]. Предполагается, что структура мало изученной "фазы IV" однотипна со структурами данной группы.

Из минералов группы наиболее распространены натриевые представители. Келдышит и паракелдышит встречаются в одних и тех же породах. Паракелдышит – высокотемпературный первичный минерал высокоагпаитовых пород, кристаллизующийся вместо эвдиалита либо совместно с ним. Келдышит и "фаза IV" – продукты стадийного изменения паракелдышита в эпитермальных и гипергенных условиях [1, 2].

Естественная последовательность минералов данной группы может быть представлена эволюционным рядом паракелдышит-келдышит-фаза IV", кристаллизующихся из обогащенных щелочами, летучими и редкими элементами

◆иг. 21. Идеализированная (ромбоэдрическая) основа структур минералов группы келдышита (по Воронкову и др.)

а – общий вид; б – элементарная ячейка

Фнг. 22. Структура паракелдышита (a) и келдышита (б) в проекции вдоль оси b (по Халилову и др.)

агпантовых расплавов-растворов. Хибинскит – типоморфный минерал ультраагпантовых ассоциаций калиевого типа. Показатель щелочности К хибинскита и паракелдышита – 40%, келдышита – 33%, "фазы IV" – 25% [1, 2, 11].

Литература

- 1. Хомяков А.П. Минералогия ультраагпантовых щелочных пород. М.: Наука, 1990. 200 с.
- Хомяков А.П. // Научные основы и практическое использование типоморфизма минералов: Материалы XI съезда ММА, Новосибирск, 4-10 сентября 1977 г. М.: Наука, 1980. С. 152.
- 3. Носырев Н.А., Треушников Е.Н., Воронков А.А., Илюхин В.В., Ганиев Р.М., Белов Н.В. // ДАН СССР. 1976. Т. 231, № 6. С. 1351.
- 4. Хомяков А.П. // Там же. 1977. Т. 237, № 3. С. 703.
- 5. Халилов А.Д., Хомяков А.П., Махмудов С.А. // Там же. 1978. Т. 238, № 3. С. 573.
- 6. Хомяков А.П., Воронков А.А., Казакова М.Е., Власова Е.В., Смольянинова Н.Н. // Тр. Минерал. музея АН СССР. 1975. Вып. 24. С. 120.
- 7. Хомяков А.П. // Там же. 1976. Вып. 25. С. 90.
- 8. Воронков А.А., Сизова Р.Г., Илюхин В.В., Белов Н.В. // Кристаллография, 1973. Т. 18, № 1, С. 112,
- 9. Чернов А.Н., Максимов Б.А., Илюхин В.В., Белов Н.В. // ПАН СССР. 1970. Т. 193, № 6. С. 1293.
- Хомяков А.П. // Геохимия. Минералогия. Петрология: XXV Междунар. геол. коигр.: Докл. сов. геологов. М.: Наука, 1976. С. 233.
- Хомяков А.П., Казакова М.Е., Абрамова Т.А., Александрова Р.А., Капцов В.В. // Новые данные по минералогии и минералогическим методам исследования. М.: Наука, 1977. С. 14.

Келдышит Keldyshite

 $Na_3HZr_2[Si_2O_7]_2 \cdot n H_2O$

Первоначально открытый келдышит [1] оказался сростками двух разных силикатов циркония: "фазы II" – Na₂Zr[Si₂O₇] [2, 3], позже названной паракелдышитом [4], и "фазы I" – Na₃HZr₂[Si₂O₇]₂ · n H₂O, которая с 1977 г. утверждена в качестве келдышита [5].

Характ. выдел. Зерна неправильной формы (1–5 мм), агрегаты зерен, сростки с паракелдышитом, псевдоморфозы по нему [2, 3].

Структ. и морф. крист. [5]. Трикл. с. $C_i^1 - P\overline{1}$. $a_0 = 9,0$, $b_0 = 5,34$, $c_0 = 6,96$ Å; $\alpha = 92^\circ$, $\beta = 116^\circ$, $\gamma = 88^\circ$; $a_0 : b_0 : c_0 = 0,1685 : 1 : 1,3034$; V = 300,4 Å³; Z = 2.

Описание структуры см. во Введении к группе (см. фиг. 22, 6).

Своеобразие структуры келдышита – в особом положении одного (из трех на ячейку) атома Na (не фиксируется структурным анализом). Полученная в результате структурной расшифровки формула келдышита NaZr[Si₂O₆OH] отличается от формулы, рассчитанной непосредственно из данных химического анализа, более низким содержанием Na (два атома, вместо трех на ячейку). Возможно, причиной несоответствия является статистическое распределение ¹/з атомов Na [6]. Молекулы воды располагаются в пустотах Si–Zr-каркаса или дополняют Zr-октаэдры до семивершинников [7]. Согласно [7], наиболее вероятным положением OH-групп в структуре келдышита являются узлы решетки, служащие общими вершинами для Zr-октаэдров и диортогрупп [Si₂O₇].

Межатомные расстояния (в Å) [5]: в Zr-октаэдрах Zr-O = 1,91-2,24, O-O = 2,70-3,18; в Si-тетраэдрах Si(1)-O = 1,60-1,78, O-O = 2,66-3,30, Si(2)-O = 1,64-1,75, O-O = 2,62-3,03; в Na-полиэдрах Na-O = 2,30-3,20, O-O = 2,54-3,09, 2,71-3,43.

Физ. св. Сп. по (100), (111), (111) и (001) совершенная. Очень хрупок, легко растирается в порошок. Тв. 344-458 кгс/мм². Уд.в. 3,22. Цв. снежно-белый. Бл. матовый, шелковистый. Непрозрачен, в тонких сколах просвечивает [2, 3].

В ультрафиолетовых лучах свечение интенсивное [2].

На ИК-спектре максимумы поглощения в области 3200–3400, 1400 см⁻¹ связаны с колебаниями ОН-групп и молекул H_2O , в области 1155 см⁻¹ – с деформационными колебаниями связей Si–OH. Интенсивность линии 1155 см⁻¹ почти не меняется при нагревании до 400°, но резко ослабляется при более высоких температурах, вызывая разрушение OH-групп [3, 7].

Микр. Двуосный (+). $n_g = 1,710$, $n_m = 1,682$, $n_p = 1,662$; $2V = 83^\circ$. Характерны сложные полисинтетические двойники; эндотаксические срастания с паракелдышитом: плоскости срастания фаз параллельны (112) и ($\overline{3}02$); неполные гомоосевые псевдоморфозы по паракелдышиту с наследованием не только внешней формы зерен последнего, но и основных деталей внутреннего строения, включая расположение первичных двойников. Участки зерен келдышита и паракелдышита погасают разновременно благодаря их индивидуальным оптическим ориентировкам [8, 9].

Хим. Анализ (образец из долины р. Тавайок, Ловозеро, анал, Казакова): Na₂O – 14,05; K₂O – 0,28; CaO – 1,40; Fe₂O₃ – 0,09; SiO₂ – 39,80; ZrO₂ – 40,46; TiO₂ – 0,60; H₂O – 2,56; сумма 99,24.

Эмпирическая формула (на основе Si + Zr = 6): $(Na_{2,72}K_{0,08}Ca_{0,15})_{2,90} \times H_{1,00}Zr_{2,00}Si_{4,00}O_{14,02} \cdot 0.36 H_2O$ [2].

По Е.И. Семенову (1991) – H_{0,5}Na_{1,5}ZrSi₂O₇ · H₂O, по М. Флейшеру (1990) – Na_{2-x}H₂ZrSi₂O₇ · *n* H₂O.

Диагн. исп. [8]. После обработки слабой 3%-ной HCl переходит в соединение NaHZr[Si₂O₇] · n H₂O ("фаза IV" [2]).

Повед. при нагр. [5]. На кривой ДТА отмечается несколько эндотермических эффектов: 150–200, 280–340, 460 и 530°. При 150–200 и 280–340° наблюдается потеря веса без структурных изменений, что указывает на цеолитный характер части воды. При 460 и 530° происходит полиморфный переход в паракелдышит.

Нахожд. Обнаружен в фойяите и в керне буровой скважины в северо-западной части Ловозерского щелочного массива (гора Аллуайв и район р. Тавайок). Представлен скоплениями зерен (1–5 мм) неправильной формы в интерстициях между калиевым полевым шпатом, нефелином, содалитом, эгирином. Находится также в осоциации с эвдиалитом, лампрофиллитом, апатитом, ильменитом, сфеном. Развивается в виде гомоосевых псевдоморфоз по паракелдышиту [1, 2].

Изм. [8]. В эпитермальных и гипергенных условиях легко замещается более - тубоко декатионированным соединением NaHZr[Si₂O₇] · *n* H₂O ("фаза IV" [2]).

Отл. [8]. От паракелдышита отличается снежно-белой окраской, четко выра-«енной природой вторичных выделений (в виде гомоосевых псевдоморфоз), парактером двойникования (двойниковые прослойки более тонкие, а их число на 1–2 зорядка выше), противоположным оптическим знаком и более низкими покаателями преломления.

Межплоскостные расстояния келдышита горы Аллуайв, Ловозеро [2]

Fe-излучение, D = 57.3 мм

hkl	I	d (Å)	hki	1	d(Å)
ન્ય	2	6,24	_	2	1,683
101, 200; 111	8	4,18	411; 113; 223; 304; 204	2	1,648
-11	10	3,99	510; 323; 214	2	1,614
-11	3	3,38	510; 222; 513	2	1,575
<u>- 7</u> , 111	1	3,27	<u>3</u> 31; <u>6</u> 02; 023; <u>3</u> 14; <u>2</u> 14; 41 4 ;	2	1,547
_	5	2,97	123; 522		
2, 201	3	2,90	_	2	1,521
_	3	2,83	_	2	1,493
ःः, 112; 012	2	2,74	520; 324; 421	2	1,453

hki	1	d (Å)	hkl	1	d(Å)
311; 302	4	2,67	313; 621	2	1,323
-	3	2,62	530; 214	2	1,276
310; 312	3	2,42	233; 434	2	1.236
_	1	2,33	042; 015; 714: 124	2	1,195
221	2	2,26	714; 124	2	1,195
301; 112; 203	2	2,22	802; 043; 803	2	1.159
303; 213; 222	3	2,16	-	3	1.103
222; 003; 313	3	1,998		2	1.049
322; 410	2	1,946	-	2	1,028
212	3	1,903	-	2	1.016
401; 421; 421; 122; 223;	1	1,721	-		
123					
302; 223	3	1,708			

Литература

1. Герасимовский В.И. // ДАН СССР. 1962. Т. 142, № 4. С. 916.

- 2. Хомяков А.П., Воронков А.А., Казакова М.Е., Власова Е.В., Смольянинова Н.Н. // Тр. Минерал. музея АН СССР. 1975. Вып. 24. С. 120.
- 3. Хомяков А.П. // Там же. 1976. Вып. 25. С. 90.
- 4. Хомяков А.П. // ДАН СССР. 1977. Т. 237, № 3. С. 703.
- 5. Халилов А.Д., Хомяков А.П., Махмудов С.А. // Там же. 1978. Т. 238, № 3. С. 573.
- 6. Хомяков А.П., Казакова М.Е., Абрамова Т.А., Александрова Р А., Капцов В.В. // Новые данные по минералогии и минералогическим методам исследований. М.: Наука, 1977. С. 14.
- 7. Хомяков А.П., Калиниченко А.М., Власова Е.В. // ДАН СССР. 1976. Т. 229, № 5. С. 1209.
- 8. Хомяков А.П. Минералогия ультраагпаитовых щелочных пород. М.: Наука, 1990. 200 с.
- 9. Хомяков А.П. // Геохимия. Минералогия. Петрология: XXV Междунар. геол. конгр.: Докл. сов. геологов. М.: Наука, 1976. С. 233.

Паракелдышит Parakeldyshite

Na₂Zr[Si₂O₇]

Название отражает сходство с келдышитом [1].

Первоначально упоминался как "минерал N" [2], "кристаллическая фаза" [1, 3], "новая природная модификация Na₂Zr[Si₂O₇]" [4], "минерал № 1" [5], "фаза II" [6, 7].

Характ. выдел. Зерна от 1-5 мм [1] до 3 см [8], агрегаты зерен, сростки с келдышитом, микровключения в хибинските [1].

Структ. и морф. крист. Трикл. с. $C_i^1 - P\overline{1}$. $a_0 = 9,31$, $b_0 = 5,42$, $c_0 = 6,66$ Å; $\alpha = 94^{\circ}54'$, $\beta = 115^{\circ}20'$, $\gamma = 89^{\circ}35'$; $a_0: b_0: c_0 = 1,7177:1:1,2288$; V = 302,8 Å³; Z = 2 [1, 4]. $a_0 = 5,419$, $b_0 = 6,607$, $c_0 = 8,806$ Å; $\alpha = 71,50$, $\beta = 87,15$, $\gamma = 85,63^{\circ}$; V = 298,0 Å³; Z = 2 (для образца из Норвегии) [8].

Основа структуры (см. фиг. 22,*a*) – каркас смешанного типа из Zr-октаэдров и диортогрупп [Si₂O₇], в котором все "немостиковые" атомы кислорода диортогрупп одновременно являются вершинами Zr-октаэдров. Оба типа полиэдров располагаются слоями, параллельными (001), причем чисто октаэдрические слои чередуются со слоями из диортогрупп в направлении оси с. Щелочные катионы приурочены к крупным полостям и каналам, пронизывающим Si-Zr-каркас [9, 10].

Межатомные расстояния (в Å) [4]: Zr-O = 2,05-2,22; Si-O = 1,58-1,76; в Na-полиэдрах: Na-O = 2,24-2,93.

Структурно родственен другим природным и искусственным соединениям состава A₂B[Si₂O₇] [6, 11, 12].

Природные кристаллы не встречены. На кристаллах синтетического аналога установлены формы: $c\{001\}, a\{\overline{1}00\}, o\{\overline{1}11\}, w\{\overline{1}\overline{1}1\}$ [6].

Формы:

	ф [*] (среднее)	р* (среднее)	φ**	ρ**
c 001	80°00′	25° 02′	79°36′	25°42′
a 100	89 09	90 00	88 27	90 00
k 101	281 00	18 12	281 41	17 59
o 111	345 55	53 00	346 14	53 11
w 111	195 48	50 10	195 17	50 21

*Синтетический кристалл. **Вычислены из рентгеновских данных для природного минерала.

Физ. св. Сп. по (100) и (001) совершенная, по (111) и (111) менее совершенная [6]. Углы между плоскостями спайности 60 и 80°. Тв. ~ 5 [1], 5,5–6 – у образца из Норвегии [8]. Уд.в. 3,33. Бесцветный. Бл. сильный, стеклянный. Водянопрозрачный в тонких сколах, мутноватый – в толстых [1].

В коротковолновой области ультрафиолетового излучения люминесцирует в интенсивно-розовых тонах, в длинноволновой – в бледно-розовых [8].

На ИК-спектре характеристические полосы с максимумами: 990, 945, 880, 595, 560, 503, 472 см⁻¹ [6, 7].

Микр. Двуосный (-). $n_g = 1,718$, $n_m = 1,697$, $n_p = 1,670$; $2V = 83^\circ$ [1]. $n_g = 1,713$, $n_m = 1,692$, $n_p = 1,670$; $2V = 84^\circ$; Ng = a, Nm = c, Np = b – для образца из Норвегии [8]. Характерны пересекающиеся полисинтетические двойники, особенность которых в преобладающем (свыше 90 об.%) развитии одной системы индивидов (А) над двумя другими (В и С), и закономерные (эндотаксические) прорастания с келдышитом [9]. Положение полюса плоскости (001) по отношению к осям индикатрисы: $PNg = 7^\circ$, $PNm = 83^\circ$, $PNp = 89^\circ$ [1].

Хим. Теор. состав: Na₂O – 20,31; ZrO₂ – 40,36; SiO₂ – 39,33 [1]. Анализы:

	Na ₂ O	K ₂ O	MgO	CaO	Al ₂ O ₃	Fe ₂ O ₃ + + FeO	TïO ₂	ZrO ₂ *	SiO ₂	H₂O⁺	H₂O [−]	Сумма
1	17,97	1,13	-	3,50	-	0,29	Сл.	38,70	38,80	Сл.	0,00	100,39
2	19,33	0,25	0,03	0,27	0,21	0,18	0,13	40,07	39,22	0,48	0,00	100,17

*В том числе 0,60% HfO₂.

1 – гора Тахтарвумчорр, Хибины, анал. Казакова [1]; 2 – Барттхаген, Лёгендален, около г. Ларвик, Норвегия, анал. Брум [8].

Эмпирические формулы:

1 – (Na_{1,81}K_{0,07}Ca_{0,19})_{2,07} Zr_{0,98}Si_{2,02}O_{7,13} (при Si + Zr = 3) [1];

 $2 - (Na_{1,899}(H_3O)_{0,054}K_{0,016}Ca_{0,015})_{1,984}(Zr_{0,990}Fe_{0,007}Ti_{0,005}Mg_{0,002})_{1,004}(Si_{1,987}Al_{0,012})_{1,999}O_{6,995} \text{ (ha oc-hobe 2(Si + Al) [8]).}$

Диагн. исп. Малоустойчив. Разлагается на холоду 5%-ной HCl с выделением геля кремнекислоты [1]. Искусственный аналог Na₂Zr[Si₂O₇] в гидротермальных условиях разрушается в интервале температур 200–300° с образованием β -ZrO₂, ZrSiO₄ и других продуктов [13].

Нахожд. Высокотемпературный первичный позднемагматический минерал агпаитовых нефелиновых сиенитов и их дериватов. Обнаружен в жильных и шлировидных пегматоидных нефелин-содалитовых сиенитах Ловозерского щелочного массива (горы Аллуайв). Образует скопления мелких (1–5 мм, редко 1–3 см) зерен неправильной формы в интерстициях между кристаллами полевых шпатов, нефелина, содалита, эгирина. Ассоциирует также с эвдиалитом, рамзаитом, ломоносовитом, лампрофиллитом, пектолитом, апатитом и лопаритом [1, 9]. В Хибинском массиве встречен в пегматоидных разностях хибинитов (гора Тахтарвумчорр) и ийолитов (долина Гакмана). Совместно с хибинскитом слагает промежуточную зону овоидов (диаметром до 1 см), внешняя часть которых сложена эвдиалитом, центральная – цирконом. Находится в ассоциации с щелочными амфиболами, энигматитом, рамзаитом, лампрофиллитом, ловчорритом, ильменитом, флюоритом, апатитом, молибденитом, пирротином [1, 9].

В Южной Норвегии обнаружен в виде неправильной формы зернистых скоплений в нефелиновых сиенитах, секущих фойяиты (Браттхаген, Лёгендален). Встречается в ассоциации с щелочным полевым шпатом, нефелином, эгирином, пирофанитом, лопаритом, биотитом, анальцимом, цеолитом, реже с бёмитом, гентгельвином и эвдиалитом [8].

Изм. [1]. В эпитермальных и гипергенных условиях последовательно преобразуется в келдышит, затем в недоизученный минерал с приблизительным составом NaHZrSi₂O₇ · n H₂O ("фаза IV" [6–9]).

Искусств. Получен при гидротермальном синтезе в системах $Na_2O-SiO_2-ZrO_2$ [14], $ZrO_2-SiO_2-Na_2O-H_2O$ [15, 16], $Na_2O-SiO_2-Al_2O_3-ZrO_2$ [9]; спеканием NaOH, Na_2CO_3 , ZrO_2 (марки "ч"), очищенного кварца и циркона при 900–1100° в течение 3 ч и последующей перекристаллизацией полученных спеков в расплаве дисиликата Na в течение 80–100 ч при 1050° [17].

Межилоскостные расстояния паракелдышита горы Тахтарвумчорр, Хибины [1]

Feg-излучение, Мп-фильтр. Дифрактометр

				-				
hkl	1	d(Å)	hki	! 1	d(Å)	hkl	1	d(Å)
100	8	8,33	31	1 28	2,645	302	7	1,717
001	11	5,99	12	02	2,591	131	12	1,704
-	5	4,65	02	Ĩ 2	2,541	422	4	1,678
1 10	16	4,59	31	D 9	2,499	023	9	1,668
110	5	4,48	31	D 11	2,444	132	5	1,633
201	9	4,38	22	I 12	2,268	310; 232	12	1,606
111	50	4,22	30	I 18	2,197	510	10	1,583
200	100	4,17	12	Σ 7	2,172	331	5	1,560
101	13	4,12	22	Σ 5	2,111	331	5	1,544
TH	70	3,96	400	0 14	2,085	414; 602	; 7	1,528
211	13	3,46	22	1 4	2,036	330		
102	2	3,30	311	I 7	2,013	522	3	1,520
-	4	3,20	222	2 19	1,982	423; 521	4	1,510
111	6	3,17	41(9	1,965		3	1,499
202	5	3,13	32	Σ 4	1,942		3	1,491
301	9	3,05	01	3 11	1,926		3	1,476
002	4	2,98	403	37	1,887		5	1,446
112; 201	45	2,91	103	33	1,782		5	1,438
212; 300	13	2,784	031	ī 4	1,767		3	1,424
T12	25	2,718	401	17	1,756		4	1,413
020; 302	35	2,704	32	i 8	1,746		3	1,388
311	36	2,671	512	Σ 6	1,730		1	1,352
							6	1.337

Межплоскостные расстоятия паракелдышита месторождения Лёгендален (Норвегия) [8]

				PP				
hkl	1	<i>d</i> (Å)	hkl	1	<i>d</i> (Å)	hkl	1	<i>d</i> (Å)
001	2	8,37	200	7	2,703	220	5	1,983
011	6	6,00	112	5	2,676	104	2	1,965
100	1	5,40	112	4	2,646	221	1	1,943
101	3	4,601	113	1	2,623	133	3	1,925
101	2	4,483	201	1	2,589	130	1	1,906
011	2	4,380	211	1	2,543	031	2	1.889

FeK~-излучение. Пифрактомето и камера Гинье
hk!	1	<i>d</i> (Å)	hkl	1	<i>d</i> (Å)	hkl	1	<i>d</i> (Å)
110	7	4,234	103	2	2,503	034	1	1,782
002	8	4,179	T 03	2	2,450	301	1	1,770
012	3	4,121	121	1	2,438	311	1	1,765
110	10	3,963	211	3	2,270	015	1	1,757
TTI	4	3,458	123	1	2,212	214	1	1,749
021	2	3,292	014	4	2,200	123	1	1,730
112	2	3,175	212	1	2,192	025	1	1,716
020	2	3,129	221	2	2,173	310	4	1,704
012	2	3,055	220	1	2,111	311	1	1,685
022	1	2,989	004	3	2,086	222	1	1,678
121	9	2,913	024	1	2,062	233	2	1,669
013	5	2,905	213	1	2,041	042	1	1,644
120	4	2,785	114	1	2,005	321	2	1,635
121	6	2,718	033	1	1,999			

1. Хомяков А.П // ДАН СССР. 1977. Т. 237, № 3. С. 703.

- 2. Буссен И.В., Гойко Е.А., Меньшиков Ю П. // Матерпалы по минералогии Кольского п-ова. М.: Наука, 1972. Вып. 9. С. 59.
- 3. Хомяков А.П., Казакова М.Е., Воронков А.А. // ДАН СССР. 1969. Т. 189. № 1. С. 166.
- 4. Воронков А.А., Шумяцкая Н.Г., Пятенко Ю.А. // Журн. структур. химин. 1970. Т. 11, № 5. С. 932.
- 5. Хомяков А.П., Воронков А.А. // Тр. Минерал. музея АН СССР. 1973. Вып. 22. С. 215.
- 6. Хомяков А.П., Воронков А.А., Казакова М.Е., Власова Е.В., Смольянинова Н.Н. // Там же. 1975. Вып. 24. С. 120.
- 7. Хомяков А.П. // Там же. 1976. Вып. 25. С. 90.
- 8. Raade G., Mladeck M H. // Canad. Miner. 1977. Vol. 15, pt 1. P. 102.
- 9. Хомяков А.П. Минералогия ультраагпантовых щелочных пород. М.: Наука, 1990. 200 с.
- 10. Хилилов А.Д., Хомяков А.П., Махмудов С.А. // ДАН СССР. 1978. Т. 238, № 3. С. 573.
- 11. Скшат С.И., Симонов В.И., Белов Н.В. // Там же. 1969. Т. 184, № 2. С. 337.
- 12. Воронков А.А. // Кристаллография. 1978. Т. 18, № 1. С. 112.
- 13. Полежаев Ю.М., Рутман Д.С., Торопов Ю.С. // Геохимия. 1975. № 4. С. 627.
- 14. D'Ans J., Löffler J. // Ztschr. anorg. allgem. Chem. 1930. Bd. 191. S. 1. 15. Baussy G., Caruba R., Baumer A., Turco G. // Bull. Soc. franç. miner. et cristallogr. 1974. Vol. 97, N 6. P. 433.
- 16. Christophe-Michel-Levy M. // Ibid. 1961. Vol. 84, N 3, P. 265.
- 17. Полежаев Ю.М., Чухланцев В.Г., Пивник М.Я. // Изв. вузов. Химия и хим. технология. 1966. Т. 9, № 2. C. 167.

Хибинскит Khibinskite

$K_2Zr[Si_2O_7]$

Назван по месту находки в Хибинском массиве, Кольский п-ов [1].

Характ. выдел. Мелкозернистые (0,01 мм) плотные или порошковатые агрегаты. Отдельные зерна неправильной формы (до 3 мм в поперечнике).

Структ. и морф. крист. Монокл. с. C_{2h}^3 -C2/m. $a_0 = 19,22$, $b_0 = 11,10$, $c_0 = 14,10$ Å; $\beta = 116^{\circ}30'$; $a_0:b_0:c_0 = 1,7315:1:1,2702$. По всем трем осям существуют четко выраженные псевдопериоды a/2, b/2, c/2. V = 2692,1 Å³; Z = 16. Может быть описан в ромбоэдрической ячейке: $D_{37}^5 - R\overline{3}m$. $a_{2b} = 14,10$ Å; $\alpha = 46,5^{\circ}$ [1]. Природному хибинскиту отвечает синтетическая фаза K₂Zr[Si₂O₇](II): B2/m. $a_0 = 19,188, b_0 = 14,072,$ $c_0 = 11,075$ Å; $\gamma = 117^{\circ}04'$, для которой расшифрована кристаллическая структуpa [2].

Основу структуры составляют стенки из Zr-октаэдров, параллельные (010), отстоящие друг от друга на b/2 (в установке [2]), скрепленные между собой диортогруппами [Si₂O₇], оси которых наклонены и параллельны направлению [120]. Каждая диортогруппа связана с шестью Zr-октаэдрами (по три в соседних стенках),

а каждый Zг-октаэдр – с шестью соседними диортогруппами, т.е. все атомы кислорода в структуре поделены между Zr- и Si-полиэдрами, которые в совокупности образуют трехмерный бесконечный каркас смешанного типа $\{Zr[Si_2O_7]\}_{\infty\infty\infty}^{2-}$. В пределах слоя Zr-октаэдры расположены в шахматном порядке и образуют при взгляде вдоль оси *b* псевдогексагональную сетку – плотнейшую упаковку по "обратному" шпинелевому закону, с заполнением ¹/4 всех октаэдрических позиций. Различаются три независимых положения атомов Zr, шесть положений атомов Si, шесть – атомов K и 18 – атомов O. Калий входит в крупные полости (фонари) с различной координацией: K(1)- и K(3)-октаэдры, K(2)-, K(4)- и K(6)-семивершинни-ки, K(5)-восьмивершинник. В отличие от структуры келдышита, замещение Na на более крупный K в структуре приводит к усилению ее ромбоэдричности.

Межатомные расстояния (в Å) [2]: в Žг-октаэдрах Zr(1)–O = 2,16–2,23, Zr(2)–O = = 1,99–2,15, Zr(3)–O = 1,98–2,20; в Si-тетраэдрах Si(1)–O = 1,54–1,65, Si(2)–O = 1,66–1,70, Si(3)–O = 1,61–1,71, Si(4)–O = 1,56–1,67, Si(5)–O = 1,54–1,72, Si(6)–O = 1,59–1,67; в К-полиэдрах K(1)–O = 2,82–3,15, K(2)–O = 2,63–3,03, K(3)–O = 2,85–3,14, K(4)–O = 2,71–2,95, K(5)–O = 2,93–3,16, K(6)–O = 2,80–3,05.

Физ. св. [1]. Сп. по (001), (100) и ($\overline{1}11$) совершенная, по (31 $\overline{1}$) средняя. Изл. плоский, ступенчатый. Бл. стеклянный. Тв. 4,5–5,5. Микротвердость от 363 до 687 кгс/мм² (при нагрузке 30–50 г). Коэффициент анизотропии твердости K = 1,35. Уд.в. 3,4. Цв. белый или кремовый (у агрегатов), бесцветный (монокристальные зерна). Прозрачный.

Микр. [1]. Пл. опт. осей \perp (010), совпадает с (502). Ng = b, Nm и Np лежат в плоскости (010). cNm = 56, $cNp = 34^{\circ}$. Двуосный (-). $n_g \approx n_m = 1,715$; $n_p = 1,665$; $2V = 6 - 16^{\circ}$ (среднее 11°).

Хим. Теор. состав: K₂O – 27,9; ZrO₂ – 36,5; SiO₂ – 35,6. Анализ (микрозонд., анал. Юркина): K₂O – 27,0; CaO – сл.; ZrO₂ – 37,8; SiO₂ – 33,8; TiO₂ – 0,6; сум-ма 99,2.

Эмпирическая формула (пересчет на 5 катионов): $K_{1.98}(Zr_{1.06}Ti_{0.03})_{1.09}Si_{1.94}O_{7.05}$. Методом фотометрии пламени (анал. Попова) определены 1,8% Na_2O (связывается с микровключениями келдышита) и 0,9% CaO [1].

Нахожд. Обнаружен в Хибинском щелочном массиве (в долине Гакмана) в амфиболовом (катафорит-арфведсонитовом) ийолите в виде мелкозернистых агрегатов, слагающих промежуточную зону концентрически зональных образований (до 1 см), внешняя часть которых образована эвдиалитом, центральная – скоплениями циркона. Находится в ассоциации с эвдиалитом, цирконом, эгирином, натролитом, пирротином и рамзаитом. Образовался в процессе метасоматического изменения ийолита под воздействием щелочных растворов [1].

Искусств. Получен при изучении тройной системы $K_2O-ZrO_2-SiO_2$ наряду с другими соединениями с общей формулой $K_2ZrSi_2O_7$ сплавлением смеси КОН, K_2CO_3 , SiO₂ и природного циркона в платиновых чашках при $t \approx 1250^\circ$ в течение 4 ч с последующим понижением температуры до 700° со скоростью 10 град/ч [3-5].

Межплоскостные расстояния хибинскита, Хибины [1]

Cu-излучение, $D = 114 MM$							
hkl	1	d (Å)	hkl	1	d(Å)		
400; 222	36	4,27	0,80; 12.4.4; 081; 626; 12.4.5	48	1,381		
311; 313	32	4,15	157; 082: 12.0.1; 1 2.4.2;	12	1,360		
222; 404; 513	28	3,35	11.5.5; 735				
224	68	2,95					

hki	1	d (Å)	hkl	1	d(Å)
040; 622	100	2,76	555; 12.0.9; 12.4.6	16	1 340
442:802	12	2,38	480: 10.6.2	12	1 322
494; 800; 404	52	2,133	844; 266; 14.2.6	12	1,322
442; 806	32	2,019	408; 2.2.10	20	1 302
802; 260; 446; 842; 10.2.4	20	1,801	481; 14.2.2	16	1,302
262; 713; 844	20	1,775	12.0.10: 668: 084: 357: 7 1 11	28	1,271
117; 624; 10.2.6; 444	24	1,688	14.2.8: 971: 9 1 11	20 11	1,207
628	36	1,664			1,232
846; 406	64	1.630			
662; 12.0.4; 256	40	1.595			
719; 535; 12.0.6	16	1.542			
448; 919	12	1,479			

- 1. Хомяков А.П., Воронков А.А., Лебедева С.И., Быков В.Н., Юркина К.В. // Зап. ВМО. 1974. Ч. 103, вып. 1. С. 110.
- 2. Носырев Н.А., Треушников Е.Н., Воронков А.А., Илюхин В.В., Ганиев Р.М., Белов Н.В. // ДАН СССР. 1976. Т. 231, № 6. С. 1351.
- 3. Чернов А.Н., Максимов Б.А., Илюхин В.В., Белов Н.В. // Там же. 1970. Т. 193, № 6. С. 1293.
- 4. Чернов А.Н., Чухланцев В.Г., Воронков А.А., Максимов Б.А., Илюхин В.В. // Изв. АН СССР. Неорган. материалы. 1971. Т. 7, № 1. С. 180.
- 5. Полежаев Ю.М., Чухланцев В.Г. // Там же. 1969. Т. 5, № 10. С. 1828.

СТРУКТУРА ТИПА МЕЛИЛИТА

ГРУППА МЕЛИЛИТА

Ранее в группе описаны (т. III, вып. 1, с. 540): окерманит*, мелилит, геленит, гардистонит, гюгиаит и фресноит, включенный условно.

* = акерманиту (Флейшер, 1990).

	Сингония	<i>a</i> ₀	<i>b</i> 0	<i>c</i> 0	У д.в.
Джеффрейит (Ca,Na) ₂ (Be,Al)[Si ₂ (O,OH) ₇]	Ромб.	14,90	14,9 0	40,41	2,99

Джеффрейит Jeffrevite

(Ca,Na)2(Be,Al)[Si2(O,OH)2]

Назван по месту находки [1].

Диморфен с гюгиантом, конечным членом твердого раствора акерманит CaMg[Si₂O₇]-гюгиант Ca₂Be[Si₂O₇].

Характ. выдел. Тонкие пластинчатые кристаллы (до 1,2 × 1,2 × 0,02 мм) и их агрегаты.

Структ. и морф. крист. Ромб. (псевдотетраг.) с. D_2^5 -C222₁. $a_0 = b_0 = 14,90$, $c_0 = 40,41$ Å; $a_0:c_0 = 1:2,7120$; V = 8971 Å³; Z = 64. Кристаллы псевдотетрагонального облика с формами (001) и (110).

Физ. св. Сп. совершенная по (001) и (110). Хрупкий. Тв. 5. Уд.в. 2,99 (вычисл. 2,98). Бесцветен. Прозрачен. Не люминесцирует.

Микр. Двуосный (-). Nm = a, Np = c. $n_g = 1,643$, $n_m = 1,641$, $n_p = 1,625$ при $\lambda = 589$ ммк; $2V = 40^{\circ}$ (вычисл. 39°). Двойникование по (100).

Хим. Анализ (микрозонд., среднее из 9): Na₂O - 2,3; CaO - 37,4; BeO - 8,1

(атомно-абсорбционное определение); $Al_2O_3 - 2,8$; $SiO_2 - 46,7$; H_2O (по ТГА) – 1,8; сумма 99,1 (анал. Бувье). Са замещается Na, Be – Al, O – OH.

Диаги. исп. Не растворяется в 20%-ной HCl.

Повед. при нагрев. Основная потеря веса (1,8 мас.%) фиксируется в интервале 770–1000°.

Нахожд. Обнаружен в небольших количествах в пустотах в родингитизированной гранитной дайке на асбестовом месторождении Джеффри (Асбестос, Квебек, Канада). Тесно ассоциирует с гроссуляром, а также с диопсидом, пектолитом, везувианом, пренитом, волластонитом и цоизитом.

Отл. Легко может быть принят за слюду. От гюгиаита отличается по параметрам элем. яч. и оптическим свойствам.

Межплоскостные расстояния джеффрейнта из Канады [1]	
CuK_{α} -нзлучение, $D = 114.6$ мм	

hkl	1	d (Å)	hkl	1	d(Å)	h kl	1	d (Å)
004	2	10,13	448	3	2,323	684	1/2	1.473
220	3	5,21	22.16	1/2	2,272		1/2	1.453
026	4	5,00	608	4	2,229		2	1,435
310	1	4,70	628	1	2,143		1	1,417
118	1/2	4,47	40.16	1/2	2,115		1/2	1.385
314	1/2	4,26	640	1	2,051 •		1/2	1,364
226	1	4,14	42.16	2	2,020	10.48	3	1.335
400	1/2	3,75	60.12	2	2,001	880	2	1.318
228	3	3,62	648	1/2	1,906		1	1.290
404	1/2	3,50	800	4	1,866		1/2	1.255
420	1	3,33	820	2	1,809		2	1,244
20.12	1/2	3,09	660	5	1,755		1/2	1,225
408	9	2,993	62.16	2	1,716		1/2	1.209
510	1	2,905	828	1	1,704		1/2	1.147
22.12	2	2,838	840	2	1,666		1/2	1.135
428	10	2,774	80.12	2	1,631		1/2	1.114
02.14	1	2,720	_	1/2	1,593		1/2	1.102
440	2	2,633	_	1/2	1,560		1/2	1.079
350	2	2,576	40.24	1	1,535		1/2	1.072
444	6	2,541	_	1	1,511		1/2	1.055
620	4	2,360	82.12	_	1.493		-	,

Литература

1. Grice J D., Robinson G.W. // Canad. Miner, 1984. Vol. 22, pt 3. P. 443.

СТРУКТУРА ТИПА БАРИЛИТА

ГРУППА БАРИЛИТА

Описание минералов группы – барилита и бавенита см. т. III, вып. 1, с. 560.

	Сингония	a_0	b 0	<i>c</i> 0	β	Уд.в.
Андремейерит BaFe ₂ [Si ₂ O ₇]	Монокл. или	7,49	13,78	7,08	118,23°	4,15
	псевдоромб.	13,19	13,78	7,08	_	_
Джунитоит CaZn ₂ [Si ₂ O ₇]·H ₂ O	Ромб.	12,51	6,31	8,56	-	3,5

Минералы имеют общую формулу типа $A^{2+}B_2^{2+}[Si_2O_7]$, где A – Ba, Ca; B – Fe, Zn, Be(Mg, Mn), и сходные структурные мотивы: катионы Fe, Zn, Be образуют це-

почки тетраэдров, связанные изолированными диортогруппами [Si₂O₇] в трехмерный каркас, в пустотах которого располагаются полиэдры Ba, Ca [1, 2]. Различаются по симметрии структуры, и, кроме того, в джунитоите один из семи атомов O в полиэдрах типа A принадлежит молекуле H_2O [1, 2].

Литература

1. Canillo E., Mazzı F., Rossi G. // Amer. Miner. 1988. Vol. 73, N 5/6. P. 608. 2. Hamilton R.D., Finney J.J. // Miner. Mag. 1985. Vol. 49, pt 1. P. 91.

Андремейерит Andremeyerite BaFe₂[Si₂O₇]

Назван по имени Андре Мейера, геолога геологической компании в Заире [1].

Характ. выдел. [1]. Неправильные и идиоморфные зерна (до 0,1 мм), редкие кристаллы (до 0,2 мм; 0,18 \times 0,16 \times 0,11 мм).

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1/c$ [1]. $a_0 = 7,488$, $b_0 = 13,785$, $c_0 = 7,085$ Å; $a_0:b_0:c_0 = 0,5432:1:0,5140$; $\beta = 118,23^\circ$; V = 644,3 Å³; Z = 4. Для псевдоромбич. с. *Bmcb.* $a_0 = 13,195$, $b_0 = 13,785$, $c_0 = 7,085$ Å; $a_0:b_0:c_0 = 0,9565:1:0,5$; V = 1288,7 Å³; Z = 8 [2].

Основу структуры составляют ряды цепочек из чередующихся полиэдров Fe(1) в Fe(2). Они вытянуты вдоль оси b и соединены последовательно изолированными диортогруппами [Si₂O₇] с образованием трехмерной тетраэдрической решетки (фиг. 23). Каждая группа [Si₂O₇] соединяет четыре цепочки через общие кислороды вершин тетраэдров, исключая мостиковый O(4). В пустотах решетки между четырьмя группами [Si₂O₇] находятся атомы Ва, образующие полиэдры, приближающиеся по форме к тригональной призме.

Межатомные расстояния (в Å): Si–O(A) = 1,618–1,659; Si–O(B) = 1,600–1,653; Fe(1)–O = 1,975–2,000; Fe(2)–O = 2,003–2,086; Ba–O(A) = 2,741–3,269; Ba–O(B) = 2,636-2,990; Ba–O = 2,870–3,915; угол Si–O–Si = 127,21°.

Кристаллы призматические, псевдоромбического облика. Преобладающие формы (100) и (010), отмечались также (011) и (120).

Физ. св. Сп. совершенная по (100) и (010); сложные двойники по (100). Тв. 5,5. Уд.в. 4,15 (вычисл. 4,31 для BaFe₂[Si₂O₇], 4,14 для (Ba,K,Ca,Na)(Fe,Al,Mn,Mg)₂ × ×[Si₂O₇]). Цв. бледный изумрудно-зеленый.

Микр. Плеохроизм отчетливый: по $Ng \approx Nm$ – светло-коричневый до бесцветного, по Np – зеленый до сине-зеленого. Абсорбция $Np > Nm \approx Ng$. Погасание на пл. (100) из-за сложного двойникования не проявляется. cNp на (010) изменяется в зависимости от длины волны от 2 (670 мкм) до 61° (470 мкм) (Ng = b). Дисперсия сильная. Одноосный при $\lambda < 490$ мкм. Двуосный (+) при 490 $< \lambda < 550$ мкм. $2V = 40^{\circ}$. $n_{\star} = 1,760, n_m \approx n_p = 1,740$.

Хим. Теор. состав BaFe₂[Si₂O₇]: BaO – 36,75; FeO – 34,49; SiO₂ – 28,75. Ва частично замещен на K, Ca, Na; Fe – на Al, Mn, Mg.

Анализ (микрозонд., среднее из 3 [1]): Na₂O – 0,10; K₂O – 0,65; MgO – 0,74; CaO – 0,64; BaO – 32,55; MnO – 1,33; FeO – 31,55; Al₂O₃ – 1,00; SiO₂ (среднее из 8) – 32,46; сумма 100,91.

Эмпирическая формула (на 5 катионов): (Ва_{0,85}K_{0,05}Ca_{0,03}Na_{0,01})(Fe_{1,75}Al_{0,08}× Мп_{0.08}Mg_{0.08})[Si_{2,15}O_{7,24}] (избыток Si связывают [1] с примесью стекла).

Фиг. 23. Структура андремейерита в проекции вдоль оси с (по Канилло и др.) А, В – позиции атомов кислорода, связанные элементами симметрии

Формула, уточненная в соответствии со структурными данными после исключения стекла (на основе 7 атомов О): Ba,Fe(Fe_{0.85}Mn_{0.08}Mg_{0.07})[Si₂O₇].

Повед. при нагр. При постепенном нагревании до 800° мутнеет, становится бурым вследствие окисления Fe; при 900° разлагается в непрозрачную массу, на поверхности которой образуется корона из бесцветных кристаллов с $n \ge 1,640$, вероятно, отвечающих по составу силикату Ba.

Нахожд. Найден в лавах вулкана Нирагонго (Заир) в единичном образце в составе продуктов выполнения полостей мелилит-лейцит-нефелиновых лав, образующих блоки среди более поздних нефелиновых лав, под влиянием которых вещество блоков претерпело термальный метаморфизм и было частично преобразовано. В полостях также развиты нефелин, лейцит, клинопироксен, Са-оливин, мелилит, апатит, магнетит, гётценит, троилит, зеленое стекло.

> Межплоскостные расстояния андремейерита вулкана Нирагонго (Заир) [1] МоК_о-излучение. Дифрактометр

hki	1	d (Å)	hkl	I	d(Å)	hki	1	d(Å)
021; 12 <u>1</u>	40	4,63	141	15	2,536	233	15	2,075
102	15	3,55	241; 0,51;	15	2,525	023	10	1,997
040	15	3,45	151			142	15	1,978
200	60	3,288	142	55	2,472	161; 261	10	1,959
210	20	3,198	221	15	2,326	062; 212;	15 ш	1.883
002; 202	80	3,122	060	15	2,300	340		
140	100	3,055	123	10	2,205	080	15	1,724
041	20	3,019	152; 231;	20 ш	2,175	081	15	1,662
131	15	2,902	160			082	15	1,509
132	40	2,811	133	15	2,075			-

1. Sahama G., Siivola J., Rehtijärvi P. // Bull. Geol. Soc. Finland. 1973. N 45, pt 1. P. 1.

2. Cannillo E., Mozzi F., Rossi G. // Amer. Miner. 1988. Vol. 73, N 5/6. P. 608.

Джунитоит Junitoite CaZn₂[Si₂O₇]·H₂O

Назван по имени американского минералога и химика Джуна Ито [1].

Характ. выдел. Скопления беспорядочно ориентированных таблитчатых кристаллов с поперечником 4–5 мм при толщине 0,5 мм [2] или прямоугольных пластинок размером до $2 \times 2 \times 0.05$ мм.

Структ. и морф. крист. Ромб. с. $C_{2\nu}^{16}$ -*Ama*2. $a_0 = 6,309, b_0 = 12,53, c_0 = 8,539$ Å; $a_0:b_0:c_0 = 0,506:1:0,688$ [2]. По уточненным данным [3]: $a_0 = 12,510, b_0 = 6,318, c_0 = 8,561$ Å; $a_0:b_0:c_0 = 1,980:1:1,355$ (монокристальная съемка).

Основу структуры составляют зигзагообразные цепочки ZnO₃ из последовательно связанных общими вершинами слабо искаженных тетраэдров Zn(1) и Zn(2), расположенных вдоль оси *b*. Каждая элементарная ячейка содержит два ряда таких цепочек, ориентированных в противоположные стороны (фиг. 24,*a*). В направлении [001] цепочки соединены вершинами тетраэдров SiO₄, входящих в состав изолированных групп [Si₂O₇] в слои, параллельные [010] (см. фиг. 24,*a*). Вдоль оси *a* слои связаны мостиковыми атомами кислорода групп [Si₂O₇] (см. фиг. 24,*b*) с образованием трехмерного тетраэдрического каркаса. В его полостях помещаются атомы Са, окруженные пятью атомами O из [SiO₄]-тетраэдров, и атомом O молекул H₂O, которые формируют искаженный CaO₅(H₂O)-октаэдр.

Межатомные расстояния (в Å) заметно колеблются [3]: Zn–O = 1,932–1,994; Si–O = 1,549–1,690; Ca–O = 2,291–2,444; мостиковый угол дисиликатных групп Si–O(4)–Si = 122,4° меньше обычного Si–O–Si = 131,5°.

Ромбо-пирамид. кл. C_{2v} -mm2. a:b:c = 0,505:1:0,684; $p_0:q_0:r_0 = 1,335:0,684:1$; $q_1:r_1:p_1 = 0,505:0,738:1$; $r_2:p_2:q_2 = 1,462:1,981:1$ [2].

Простые формы [2]:

	φ	ρ	φι	ρι	φ ₂	Ρ2
c 001	_	0°00'	0°00'	90°00'	90°00'	90°00
b 010	0°00′	90 00	90 00	90 00	_	0 00
k 101	90 00	53 34	0 00	36 26	36 26	90 00
p 111	63 00	56 37	34 22	41 48	36 26	67 54
r 131	33 26	67 52	64 01	59 18	36 26	39 22
r 131	33 26	112 08	115 59	59 18	-36 26	39 22
g 191	12 25	90 01	99 14	77 44	-36 26	15 18

Кристаллы пластинчатые или таблитчатые по (010), асимметричные. На гранях (010) вилкообразные зазубрины; искусственные фигуры травления на (010) – равнобедренные треугольники [2].

Физ. св. Сп. по (010) хорошая, по (100) и (101) слабая. При надавливании иглой перпендикулярно плоскости спайности (010) кристаллы распадаются на параллельные ей тонкие чешуйки. Тв. 4,5. Уд.в. 3,5 [3] (вычисл. 3,51 [2]). Кристаллы преимущественно бесцветны. Бл. стеклянный. Прозрачен или полупрозрачен. Обладает сильными пироэлектрическими свойствами. В ультрафиолетовых лучах не флюоресцирует.

Микр. Двуосный (+). Ng = c, Nm = b, Np = a. $n_g = 1,672$, $n_m = 1,664$, $n_p = 1,656$; $n_g - n_p = 0,016$; $2V = 86^{\circ}$. Дисперсия очень слабая, r < v [2].

Фиг. 24. Структура джунитонта (по Гамильтону и Финней) *а* – проекция вдоль [001]; *б* – проекция вдоль [010] (*г*- и *у*-координаты атомов × 100)

Хим. Теор. состав: CaO – 15,71; ZnO – 45,58; SiO₂ – 33,66; H₂O – 5,05. Анализ [2]: CaO – 15,5; ZnO – 44,48; SiO₂ – 31,0; H₂O – 5,8; сумма 97,1 (CaO – среднее из 2, ZnO – из 5 анализов, SiO₂ – 1 анализ, анал. Дугган); H₂O определена методом Пенфильда. Заниженные данные для Zn, Ca, Si и завышенные для воды обусловлены, вероятно, примесью смектита.

Эмпирическая формула (на 5 катионов): Ca_{0.98}Zn_{1.96}Si_{1.84}O_{6.8}·1,13 H₂O. Спектрально определены сл. Си.

Пиагн. исп. Легко растворим в холодной 10%-ной HCl, очень быстро в HNO₂ 1:7, медленно в горячей 40%-ной КОН, нерастворим в воде [2].

Повел. при нагр. При нагревании в закрытой трубке расшепляется по (010) на тонкие чешуйки, мутнеет до молочно-белого, сплавляется в стекловатый перд [2].

Нахожд. Обнаружен в зоне вторичного изменения медно-цинковых руд месторождения Кристмас, шт. Аризона. США [2], относящегося к мелно-порфировому типу в скарнах, связанных с внедрением диорит-гранодиоритового штока ларамийского возраста в палеозойские карбонатные поропы. Гранат-волластонит-лиопсиловые скарны с незначительным количеством везувиана солержат вкрапленники сфалерита и халькопирита [2, 3]. Встречается с вторичным киноитом, апофиллитом, смектитом, кальцитом, ксонотлитом в трещинах линзовидных участков среди брекчированных карбонатизированных скарнов, обогашенных рассеянным сфалеритом.

Наблюдался на поверхности, по трещинкам и в оторочках зерен сфалерита, а также в виде гнезд среди крупных кристаллов апофиллита и вкрапленников в смектите.

Изм. [2]. При гипергенном изменении теряет прозрачность, приобретает молочно-белый цвет или лиловатый и зеленоватый оттенки; замешается вешеством. схолным с тиролитом.

Искусств. [2]. Впервые получен при синтезе Pb-Ca-Zn-силикатов путем осажиения NaOH из водного раствора с pH=11.8.

Отл. [3]. От сходных по внешнему облику гемиморфита и клиноэдрита отличается деталями структуры: наличием изолированных полостей, содержащих октаэдры СаО₄(H₂O), и отсутствием слюдоподобной структуры, свойственной клиноэдриту.

> Межплоскостные расстояния джунитонта из месторождения Кристмас. шт. Аризона (CША) [2]

hki	I	d (Å)	hkl	1	d(Å)	1	d(Å)
020	4	6,253	133	1	2,201	1	1,565
111	5	4,703	311	4	2,021	6	1,540
002	4	4,272	242	3	1,970	2	1,492
022	10	3,528	062	2	1,872	3	1,440
131	4	3,221	331	1	1,833	1	1,408
200	1/2	3,162	153	1/2	1,802	1	1,390
0 40	1	3,126	044	3	1,768	4	1,338
220	10	2.816	260	3	1,739	3	1,331
202	10	2,540	224	3	1,703	1	1,318
230	5	2,521		3	1,677	3	1,298
222	7	2,352		2	1,611	3	1,271
151	2	2,243		4	1,577	4	1,244

 CrK_{α} -нзлучение, D = 114 мм

Литература

1. Ito J. // Amer. Miner. 1968. Vol. 53, N 1/2. P. 231.

2. Williams S.A. // Ibid. 1976. Vol. 61, N 11/12. P. 1255.

3. Hamilton R D., Finney J J. // Miner, Mag. 1985. Vol. 49, N 350. P. 91.

СТРУКТУРА ТИПА ТОРТВЕЙТИТА ГРУППА ТОРТВЕЙТИТА

Ранее описаны минералы группы: тортвейтит, таленит-(Y), иттриалит-(Y), роуландит-(Y) (т. III, вып. 1, с. 575). Названия трех последних даны в соответствии с правилами КНН ММА для минералов редких земель и иттрия.

	Сингония	a_0	<i>b</i> ₀	<i>c</i> ₀	β	Уд.в.
Кейвиит-(Yb) (Yb, Y) ₂ [Si ₂ O ₇]	Монокл.	6,840	8,916	4,745	102,11°	5,95
Кейвиит-(Y) (Y, Yb) ₂ [Si ₂ O ₇]	"	6,845	8,960	4,735	101,65	4,49
Гиттинсит CaZr[Si ₂ O ₇]		6,852	8,659	4,686	101,74	3,62

Структурные аналоги тортвейтита $Sc_2[Si_2O_7]$, в отличие от которого в слоях из октаэдров позиции Sc^{3+} заняты (Yb, Y) или (Ca, Zr) [1–3].

Литература

1. Волошин А.В., Пахомовский Я А., Тюшева Ф.Н. //Минерал. журн. 1983. Т. 5, № 5. С. 94.

2. Волошин А.В., Пахомовский Я.А., Тюшева Ф.Н. // Там же. 1985. Т. 7, № 6. С. 79.

3. Roelofsen-Ahl J N., Peterson R.C. // Canad. Miner. 1989. Vol. 27, pt 6. P. 703.

Кейвиит-(Yb) Keiviite-(Yb) (Yb, Y)₂[Si₂O₇]

Назван по месту находки в районе Кейв (Кольский п-ов) и преобладающему редкоземельному элементу [1]. Аналог искусственной фазы II Yb₂[Si₂O₇] [2]. Образует изоморфный ряд с кейвиитом-(Y) [1].

Синон. Кейвнит [1, 3].

Характ. выдел. Кристаллы (0,1-0,8 мм в длину) и их сростки [1].

Структ. и морф. крист. Монокл. с. $C_{2h}^3 - C2/m$.

<i>a</i> ₀ (Å)	b_0	<i>c</i> ₀	β	$a_0:b_0:c_0$	Местонахождение	Ссылка
6,840	8,916	4,745	102,11°	0,7671:1:0,5321	Кейвы	[1]
4,715	8,870	6,805	102,01	0,5315:1:0,7671	То же	[4]
6,802	8.875	4,703	102,12	0,7664:1:0,5299	Искусств. Yd>[Si2O7]	[2]

Структура искусственного Yb₂[Si₂O₇], как и тортвейтита Sc₂[Si₂O₇], построена из слоев диортогрупп [Si₂O₇], послойно связанных атомами Yb (в позициях Sc³⁺), расположенными в искаженных октаэдрах из атомов кислорода [2].

Средние межатомные расстояния (в Å) [4]: в Yb-октаэдрах Yb-O = 2,240, O-O = 3,093; в Si-тетраэдрах Si-O = 1,625, O-O = 2,623.

При интерпретации данных структурного исследования и микрозондового анализа высказано предположение о присутствии в исследованном образце фазы (Er, TR)₂[Si₂O₇] (8%) с другим типом структуры (монокл. с. C_{2h}^5 -P2₁/c) [4]. Кристаллы вытянутые, пластинчатые, призматические [1]. Характерно полисинтетическое двойникование [1].

Физ.св. [1]. Сп. совершенная по (110), несовершенная по (001). Уд.в. 5,95 (вычисл. 5,99). Бесцветный. Бл. стеклянный. Прозрачен. В катодных лучах слабо светится зеленым цветом.

ИК-спектр характеризуется полосами поглощения 1110, 975, 920, 860, 570, 555, 505, 477 и 410 см⁻¹ [1].

Микр. Бесцветный. Двуосный (-). Пл. опт. осей (100). Ng = b, $aNm = 7-8^{\circ}$, $cNp = 3-5^{\circ}$. Дисперсия сильная, r < v. $n_g = 1,768$, $n_m = 1,758$, $n_p = 1,723$; $2V = 58^{\circ}$. В полисинтетических двойниках угол погасания по отношению к двойниковому шву равен 33° [1].

Хим. Теор. состав Yb₂[Si₂O₇]: Yb₂O₃ – 76,63; SiO₂ – 23,37. Анализы кейвиита-(Yb) из района Кейв [1]:

	1	2	3	4	5
CaO	0,03	0,03	0,03	0,10	0,07
Yb ₂ O ₃	55,06	52,18	43,42	40,25	34,57
Lu_2O_3	8,97	9,33	6,55	6,00	5,22
Er ₂ O ₃	6,24	6,51	11,44	9,38	9,85
Tm ₂ O ₃	3,10	2,99	2,31	3,14	3,19
Dy_2O_3	1,23	2,05	1,47	4,28	3,86
Ho ₂ O ₃	0,65	0,80	0,77	1,16	1,23
Tb ₂ O ₃	0,04	0,04	0,04	0,04	0,04
Gd ₂ O ₃	0,06	0,09	0,07	0,29	0,15
Y_2O_3	1,02	1,70	9,32	8,87	15,42
SiO ₂	23,47	23,58	24,20	26,03	26,71
Сумма		99,30	99,62	99,63 [*]	100,40*

* В том числе FeO – 0,09 (предположительно обусловлено тончайшими пленкамн окислов).

1, 2 – І генерация; 3–5 – ІІ генерация (микрозонд., среднее из 10 и более определений).

Сумма редкоземельных элементов цериевой подгруппы не превышает 0,1 мас.%. Наблюдается повышение содержания Y и Er во II генерации кристаллов. Диаги. исп. Не растворяется в холодной HCl.

Нахожд. Редкий. Найден в амазонитовых пегматитах района Кейв, на Кольском п-ове (Мурманская обл.). Отдельные пластинчатые кристаллы I генерации и их сростки встречаются в фиолетовом флюорите совместно с хинганитом, бастнезитом и вульфенитом. Тонкопластинчатые индивиды II генерации и их агрегаты часто нарастают на выделения I генерации, иногда формируя их краевую зону, а также встречаются в мелких пустотах во флюорите.

Предполагается, что кристаллизация кейвиита-(Yb) связана с поздней стадией минералообразования в амазонитовых пегматитах.

Искусств. Синтезирован спеканием окислов Yb₂O₃ и SiO₂ при 1300–1400° [2] (т. III, вып. 1, с. 585).

Отл. От кейвиита-(Y) отличается по составу, физическим и оптическим свойствам.

		Межплоскос	тиые расстояния	а кейвии	гта-(Yb) из ра	йона Кейв [1]						
	Fe-излучение без фильтра, $D = 114.6$ мм											
hkl	1	d (Å)	hkl	1	d(Å)	hkl	1	d (Å)				
110	5	5,36	T 51	4	1,644	530;171;262	4p	1,218				
001	8	4,64	222	2	1,622	511	1	1,208				
020	3	4,46	151	4	1,589	171;422	2	1,193				
111	2	3.84	421;331	5	1,578	532	3p	1,173				
200	4	3,34	420	2	1,565	601	1	1,138				
111	10	3,24	003;332	5	1,544	531;352	3111	1,129				
021	10	3,20	203	2p	1,528	172;600	3	1,120				
201	9	3,03	402	3	1,513	443	lp	1,109				
130	7	2,720	060	2	1,488	370;621	lp	1,105				
220	7	2,674	401	2	1,478	602	1	1,099				
7 21	3	2 514	023	1	1 460	442.551	4	1.082				

hki	I	d (Å)	hk!	I	d(Å)	hki	I	d(Å)
201	3	2,479	223;312	2	1,444	620	4	1,080
131	3	2,436	113;152	4	1,420	550	1	1,070
002	3	2,320	421,313	2	1,404	533;622	1	1,062
131	7	2,262	133;350	4	1,393	462;512	1	1,060
221	6	2,165	351	2	1,383	280	lp	1,055
202	6ш	2,127	152;511	3	1,349	371;461	ı.	1,050
022	2	2,056	261	2	1,335	552;601	1	1,036
222	5	1,920	332	lp	1,312	601	lp	1,034
132	3	1,844	203	1	1,303	403	lp	1,030
241;330	4	1,785	351	1	1,288	281;641	lp	1,014
331	4	1,765	333;403;261	2	1,276	603;621	Ip	1,008
202	3	1,744	352	2	1,268	082	lp	1,005
150	3	1,723	442;170;223	4	1,251	532	3p	1,003
132;401	6	1,692	402;531	2ш	1,237	642;623	2	0,985
400	4	1,671	423	1	1,225	190	lp	0,980

1. Волошин А.В., Пахомовский Я.А., Тюшева Ф.Н. // Минерал. журн. 1983. Т. 5, № 5. С. 94,

- 2. Smolin Yu.I., Shepelev Yu.F. // Acta crystallogr. B. 1970. Vol. 26, pt 5. P. 484.
- Волошин А.В., Пахомовский Я.А. Минералы и эволюция минералообразования в амазонитовых пегматитах Кольского п-ова. Л.: Наука, 1986. 168 с.
- 4. Якубович О.В., Симонов И.А., Волошин А.В., Пахомовский Я.А. // ДАН СССР. 1986. Т. 291. № 4. С. 863.

Кейвиит-(Y) Keiviite-(Y) (Y, Yb)₂[Si₂O₇]

Иттриевый аналог кейвиита-(Yb) [1]. Образует изоморфный ряд с кейвиитом-(Yb).

Характ. выдел. Кристаллы (0,05-1,0 мм в длину при толщине 0,15 мм).

Структ. и морф. крист. Монокл. с. C_{2h}^3 -C2/m. $a_0 = 6.845$, $b_0 = 8.960$, $c_0 = 4.735$ Å; $\beta = 101.65^\circ$; $a_0:b_0:c_0 = 0.7519:1:0.5203$; Z = 2 [1]. $a_0 = 6.82$, $b_0 = 9.07$, $c_0 = 4.72$ Å; $\beta = 101.75^\circ$; $a_0:b_0:c_0 = 0.7519:1:0.5203$ для фазы II, обнаруженной в талените из Швеции [2].

Рентгенограмма порошка идентична таковым: кейвиита-(Yb), фазы II из таленита Швеции [2], образца из Кейв, отнесенного И.В. Бельковым [3] к иттриалиту, а Е.И. Семеновым [4] к талениту, и искусственного β-Y₂[Si₂O₇] [5].

Кристаллы тонкопризматические, часто имеют зональное строение в поясе призмы, иногда игловидные [1, 6].

Физ. св. Сп. отсутствует. Изл. неровный. Тв. 4–5. Микротвердость 1400 кгс/мм² при 20 г, 1200 кгс/мм² при 40 г. Уд.в. 4,45 (вычисл. 4,48). Цв. белый, бесцветный. Черта белая. Бл. стеклянный. Не флюоресцирует в ультрафиолетовом свете. В катодных лучах светится желто-зеленым цветом [1].

Микр. Двуосный (-). $cNp = 4^{\circ}$, $aNm = 7^{\circ}$; Ng = b; r < v. $n_g = 1,758$, $n_m = 1,748$, $n_p = 1,713$; $2V = 56^{\circ}$ (при $\lambda = 589$ нм) [1].

Хим. Теор. состав Y₂[Si₂O₇]: Y₂O₃ – 65,27; SiO₂ – 34,73.

Сумма р.з.э. цериевой подгруппы не превышает 0,03%. Качественным микрозондовым анализом фтор и углерод не обнаружены. По мере повышения содержания Y и соответствующего уменьшения суммы тяжелых TR возрастает роль элементов средней части грушпы TR, прежде всего Gd [1, 6].

	_	-		
	1	2	3	4
CaO	0,00	0,30	0,30	0,67
Y ₂ O ₃	40,86	42,93	45,86	45,11
Yb ₂ O ₃	15,36	14,93	11,81	10,11
Er ₂ O ₃	6,50	4,92	4,40	5,10
Lu ₂ O ₃	2,61	1,85	1,05	1,00
Tm ₂ O ₃	1,99	1,54	1,11	1,10
Dy ₂ O ₃	1,53	2,75	2,92	3,64
Ho ₂ O ₃	0,85	1,10	1,27	1,26
Tb ₂ O ₃	0,10	0,00	0,00	0,00
Gd ₂ O ₃	0,08	0,31	0,62	0,62
SiO ₂	30,85	29,13	30,49	30,79
Сумма	100,73	99,76	99,83	99,40 [*]

Анализы (микрозонд., каждый – среднее из 10):

* В оригинале 99,70.

1, 2 – призматические кристаллы, нарастающие на кейвиит-(Yb); 3, 4 – тонкопризматические кристаллы из трещин в кварце и флюорите [1, 6].

Нахожд. Найден в амазонитовых пегматитах района Кейв, на Кольском п-ове (Мурманская обл.). Ассоциирует с таленитом, ксенотимом и бастнезитом в трещинах растворения в кварце и флюорите. Иногда нарастает на кейвиит-(Yb) [1, 6]. Искусств. См. т. III, вып. 1, с. 584.

Отл. От кейвиита-(Yb) отличается по составу, показателям преломления и физическим свойствам [1, 6].

Межплоскостные расстояния кейвнита-(Y) из ранона Кейв [1]

Fe-излучение, D = 114,6 мм

hk!	1	d(Å)	hki	I	d(Å)	hkl	1	d (Å)
110	5	5,40	330	1	1,787	442;223;062	1	1,253
001	9	4.65	331;312	I	1,768	361;071;412	1	1,235
020	2	4,51	202	1	1,745	171;530;	2p	1,222
101	1	4.28	232;321	1	1,727	423;262		
	lp	4,20	401	5	1,685	271;532	1	1,177
101	3	3,47	400	1	1,677	004;313	1	1,157
111	2	3,26	151	2	1,647	451;601	1	1,142
021	10	3.23	222	1	1,626	611;323	2рш	1,130
201	8	3,04	151;331	3	1,591	461	2рш	1,119
130	5	2,729	421	3	1,583	353;443	1	1,108
220	5	2,692	341	1	1,567	620	3рш	1,084
221:201	2	2,489	332	3	1,543	181;034	3рш	1,082
<u>1</u> 31	1	2,440	203	1	1,526	124	lp	1,073
211	2	2,389	402	1	1,514	333;404	lp	1,059
002	1	2.323	412;123	1	1,489	334;461;414	lp	1,053
112:131	7	2.280	023	1	1,459	601;352	Ip	1,039
221:310	4	2.172	223	1	1,444	044;424;	1p	1,029
311	2	, 2,140	152;061	2	1,421	214;363		
202:231	2	2.125	322;133	3p	1,393	417	lp	1,020
212:022	1	2.060	351	1	1,385	224;561	lp	1,007
112	1	2.011	432;511	1	1,348	344;613	1p	1,004
222	4p	1,918	261;431	1	1,333			
132	5	1.841	403;352	lp	1,269			

- 1. Волошин А.В., Пахомовский Я.А., Тюшева Ф.Н. // Минерал. жури, 1985. Т. 7, № 6. С. 79.
- 2. Баталиева Н.Г., Кривоконева Г.К., Пятенко Ю.А. // ДАН СССР. 1967. Т. 176. № 5. С. 1146.
- 3. Бельков И.В. // Вопросы геологии и минералогии Кольского п-ова. М.: Изд-во АН СССР, 1958. Вып. 1. С. 135.
- 4. Семенов Е.И. Минералогия редких земель. М.: Изд-во АН СССР, 1963. 412 с.
- 5. Ito J., Johnson H. // Amer. Miner. 1968. Vol. 53, № 11/12. P. 1940.
- 6. Волошин А.В., Пахомовский Я.А. Минералы и эволюция минералообразования и амазонитовых пегматитах Кольского п-ова. Л.: Наука, 1986. 168 с.

Гиттинсит Gittinsite

CaZr[Si2O7]

Назван по фамилии профессора Университета Торонто Дж. Гиттинса [1]. Первоначально описан как фаза CaZrSi₂O₇ [2].

Характ. выдел. Мелоподобные тонкозернистые, реже мелкокристаллические, а также радиально-волокнистые агрегаты в составе псевдоморфоз по цирконосиликатам. Отдельные кристаллы до 0,3 мм [1–4].

Структ. и морф. крист. Монокл. с. $C_2^3 - C_2$ [5]. Z = 2; V = 272,77 Å³ [6], 272,10 Å³ [3].

<i>a</i> ₀ (Å)	<i>b</i> ₀	<i>c</i> ₀	β	$a_0:b_0:c_0$	Местонахождение	Ссылка
6,878	8,674	4,967	101,74°	0,7929:1:0,545	Кипава-Ривер	[1]
6,869	8,6 67	4,681	101,82	0,7925:1:0,5400	То же	[6]
6,852	8,659	4,686	101,69	0,7913:1:0,5411	Стрейндж-Лейк	[5]
6,895	8,691	4,709	100,89	0,7933:1:0,5418	Халдзан-Бурэг-	[3]
					тэгский массив	

Основу структуры составляют тортвейтитовые "дырчатые" слои, параллельные (001), в которых соединенные ребрами крупные Са-октаэдры чередуются с менее крупным Zr-октаэдрами (фиг. 25). В каждом слое имеется 1/3 Са-октаэдров, 1/3 Zr-октаэдров и 1/3 пустот октаэдрической формы. Са-октаэдр искажен сильнее, чем Zr-октаэдр. Диортосиликатные анионы объединяют соседние слои Са- и Zr-октаэдров таким образом, что перпендикулярно слою происходит чередование групп [Si₂O₇] и пустых октаэдров слоя.

Различие в строении октаэдрических слоев в структурах гиттинсита и тортвейтита (полностью заселенных Sc-октаэдрами) определяет отличие конфигурации групп [Si₂O₇]: угол Si–O–Si при мостиковом кислороде в гиттинсите 147,4°, в тортвейтите 180°, что обусловливает понижение симметрии в гиттинсите до C2 против C2/m в тортвейтите [5].

Межатомные расстояния (в Å): в Са-октаэдрах Са-О = 2,270-2,646; в Zr-октаэдрах Zr-O = 2,063-2,151; в Si-тетраэдрах Si-O = 1,607-1,643 [5].

Кристаллы призматические, короткостолбчатые или копьевидные, вытянутые вдоль оси с, часто уплощенные [1, 3].

Физ. св. Уд.в. 3,56 [3] (вычисл. 3,57 [3], 3,62 [1] и 3,645 [6]). Тв. 6–6,5. Микротвердость 938 и 753 кгс/мм² при нагрузках 20 и 50 г соответственно [3]. Цв. серобелый, розовато-коричневый [1, 3]. В катодных лучах оранжевое свечение [4].

ИК-спектр характеризуется полосами поглощения 474, 548, 600, 674, 910, 943, 963, 1035, 1046, 1073 см⁻¹ (близок ИК-спектру тортвейтита) [3].

Микр. Бесцветный, иногда с желтовато-розовым оттенком. Удлинение (-)

по оси с. Двуосный (-) [1, 3]. $cNp = 5-10^{\circ}$ [1] (вероятно, ошибочно $aNp = 3-8^{\circ}$ [3]), b = Nm [3].

n _g	n _m	n _p	ng-np	2V	Местонахождение	Ссылка
1,738	1,736	1,720	0,018	30°	Кипава-Ривер	[1]
1,760	1,738	1,718	0,044	Небольшой	Халдзан-Бурэгтэг	[3]

Под микроскопом в гиттинсите из Халдзан-Бурэгтэг наблюдается простое или полисинтетическое двойникование по (010) [3].

Хим. Теор. состав: CaO – 18,73; ZrO₂ – 41,14; SiO₂ – 40,13. Цирконий замещается Hf, Sn, Pb, Ti, Fe и Mn; кальций – Mg, Na, K. TR, Th [1–4].

Анализы (микрозонд.):

	1	2	3	4	5	6	7	8
Na ₂ O	0,4	Не опр.	Не обн.	Не обн.	0,12	0,07	0,00	0,00
K ₂ O	0,1	"	"	0,02	0,01	0,02	0,10	0,08
MgO	0,1		Не опр.	Не опр.	0,02	0,02	0,00	0,00
CaO	18,0	18.4	17.08	16,65	19,11	18,80	18,80	18,72
MnO	Не опр.	Не опр.	He onp.	He onp.	0,72	0,83	0,13	0,18
FeO	-	-	0,24	0,30	-	-	-	-
РЬО	Не опр.	He onp.	0,27	1,24	Не опр.	Не опр.	Не опр.	Не опр.
Al ₂ O ₃		••	0,09	0,12	0,00	0,04	0,00	0,00
Fe ₂ O ₃	0,3	"	-	-	0,29	0,21	0,06	0,15
La ₂ O3	Не опр.	**	0,14	0,15	Не опр.	Не опр.	He onp.	Не опр.
Ce ₂ O ₃			0,11	0,08	"	**	**	
SiO ₂	40,3	40,8	38,97	40,24	42,31	42,23	41,13	41,30
TiO ₂	Не опр.	Не опр.	0,07	0,12	0,08	0,12	0,07	0,17

	1	2	3	4	5	6	7	8
SnO		"	1,32	0,44	Не опр.	He onp.	Не опр.	Не опр.
ZrO ₂	41,3	40,3	35,88	35,35	37,67	37,98	39,84	39,21
HfO ₂	Не опр.	Не опр.	1,26	1,05	Не опр.	He onp.	Не опр.	He onp.
Сумма	100,5	99,5	95,43	95,76	100,33	100,32	100,13	99,70

1, 2 – Кипава-Ривер, Канада [1, 2]; 3, 4 – Стрейндж-Лейк, Канада [4]; 5–8 – Халдзаи-Бурэгтэг, Монголия (5, 6 – анал. Цепин, 7, 8 – Борисовский) [3].

Эмпирические формулы (1-4 рассчитаны на 7 атомов О; 5-8 - по сумме катионов):

 $1-(Ca_{0.956}Mg_{0.007}Na_{0.039}K_{0.06})_{1,008}(Zr_{0.999}Fe_{0.013})_{1.012}Si_{1.998}O_{7};$

2 - Ca_{0,981}Zr_{0,978}Si_{2,031}O₇;

 $3 - (Ca_{0.958}TR_{0.005}Pb_{0.004})_{0.968}(Zr_{0.915}Hf_{0.019}Sn_{0.026}Ti_{0.003}Fe_{0.011})_{0.968}Si_{2.04}O_7;$

 $4 - (Ca_{0.925}K_{0.001}Rb_{0.017}TR_{0.005})_{0.948}(Zr_{0.894}Hf_{0.015}Sn_{0.009}Ti_{0.005}Fe_{0.013})_{0.936}Si_{2.087}O_{7};$

 $5 - (Ca_{1,012}Na_{0,006}Mg_{0,002})_{1,020}(Zr_{0,908}Ti_{0,003}Fe_{0,012}Mn_{0,030})_{0.953}Si_{2,09}O_{7,07}$

 $6 - (Ca_{0.996}Na_{0.006}K_{0.001})_{1.004}(Zr_{0.915}Ti_{0.004}Fe_{0.009}Mn_{0.035})_{0.964}Si_{2.087}O_{7.064};$

 $7 - (Ca_{0,997}K_{0,006})_{1,003}(Zr_{0,962}Ti_{0,003}Fe_{0,002}Mn_{0,006})_{0.981}Si_{2,036}O_{7,011};$

 $8-(Ca_{0.997}K_{0.005})_{1.002}(Zr_{0.951}Ti_{0.006}Mn_{0.008})_{0.965}Si_{2.054}O_{7,032}.$

Нахожд. Впервые найден [2] в агпаитовых, богатых эвдиалитом нефелинсиенитовых пегматитах щелочного комплекса в Кипава-Ривер (Квебек, Канада) в срастании с апофиллитом (хим. анализ 1) и в локальных выделениях по спайности власовита (хим. анализ 2). Тесно ассоциирует с эвдиалитом, флюоритом, графитом, кальцитом, апатитом и опалом. В пегматитах присутствуют микроклин, ринкит (мозандрит), пектолит, торит и др. [1–3].

В качестве породообразующего минерала встречен в редкометальных щелочных гранитах в массивах Стрейндж-Лейк (на границе штатов Квебек и Лабрадор, Канада) [4] и Халдзан-Бурэгтэг (Монголия) [3].

Наблюдается преимущественно в псевдоморфозах по цирконосиликатам. В массиве Стрейндж-Лейк образуется в основном по армстронгиту, заместившему первично-магматический эльпидит, реже по первичным армстронгиту и эльпидиту, а также вторичному кальциокатапленту. Кроме того, встречаются полиминеральные первичные обособления гиттинсита с апофиллитом или с аланитом и кварцем [4].

В массиве Халдзан-Бурэгтэг описаны псевдоморфозы по эльпидиту (до 20 об.% породы) [3]. Изредка встречаются мельчайшие зерна гиттинсита, развивающиеся по трещинам спайности эльпидита. Псевдоморфозы в пегматитах состоят из тончайшей смеси кварца, циркона, флюорита, гематита и подчиненного количества гиттинсита.

Отл. От циркона в шлифах отличается по косому погасанию [3].

Практ. знач. Возможный источник для получения циркония [3, 4].

Межллоскостные расстояния гиттиясита из	Кинава-Рі	вер (Канада) [1
---	-----------	-----------------

 CuK_{α} -излучение, D = 114,6 мм

hk!	1	d (Å)	hkl	1	d(Å)	hkl	1	d (Å)
110	6	5,32	311	0,5	2,134	<u>1</u> 51	0,5	1,605
001	4	4,62	202	1	2,108	042	0.5	1,577
020	1	4,35	022	2	2,032	331	1	1,572
111	2	3,79	112	0,5	1,998	151	0,5	1,552
111	8	3,232	041	1	1,961	003	1	1,532
021	10	3,155	222	4	1,898	203;402;242	2	1,514

hkl	1	d (Å)	hki	1	d(Å)	hkl	1	d(Å)
201	8	3,026	132	1	1,814	401	0,5	1,486
220	8	2,660	330	1	1,772	060;023;312	2	1,446
221	2	2,483	331	0,5	1,755	223	0,5	1,432
ī 31	0,5	2,385	202	2	1,741	113	1	1,413
002	2	2,302	150;132	7	1,677	152;313	0,5	1,389
131	5	2,226	241	0,5	1,634	1 33;350	2	1,375
221	2	2,158	222	0,5	1,616			

1. Ansell H., Roberts A., Plant A., Sturman B. // Canad. Miner. 1980. Vol. 18, pt 2. P. 201.

2. Gittins J., Gasparini E., Fleet S. // Ibid, 1973, Vol. 12, pt 3, P. 211.

3. Царева Г.М., Карташов П.М., Дубровинский Л.С., Коваленко В.И. // Докл. РАН. 1993. Т. 331, № 1. С. 82.

4. Birkett T.C., Miller R R., Roberts A.C., Mariano A.N. // Canad. Miner. 1992. Vol. 30, pt 1/2. P. 191.

5. Roelofsen-Ahl J., Peterson R. // Ibid. 1989. Vol. 27, pt 4. P. 703.

6. Plant A.G., Roberts A.C. // Canad. Geol. Surv. Pap. 1979. No 79-1A. P. 391.

СТРУКТУРА ТИПА ЭДГАРБЕЙЛИИТА

	Сингония	<i>a</i> ₀	<i>b</i> ₀	<i>c</i> 0	β	Уд.в.
Эдгарбейлиит Нgt [Si2O2]	Монокл.	11,725	7,698	5,967	112,07°	9,43

Эдгарбейлиит Edgarbaileyite

 $Hg_6^+[Si_2O_7]$

Первый силикат Hg, назваи в честь известного американского геолога Эдгара Бейли (1914–1983), специалиста по ртутным месторождениям [1].

Характ. выдел. Скрыто- и тонкокристаллические агрегаты.

Структ. и морф. крист. Монокл. с. $C_{2h}^3 - C2 / m$, $C_s^3 - Cm$ или $C_2^3 - C2$. Z = 2 [1]. Параметры элементарной ячейки (в Å) [1]:

	a ₀ (Å)	<i>b</i> ₀	<i>c</i> ₀	β	$a_0:b_0:c_0$	V(Å ³)
1	11,725	7,698	5,967	112,07°	. 1,5231:1:0,7751	499,2
2	11,755	7,678	5,991	111,73	1,5309:1:0,7802	502,3

1 - Сократес, шт. Калифорния (США); 2 - Терлиигуа, шт. Техас (США).

Структура расшифрована [2] на материале из месторождения Терлингуа. Атомы Hg находятся в двух позициях и образуют симметрично независимые пары, имеющие близкие расстояния Hg(1)–Hg(1) = 2,522Å, Hg(2)–Hg(2) = 2,524, типичные для (Hg₂)²⁺ в других соединениях. Каждый атом Hg окружен тремя атомами O, определяющими также тетраэдрическую координацию Si. Пары атомов Hg связываются диортогруппами [Si₂O₇]. В элементарной ячейке содержится шесть пар атомов Hg, располагающихся линейно и почти параллельно друг другу (фиг. 26).

Межатомные расстояния (в Å) в пр.гр. C2/m: Hg (1)–O (1) = 2,12; Hg (1)–O (2) = 2,86; Hg (2)–O (1) = 2,63; Hg (2)–O (2) = 2,21 и 2,41; Si–O = 1,59–1,63; углы: Hg (1)–Hg (1)–O (1.2) = 177,2 и 103,1; O (1, 2)–Hg (1)–O (2) = 78,0 и 125,9; Hg (2)–Hg(2)–O (2) = 164,9 и 108,8; Hg (2)–Hg (2)–O (1) = 110,9; O (2)–Hg(2)–O(2) = 76,6; O (2)–Hg (2)–O (1) = 100,5; O (1)–Hg (2)–O (2) = 81,8; O (1,2)–Si–O (2, 3) = 113,6–105,6°.

Фиг. 26. Структура эдгарбейлиита в проекции ас (по Ангелу и др.). Цифры – высота атомов

Кристаллы пластинчатые (средний размер 0,1×5×5 мкм, два кристалла по 200 мкм) с преобладающей гранью (100) (под электронным микроскопом).

Физ.св. Сп. по (100) хорошая. Изл. неровный до полураковистого. Хрупок. Микротвердость 153–217 кгс/мм² (средняя 192); твердость около 4. Уд.в. 9,43 (вычисл. 9,11). В свежем изломе лимонно-желтый до оранжево-желтого, на свету становится желтовато-зеленым и зеленовато-бурым. Черта светло-зеленая с желтоватым оттенком. Бл. стеклянный – в кристаллических, смолистый – в скрытокристаллических агрегатах. Полупрозрачен (в кристаллических агрегатах) до непрозрачного (в скрытокристаллических). Не флюоресцирует. В ИК-спектре отсутствуют линии, связанные с H₂O и OH.

Микр. [1]. Плеохроизм слабый от лимонно- до ярко-желтого. Медленно взаимодействует с высокопреломляющими иммерсионными жидкостями. Двуосный. $n_p > 2$. Двупреломление высокое; рельеф изменяется от низкого – по Np до высокого – по Ng. Абсорбция сильная, особенно для Ng.

В отраж. свете (образец из Терлингуа) серый до светло-серого. Характерны тонкое двойникование и тонкая волокнистость, заметные в скрещенных николях. Двуотражение от слабого до сильного в зависимости от сечения зерен, без цветного эффекта. Показатели отражения (в %) для двух зерен (с самым слабым и сильным двуотражением):

λ(нм)	1 зерно		2 зерио			1 зе	рио	2 зерио	
	R ₁	R ₂	R ₁	R ₂	λ(нм)	R ₁	R ₂	R ₁	R ₂
40 0	16,7	20,2	20,0	24,9	60 0	14,0	16,0	14,4	20,2
440	17,0	19,2	19,4	23,9	640	13,8	15,8	14,1	19,8
480	15,8	18,2	17,0	22,5	680	13,7	15,5	13,9	19,5
520	14,9	17,3	15,7	21.5	70 0	13,6	15,4	13,7	19,4
560	14.3	16.5	14.9	20.7					

Слабые лимонно-желтые внутренние рефлексы.

Коэффициенты преломления 2,58 и 2,10 (вычислены по отражению для $\lambda = 590$ нм). Дисперсия, r < v.

Хим. [1]. Теор. состав: Hg₂O – 91,24; SiO₂ – 8,77. Анализы (микрозонд.) из месторождений Сократес (среднее из 5) и Терлингуа (среднее из 3): Hg₂O – 89,6 и 91,0; SiO₂ – 8,6 и 7,9; сумма 98,2 и 98,9.

Эмпирические формулы: ан. 1 – $Hg_{6,00}^+Si_{2,00}O_7$ (на 7 атомов О); ан. 2 – $Hg_{6,2}Si_{1,9}O_{6,9}$ (на 15 атомов в формуле).

Диагн. исп. [1]. Разлагается разбавленными кислотами: в HCl становится белым и легко растворяется, в HNO₃ образуется прозрачный студень.

Повед. при нагр. [1]. При постепенном нагревании в закрытой трубке до слабого красного каления образуется опал и выделяется ртуть, оседающая на стенках. При прокаливании (1000–1100°) в течение 14 ч наблюдалось образование тридимита и кристобалита.

Нахожд. [1]. Довольно широко распространен в двух ртутных месторождениях шт. Калифорния (США). На месторождении Сократес (округ Сонома) образует тонкие корочки на поверхности трещин, полые сосцевидные нодули (размером до 3,4 мм при толщине стенок до 1,2 мм), а также округлые и сосцевидные агрегаты, рассеянные в мелких полостях в кварц-магнезитовой породе, содержащей хромит. Ассоциирует с халцедоновидным кварцем, самородной ртутью, киноварью и монтроидитом. На месторождении Клир-Крик (округ Сан-Бенито) аналогичные выделения эдгарбейлиита наблюдались в кварц-магнезит-халцедоновой породе, содержащей пекораит, опал, гётит, хромит, монтмориллонит, хунтит, доломит, гипс и хлорит; тесно ассоциирует с самородной ртутью, монтроидитом и киноварью.

Установлен в музейном образце из месторождения Терлингуа (округ Брюстер, шт. Texac) в виде таблитчатых и сноповидных агрегатов в пустотах и трещинах в кальците, кварце и барите вместе с самородной ртутью; наблюдался в срастаниях с монтроидитом, терлингуаитом и эглестонитом.

Изм. Устойчив. Дебаеграмма образца после 25 лет хранения соответствует неизмененному эдгарбейлииту.

Искусств. [3]. В системе HgO–GeO₂–SiO₂ в присутствии H₂O при 4 кбар и температурах до 600° кристаллизовался только Hg₂GeO₄, силикат Hg не образуется.

Межплоскостные расстояния эдгарбейлинта из месторождения Сократес, шт. Калифорния (США) [1]

Со-излучение, Ni-фильтр. Камера Гинье

hkl	ı	d(Å)	hkl	1	<i>d</i> (Å)	hki	1	d (Å)
110	20	6,28	400	63	2,715	601	3	1,954
001	10	5,53	221	7	2,509	040	12	1,927
20 0	2	5,43	311	2	2,480	602	36	1,872
201	7	4,90	402	6	2,454	331	3	1,834
ī11	14	4,68	ī 31	17	2,353	600	3	1,813
020	8	3,85	421	24	2,321	223	17	1,766
111	5	3,76	0,22	7	2,245	621	14	1,743
310	3	3,28	420	7	2,222	622	3	1.685
021	100	3,160	202	5	2,161	530	8ш	1,657
221	27	3.027	401	3	2,144	242	9	1,613
202	34	2.952	330	10	2,094	042	5	1,580
002	20	2,765	422; 312	3	2,068	203; 440	12	1,572

- 1. Roberts A.C., Bonardi M., Erd R.C., Criddle A.J., Stanley Ch.J., Cressey G., Angel R.J., Laflamme J.H. // Miner. Rec. 1990. Vol. 21, N 3. P. 215.
- 2. Angel R.J., Gressey G., Criddle A.J // Amer. Miner. 1990. Vol. 75, N 9/10. P. 1192.

3. Ropke H., Eysel W. // Neues. Jb. Miner. Monatsh. 1978. H. 1. S. 1.

Б. С ДОПОЛНИТЕЛЬНЫМИ АНИОНАМИ

СТРУКТУРА ТИПА ВЕРДИНГИТА

	Сингония	<i>a</i> 0	<i>b</i> 0	<i>c</i> 0	α	β	γ	Уд.в.
Вердингит	Трикл.	7,995	8,152	11,406	110,45°	110.85°	84.66°	3,04
(Mg, Fe) ₂ Al ₁₄ ×								

 $(Mg, Fe)_2Al_{14} \times (Si_2O_7)_2(BO_3)_4O_{11}$

Вердингит Werdingite

$(Mg, Fe)_2 Al_{14} [Si_2O_7]_2 (BO_3)_4 O_{11}$

Назваи в честь немецкого ученого Гюнтера Вердинга, исследователя системы $MgO-Al_2O_3-B_2O_3-SiO_2-H_2O$ [1].

Характ. выдел. Округлые зерна диаметром до 3 мм и их агрегаты [1]. кристаллы до 1 мм [2] (до 5 мм – синтетический Мg-вердингит, также тонкие листочки до 2–3 мм [3]).

Структ. и морф. крист. Трикл. с. $C_l^l - P\overline{1}$. $a_0 = 7,995$, $b_0 = 8,152$, $c_0 = 11,406$ Å; $\alpha = 110,45$, $\beta = 110,85$, $\gamma = 84,66^\circ$; $a_0:b_0:c_0 = 0,981:1:1,399$; V = 650,6 Å³; Z = 1 [1]; $a_0 = 7,993$, $b_0 = 8,150$, $c_0 = 11,388$ Å; $\alpha = 110,45$, $\beta = 110,88$, $\gamma = 84,62^\circ$; $a_0:b_0:c_0 = 0,981:1:1,397$; V = 649,1 Å³ (искусственный Мд-вердингит) [3].

В основе структуры лежат цепочки из $[AlO_6]$ -октаэдров, параллельные оси *с*. Они связаны диортогруппами $[Si_2O_7]$ и $[(Fe, Al)_2O_7]$, чередующимися с тригональными дипирамидами Al и Mg и атомами B, расположенными в центрах треугольников из атомов O.

Межатомные расстояния (в Å): Si-O = 1,617-1,650; в тетраэдрах в среднем Fe(Al)-O = 1,826; B-O = 1,360-1,427; в октаэдрах Al-O = 1,829-1,979; в тригональных бипирамидах Al-O = 1,742-1,824; Mg-O = 1,901-1,973.

Кристаллы короткопризматические.

Физ. св. [1]. Сп. или отдельность несовершенная по призме. Изл. раковистый. Тв. 7. Уд.в. 3,04 (вычисл. 3,07). Цв. коричневато-желтый, окраска пятнистая. Черта белая. Бл. стеклянный. Просвечивает. Магнитная восприимчивость ниже таковой грандидьерита и выше силлиманита. Не флюоресцирует в ультрафиолетовых лучах.

ИК-спектр искусственного Mg-вердингита имеет полосы поглощения с максимумами при 1305, 1420 и 1460 см⁻¹, обусловленные присутствием ВО₃-групп.

Микр. [1]. Плеохроизм: по Ng и Np – бесцветный, по Nm – желтый. Двуосный (-). Удлинение (+). $n_g = 1,651$, $n_m = 1,646$, $n_p = 1,614$; $n_g - n_p = 0,047$; $2V = 33^\circ$; r > v. $n_g = 1,636$, $n_p = 1,606$ у синтетического Mg-вердингита [3]. Двойники простые и

полисинтетические (три-четыре двойниковые полосы), двойниковые швы || с. Характерны включения силлиманита, циркона, рутила, каймы грандидьерита на стыке вердингита и корнерупина. Отмечено замещение симплектитовыми срастаниями грандидьерита и герцинита.

Хим. Анализ (микрозонд., среднее из 14) вердингита из Бок-се-Путс (Намакваленд, ЮАР): MgO – 4,46; FeO – 5,06; Al₂O₃ – 59,49; SiO₂ – 19,83; TiO₂ – 0,05; B₂O₃ – 10.19; сумма 99,08.

Пересчет анализа на 37 атомов О: Si – 4,018; Ti – 0,008; Al – 14,206; Fe³⁺ – 0.180; Fe²⁺ – 0.678; Mg – 1,347; B – 3,564 [1].

Частичный анализ искусственного Mg-вердингита: MgO – 6,87; Al₂O₃ – 60,80; SiO₂ – 20,47; B₂O₃ – 11,86 [3].

Нахожд. Обнаружен в богатых корнерупином и грандидьеритом прослоях (мощностью 2–20 см) силлиманит-герцинит-ильменитовых гнейсов гранулитовой фации метаморфического комплекса Намакваленд в Бок-се-Путс (ЮАР) [1].

Изм. Частичные и полные псевдоморфозы симплектитовых срастаний гранпильерита и герцинита [1].

Искусств. [3]. Мg-вердингит синтезирован при $t = 800-875^{\circ}$ и P = 4-7 кбар из сухого B₂O₃ и геля магниевого алюмосиликата или смеси синтетического Mg-грандидьерита и фазы Al₈Si₂B₂O₁₉. При более низкой температуре в присутствии H₂O разлагается с образованием Mg-грандидьерита, корунда и турмалина. В почти безводных условиях и P > 10 кбар при распаде Mg-вердингита образуется ассоциация синхалит-корунд-дюмортьерит.

Межплоскостные рисстоянии вердингита из Бок-се-Путс, Намакваленд (ЮАР) [1]

СиК_о-излучение I d(Å) d(Å) hkl hkl 1 2.164 014:234 20 110 8 5.433 5.226 230 30 2.135 110 100 230 20 2.065 002: 112 75 4,979 222; 332; 134; 314; 325 112:022 10 1.963 20 3.690 400; 140; 132;242; 231 10 1,863 112:202 15 3.652 224: 404: 143: 024: 410 1.826 120 30 3.437 10 204: 424: 410 2ī0 10 1.806 50 3.392 106: 421: 236: 313: 016: 8 1.760 120 10 3.342 3.299 145: 326 210 30 242: 332 20 1,708 114: 113: 221 30 2.846 220 420 20 1.652 60 2,708 134 20 1.584 220: 212 30 2,612 314: 242: 152; 1.559 0.24:204 30 2,520 8 514; 234; 054 130 10 2.427 244; 424; 40 1.527 130: 222: 312 2.372 8 122: 232 224: 444 10 1,489 8 2.333 228 30 1.424 114: 314: 131 15 2,257 214 034 2,194 044: 308: 148: 264 15 1,317 50

÷

5. Мииералы т. IV, вып. 3

~p	 •		

	СиКα-излучение										
hkl	1	d (Å)	hkl	1	d (Å)	hki	1	d Å)			
110	76	5,435	130	5	2,435	140					
110	100	5,247	130	16	2,382	143	8	1,828			
002	69	5,032	122	8	2,339	024					
112		5,016	232			410					
022	40	3,702	114	30	2,265	204	14	1,808			
112	9	3,672	314			424					
202		3,664	214	75	2,196	420	19	1,653			
120	23	3,446	034			134	20	1,584			
210	89	3,401	014	45	2,170	244	41	1,527			
120	9	3,350	234			424					
210	55	3,310	230	33	2,137	224	21	1,489			
114	25	2,848	230	32	2,068	444					
220	86	2,716	134	14	1,966	228	20	1,423			
220	42	2,623	314			308	20	1.316			
024	52	2,523	325			148					
204			400	19	1,865						

Межплоскостные расстояння синтетического Mg-вердингита [3]

Литература

1. Moore J.M., Waters D.J., Niven M.L. // Amer. Miner. 1990. Vol. 75, N 3/4. P. 415.

2. Niven M.L., Waters D.J., Moore J.M. // Ibid. 1991. Vol. 76, N 1/2. P. 246.

3. Werding G., Schreyer W. // Europ. J. Miner. 1992. Vol. 4, N 1. P. 193.

СТРУКТУРА ТИПА БАФЕРТИСИТА

Ранее с подобной структурой описан бафертисит (т. Ш., вып. 1, с. 635).

ГРУППА БАФЕРТИСИТА

	Сингония	a_0	b_0	<i>c</i> 0	β	Уд.в.
Хейтманит Ba(Mn, Fe) ₂ Ti ×	Монокл.	11,748	13,768	10,698	112,27°	4,02
×[Si ₂ O ₇]O(OH, F) ₂						

Хейтманит Heitmanite

Ba(Mn, Fe)₂Ti[Si₂O₇]O(OH, F)₂

Назван по нмени чешского петрографа Б. Хейтмана [1], относнтся к членам изоморфного ряда BaFe₂Ti[Si₂O₇]O(OH)₂ (бафертисит)–BaMn₂Ti[Si₂O₇]O(OH,F)₂(хейтманит) с Mn²⁺ > Fe²⁺

Синон. Гейтманит.

Характ. выдел. Пластинчатые выделения (до 5 мм).

Структ. и морф. крист. [1]. Монокл. с. $a_0 = 11,748$, $b_0 = 13,768$, $c_0 = 10,698$ Å; $\beta = 112,27^\circ$; $a_0:b_0:c_0 = 0,853:1:0,777$; V = 1601,3 Å³; Z = 8. Для подъячейки определены: пр. гр. $C_{2h}^2 - P2_1 / m$; $a'_0 = 11,748$, $b'_0 = 6,884$, $c'_0 = 5,349$ Å. Возможен другой выбор элементарной ячейки с параметрами, близкими бафертиситовым: $a_0 =$ = 10,698, $b_0 = 13,768$; $c_0 = 12,538$ Å; $\beta = 119,80^\circ$; $a_0:b_0:c_0 = 0,777:1:0,911$; для соответствующей подъячейки: пр. гр. $C_{2h}^2 - P2_1 / m$, $a'_0 = 11,909$, $b'_0 = 6,884$, $c'_0 = 5,349$; $\beta = 94,72^\circ$.

Фиг. 27. Взаимное расположение бафертиситовых трехслойных пакетов (по Расцветаевой и др.) Выделены ячейки фазы 1, фазы 11 и двойника (c₀ – 33 Å)

Повторное рентгеноструктурное исследование образца из Киргизии состава $BaMn_2Ti[Si_2O_7]O(OH)_2$, описанного в [2], показало, что он является закономерным сростком двух модификаций [3]. Фаза I: P2/m, $a_0 = 5,361$, $b_0 = 6,906$; $c_0 = 12,556$; $\beta = 119,8^\circ$; фаза II: Cm, $a_0 = 10,723$, $b_0 = 13,812$, $c_0 = 12,563$; $\beta = 119,9^\circ$. Параметры двойника: $a_0 = 10,723$, $b_0 = 13,812$, $c_0 = 32,783$; $\beta = 96,65^\circ$. Фаза I представляет собой новый структурный тип, а фаза II и изоструктурный ей бафертисит являются производной, полученной при понижении симметрии P2/m до Cm и потери части трансляций.

Основой структурного мотива данной группы минералов являются трехслойные пакеты (фиг. 27) с различным заполнением октаэдров катионного слоя. В отличие от бафертисита средний слой пакета образован Mn²⁺-октаэдрами. Структурные различия фаз I и II Mn-бафертисита связаны со смещениями атомов Ва, что приводит к изменению симметрии и параметров решетки.

Средние межатомные расстояния (в Å) в структурах фаз I и II: Si-O = = 1,62 и 1,57-1,66 соответственно; Mn-O = 2,14-2,27; Ba-O = 3,03-3,33.

Кристаллы пластинчатые или призматические, удлиненные по оси с с преобладающим развитием грани (100) [1].

Физ. св. [1]. Сп. по (100) совершенная, по (0kl) плохая. Уд.в. 4,02 (вычисл. 4.29). Хрупок. Изл. неправильный. Цв. коричневато-желтый до золотисто-желтого. Бл. стеклянный. Полупрозрачен. Не флюоресцирует. ИК-спектр близок таковому тафертисита, содержит полосы поглощения 432, 497, 562, 622, 662, 716, 867, 922, 35, 1000, 1055 см⁻¹ (неопубликованные данные Л.А. Паутова).

Микр. [1]. Плеохроизм: по Np – светлый зеленовато-желтый, по Nm – темный элотисто-желтый, по Ng – светло-желтый; Nm > Ng = Np. Двуосный (–). Np = b, $Nm = 37,9^{\circ}$, $aNp = 15,9^{\circ}$; $n_g = 1,867$, $n_m = 1,846$, $n_p = 1,814$; $n_g - n_p = 0,021$; $2V = 76,4^{\circ}$ (вычисл. 76,8°).

Хим. Хейтманит из Киргизии близок по составу конечному Мп-члену изоморфэго ряда.

	1	2		1	2
Na ₂ O	0,06	0,16	SnO ₂	-	2,23
K ₂ O	0,30	-	Nb ₂ O ₅	1,4	0,26
Cs ₂ O	_	0,07	Ta ₂ O5		0,07
CaO	_	0,10	H ₂ O⁺	1,862*	0,89 ^{3*}
MgO	0,13	0,40	H₂O [_]		0,14
BaO	30,2	29,35	F	3,3	_
МлО	14,12	23,98	SO2	-	0,04
FeO*	11,29	2,42	Сумма	99,82	99,22
Al ₂ O ₃	0,37	0,98	$-O = F_2$	1,39	
SiO ₂	23,52	23,45	Сумма	98,43	
TiO	13.27	14 68	=		

Анализы (микрозонд., 1 - среднее из 6):

Общее. ^{2}Рассчитано по формуле. ^{3*}Метод Пенфильда.

1 - Мболве-Хилл, Замбия [1]; 2 - хр. Иныльчек (Киргизия), анал.

Игнатенко (неопубликованные данные Л.А. Паутова).

Эмпирическая формула для ан. 2 : (Ba_{0.96}Na_{0.03}Ca_{0.01}Cs_{0.002})_{1,00}Mn_{1.70}Fe_{0.17}× ×Mg_{0.05}Al_{0.08})_{2,00}(Ti_{0.93}Sn_{0.07}Nb_{0.015})_{1,01}(Si_{1.97}Al_{0.02})_{1.99}O₇(O_{2.09}) · 0,25 H₂O; формула в общем виде BaMn₂TiO[Si₂O₇](OH)₂ [2].

Нахожд. Найден [1] в арфведсонитсодержащих пегматоидных жилах, секущих щелочные граниты и сиениты в Мболве-Хилл (бассейн р. Мкузе, Центральная пров., Замбия). Образует включения (до 1 мм) в кристаллах марганцевого арфведсонита. Ассоциирует с апатитом, альбитом, бастнезитом, чевкинитом, манганильменитом и эгирином.

Обнаружен также [2] в родонит-тефроит-спессартин-кварцевой ассоциации в Юго-Восточной Киргизии (хр. Иныльчек).

Отл. От бафертисита отличается оптической ориентировкой.

			МоК _α -излуче	ние. Диф	рактометр			
hki	1	d (Å)	hki	1	d (Å)	hki	1	d (Å)
200	32	5,472	142	3	2,610	45 ī	< 1	2,007
022	5	4,040	304; 420	14	2,535	422	3	1,984
102	2	4,000	302	7	2,516	$60\overline{2}$	2	1,960
222;	10	3,858	004	1	2,843	360	1	1,942
302; 300	14	3,669	322; 502	2	2,351	171	< 1	1,927
30 2; 30 0	14	3,639	404; 242	2	2,321	224	1	1,911
113	17	3,455	104	7	2,243	144	1	1,881
140	7	3,294	522 442;	5	2,218	540	1	1,840
322; 320	21	3,241	424	< 1	2,202	600	2	1.817
322; 320	21	3,215	500	16	2,180	462	1	1,800
202	4	3,130	440; 124	E	2,130	442	1	1,778
240	4	2,925	21 5	7	2,113	502; 620	1	1,761
142; 402	7	2,895	144	2	2,094	502; 620	1	1,753
222	10	2,850	402	13	2,073	106	< 1	1,734
242	12	2,771	344	3	2.049	326;	4	1,721
400	100	2,726	342	1	2,027	642	10	1,704
204; 422	3	2,671	044	1	2,015	426	6	1,677
104	10	2.646						

Межилоскостные расстояняя хейтманита из Замбия [1]

- 1, Vrána S., Rieder M., Gunter M.E. // Europ. J. Miner. 1992. Vol. 4, N 1. P. 35.
- 2. Соколова Е.В., Егоров-Тисменко Ю.К., Паутов Л.А., Белаковский Д.И. // Зап. ВМО. 1989. Ч. 118, вып. 4. С. 81.
- 3. Расцветаева Р.К., Тамазян Р.А., Соколова Е.В., Белаковский Д.И. // Кристаллография. 1991. Т. 36, № 2. С. 354.

ГРУППА ЛОМОНОСОВИТА

Ранее группа включала: ломоносовит, беталомоносовит^{*}, мурманит, эпистолит (т. III, вып. 1, с. 660).

*Дискредитирован (Никель, Мандарино, 1989).

	Сингония	a_0	b_0	c_0	α	β	γ	Уд.в.
Вуоннемит Na ₁₁ TiNb ₂ [Si ₂ O ₇] ₂ × ×(PO ₄) ₂ O ₃ F	Трикл.	5,53	7,16	14,55	94°	96°	90°	3,13
[Борнеманит] Na7BaTi2Nb[Si2O7]2 × ×(PO4)O3 F	Ромб.	5,48	7,10	48 ,2	90	90	90	3,50

Минералы группы, включая ранее описанные, имеют близкие химические составы и сходные кристаллохимические параметры; являются титаносиликатами, содержат фосфатную составляющую (или воду), по количеству Na в формуле превосходят другие силикаты. Борнеманит отнесен к группе условно по близости состава и свойств.

Относятся к гомологическому ряду (полисоматической серии), крайними членами которого приняты титаносиликат – сейдозерит $Na_4MnTi_3[Si_2O_7]_2O_2(F, OH)_2$ и Na_4Ca -фосфат – накафит Na_2Ca (PO_4)F [1, 2]. Ломоносовит $Na_5Ti[Si_2O_7](PO_4)O_2$, вуоннемит и борнеманит – диортосиликаты, содержащие ортофосфатные группы в качестве дополнительных анионов, являются промежуточными членами ряда сейдозерит-накафит. Основу их структур представляет сейдозеритовый трехслойный пакет, где центральная часть – стенки из М-октаэдров (M – Ti, Zr, Mn, Nb, Fe и катионы щелочных и щелочноземельных металлов); к ней с обеих сторон примыкают слои из изолированных [Si_2O_7]-групп и Ti(Nb)-октаэдров. Минералы групп различаются по заполнению октаэдрических позиций и пространства между трехслойными пакетами, что сопровождается изменением одного из параметров элементарной ячейки.

Минералы группы обладают характерными свойствами: при обработке их водой в водную вытяжку переходит натрофосфатная часть, при этом промежуток между титаносиликатными пакетами сокращается и заполняется молекулами воды.

Являются типоморфными для ультраагпаитовых пегматитов, формирующихся на конечных стадиях дифференциации агпаитовых нефелиновых сиенитов

Литература

^{1.} Егоров-Тисменко Ю.К., Соколова Е.В. // Минерал. журн. 1990. Т. 12, № 4. С. 40.

^{2.} Соколова Е.В., Егоров-Тисменко Ю.К., Хомяков А.П. // Тез. докл. VI Всесоюз. симпоз. по изоморфизму. Звенигород, 1988. С. 187.

Вуониемит Wuonnemite Na₁₁ TiNb₂ $[Si_2O_7]_2(PO_4)_2O_3F$

Назван по месту находки в долине р. Вуоннемиок в Хибинском массиве [1]. Синон. Ниобиевый ломоносовит [2] – первоначальное упоминание.

Характ. выдел. Пластинки до 1,8×1,5×0,15 см, пластинчатые кристаллы (шириной 1–5 см, толщиной до 0,5 мм), веерообразные и параллельные сростки [1, 3]. отдельные кристаллы (до 6 мм) в пустотах [4].

Структ. и морф. крист. Трикл. с. $C_1^1 - P\overline{1}$ (или $C_1^1 - P1$ [1]). Z =1.

	<i>a</i> ₀ (Å)	b_0	<i>с</i> 0	α	β	γ	$a_0:b_0:c_0$	<i>V</i> (Å ³)	Местонахож- дение	Ссылка
1	5,53	7.16	14,55	94°	96°	90°	0,772:1:2,032	571,5	Ловозеро	[3, 5]
2	5,501	7,162	14,440	92,63	95,33	90,57	0,768:1:2,016	565,81	Гренландия	[6]
3	7,02	14,15	5,38	93,7	89,5	87,5	0,496:1:0,380	530,80	Хибины	[1]

1, 2 - в установке ломоносовита.

Центральная часть сейдозеритового пакета в структуре состоит из правильных Ti- и Na-октаэдров (фиг. 28) [5]. С обеих сторон к ней примыкают сетки из диортогрупп [Si₂O₇] и дискретных неправильных октаэдров Nb. Сетку уплотняют атомы Na. Атомы Ti и Nb, занимая различные структурные позиции, выполняют разные функции, не замещая друг друга. В направлении оси с трехслойные пакеты чередуются с двухэтажными слоями, содержащими ионы PO_4^{3-} и Na⁺. Атомы F частично (примерно 1:1) замещают О в одной из вершин Ti-октаэдра, не связанной с Si. Вуоннемит входит в структурный гомологический ряд сейдозерит–накафит [7].

Средние межатомные расстояния (в Å): Na–O = 2,32–2,59; Ti–O = 2,01; Nb–O = 2,01; Si–O = 1,66 и 1,64; P–O = 1,55 [5].

Кристаллы [3, 8] сильно уплощены по (001) и вытянуты вдоль оси *b*. Неодинаковое развитие граней зон [100], [110], [010], [110] обусловливает разнообразие внешнего облика кристаллов.

Установлены формы [3]:

φ	ρ		φ	ρ		φ	ρ			
56° 00′	7°00'	1012	173°30'	43°00'	x 116	53°00'	32°00			
0 00	90 00	s 011	177 00	63 00	z 113	232 00	45 00			
90 00	90 00	d 101	88 00	70 00	h 111	232 00	73 00			
3 00	64 00	i 102	87 00	56 00	w 1 1 0	127 00	90 00			
5 30	47 00	n 102	273 00	50 30	q 1 <u>1</u> 2	123 00	58 00			
88 00	36 00	g 101 ·	271 00	68 00	p 111	309 00	73 00			
170 30	31 00	u 114	52 30	44 00						
	bc(010):(001)	= 86°30′		kc(013):(001) = 32°00 [°]					
	ac(100):(001)	= 84 30		$\nu c(\overline{01}3):(001) = 35\ 00$						
	ab(100):(010)	= 90 00		tc(012)	:(001) = 47 00					
	ec(011):(001)	= 60 00		sc(011)	:(001) = 67 00					
	fc(012):(001)	= 43 00		dc(101)	:(001) = 64 00					
	ic(102):(001)	= 50 00		zc(113)	:(001) = 52 00					
	nc(102):(001)	= 56 30		hc(111)	:(001) = 80 00					
	gc(101):(001)	= 74 00		wc(110)	:(001) = 87 00					
	uc(114):(001)	= 37 00		qc(112)	:(001) = 55 00					
	xc(116):(001)	= 25 00		pc(111)	:(001) = 76 00					
	φ 56°00' 0 00 90 00 3 00 5 30 88 00 170 30	$\begin{array}{c c} \Psi & P \\ 56^{\circ}00' & 7^{\circ}00' \\ 0 & 00 & 90 & 00 \\ 90 & 00 & 90 & 00 \\ 3 & 00 & 64 & 00 \\ 5 & 30 & 47 & 00 \\ 88 & 00 & 36 & 00 \\ 170 & 30 & 31 & 00 \\ \end{array}$ $\begin{array}{c c} bc(010):(001) \\ ac(100):(001) \\ ab(100):(010) \\ ec(011):(001) \\ fc(012):(001) \\ ic(102):(001) \\ nc(\overline{1}02):(001) \\ gc(\overline{1}01):(001) \\ uc(\overline{1}14):(001) \\ xc(\overline{1}6):(001) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							

Фиг. 28. Структура вуоннемита в проекцин *ab* (по Дроздову и др.). Стенка из Na- и Ті-октаэдров

Часты двойники и тройники, срастающиеся по (001). Двойниковой осью служит нормаль к (001) или ось b. В двойниках характерно отсутствие входящих углов, благодаря чему некоторые из них имеют облик ромбических кристаллов. Отмечались параллельные сростки с одинаковой оптической ориентировкой.

Физ. св. Сп. совершенная по (001) и менее совершенная по (110) и (111) [3]. Изл. плоский, ступенчатый. Хрупок. Тв. 2–3. Микротвердость 334–367 кгс/мм² в

сечениях II (001), 376–477 кгс/мм² – ⊥ (001). Уд. в. 3,11–3,15 (вычисл. 3,15). Цв. желтый, светло-желтый, бледно-розовый, зеленовато-желтый, серый. Бл. стеклянный до жирного или перламутрового на плоскостях спайности. Прозрачный, просвечивающий по краям пластинок, мутноватый [1, 3]. Иногда флюоресцирует интенсивным зеленовато-желтым в коротковолновом и светло-желтым в длинноволновом ультрафиолетовом излучении, сохраняя слабую голубовато-зеленую фосфоресценцию на короткий период [4, 6]. Обнаружены полосы желтой фотолюминесценции [9]. Предполагается, что она принадлежит электронному центру Ti³⁺.

ИК-спектр характеризуется наличием хорошо разрешенных максимумов в полосах 1070–870 и 595–440 см⁻¹, отвечающих соответственно области валентных колебаний SiO₄- и PO₄-тетраэдров и деформационных колебаний связей Si-O и P-O. Общий характер спектра близок ломоносовитовому, а спектр продукта обработки вуоннемита водой – эпистолитовому [3].

Микр. Желтовато-серый, без включений. Двуосный (+). Для ловозерского вуоннемита пл. опт. осей близка к (012) и образует с пл. (001) угол 44°. $aNg = 3^{\circ}$, $bNm = 46^{\circ}$, $cNp' = 43^{\circ}$. Координаты φ и ρ осей опт. индикатрисы для Ng - 27 и 82°, для Nm - 9 и 94°, для Np - 174 и 43°. В иммерсии пластинки по (001) имеют почти прямое погасание ($aNg' = 2^{\circ}$), по отношению к следам спайности по (110) и (111) соответственно 35 и 40° [3]. $n_g = 1,683$ и 1,681, $n_m = 1,656$ и 1,651, $n_p = 1,638$ и 1,639 для ловозерского [3] и хибинского [1] образцов; $n_g - n_p = 0,042$. $2V = 80^{\circ}$ (вычисл. 78°) [3]; для гренландского: $n_g = 1,6795$, $n_m = 1,6544$, $n_p = 1,6360$; $n_g - n_p = 0,0435$; $2V = 86^{\circ}$ (вычисл. 82,3°) [6]. Дисперсия, r > v.

Хим. Теор. состав: Na₂O – 31,6; TiO₂ – 7,4; Nb₂O₅ – 24,6; SiO₂ – 22,3; P₂O₅ – 13,1; F – 1,8. Самый богатый Na представитель гр. ломоносовита. По составу может рассматриваться как фосфатоэпистолит (подобно ломоносовиту, являющемуся фосфатомурманитом) [1,3].

Анализы:

	1	2	3	4	5	6
Na ₂ O	30,23	29,12	32,07	32,03	31,76	31,65
CaO	0,25	0,20	0,29	0,33	0,47	0,52
МлО	0,53	0,60	0,09	0,08	0,12	0,14
FeO	_	-	0,28	0,26	0,13	0,12
Al ₂ O ₃	0,46	0,70	0,35	0,26	0,06	0,09
SiO ₂	22,31	21,83	22,52	22,57	23,07	23,33

1203 13,50	10,44	13,30	13,13	12,93	12,71
P.O. 13.50	-	•			
Nb ₂ O ₅ 23,16	27,88	24,28	23,99	23.87	23.54
TiO ₂ 8,07	7,85	7,09	7,50	8,07	8,42
1	2	3	4	5	6

* В том числе K₂O - 0,07, MgO - 0,14, п.п. - 0,96, Fe, Ta, Zr - не обн.

^{2*} В том числе $Fe_2O_3 - 0.31$, К и Mg – сл., F – 1,80 (– $O=F_2 - 0.76$), Zr – не обн.

^{3*} F - 1,5-2,5.

1 – Хибинский массив, анал. Забавникова [1]; 2 – Ловозерский массив, анал. Казакова [3]; 3-6 – массив Илимаусак (Гренландия): 3,4 – образец 1; 5,6 – образец 2, микрозонд. [6].

Спектральным анализом обнаружены сл. Ва, Sr, p.3.9. [1]. Некоторый дефицит Na и P при пересчете на формулу предположительно объясняется частичным выветриванием минерала [10].

Диаги. исп. При обработке водой в раствор легко переходят практически весь Р и больше половины Na, что составляет две молекулы Na₃PO₄ на одну силикатную часть. Остаточный продукт. выщелачивания – серовато-белые тонкие пластинки эпистолита Na₅TiNb₂Si₄O₁₇F \cdot n H₂O (подтверждено оптическими исследованиями, ИК-спектром и рентгенограммой) [1, 3]. Промежуточные члены между вуоннемитом и эпистолитом не установлены.

Повед. при иагр. На кривой нагревания проявлен небольшой экзотермический эффект при 350°, а также четкий эндотермический максимум при 870° [1] или 830° [3], связанный с плавлением минерала. При нагревании в азоте до 1000° потеря веса – 0,2% [3].

Нахожд. Первичный постмагматический минерал, характерный для ультращелочных пегматитов и гидротермалитов. Обнаружен в Хибинском массиве (долина р. Вуоннемиок) в керне скважины в лявочорритах, приурочен к альбитизированному участку с рамзаитом, канкринитом, серандитом и виллиомитом [1]. В Ловозерском массиве [3] встречен на горе Карнасурт в ассоциации с породообразующими минералами фойяитов – микроклином, нефелином, эгирином, арфведсонитом и виллиомитом. Там же значительные скопления вуоннемита обнаружены в уссингитнатролитовых прожилках мощностью до 3 см, рассекающих луявриты верхней части дифференцированного комплекса. В ассоциации с нордитом, беловитом, клейофаном и др. образует в уссингите сростки и редкие пластинчатые кристаллы, ориентированные субперпендикулярно контактам прожилков. В небольших количествах обнаружен в тонком анальцимовом прожилке с виллиомитом, а также в натролитовой зоне пегматоидной залежи Юбилейная с ненадкевичитом.

Найден в щелочном массиве Илимаусак (Гренландия) в виде слоистых агрегатов в ассоциациях с микроклином и натролитом или с содалитом и виллиомитом [6]. На горе Сент-Илер, Квебек (Канада), встречен в содалитовых ксенолитах [4].

Наряду с другими минералами группы ломоносовита (ломоносовитом, β -ломоносовитом^{*}, мурманитом, эпистолитом, борнеманитом) является типоморфным для наиболее поздних фаций агпаитовых нефелин-сиенитовых комплексов. Кристаллизуется из остаточных расплавов, предельно насыщенных щелочами, летучими и редкими элементами [10]. По величине K_{alk} (отношение Na, K к сумме катионов, принятой за 100%) вуоннемит (55%) превосходит остальные титаносиликаты [10, 11].

Изм. В гидротермальных и гипергенных условиях неустойчив, становится бурым или серым, приобретает перламутровый блеск [1]. Замещается гидратным

^{*} Название дискредитировано (Никель, Мандарино, 1989).

аналогом – эпистолитом. При этом вынос двух молекул Na_3PO_4 компенсируется привносом четырех молекул H_2O , что приводит к сжатию элементарной ячейки по оси *с* на величину 2,6Å [10]. Характерно образование неполных псевдоморфоз вторичного эпистолита по вуоннемиту [4, 11].

Межплоскостные расстояния вуоннемита из Ловозерского массива [3]* Си-излучение. Ni-фильто. D = 114 мм

hkl	1	d (Å)	hkl	1	₫(Å)	hkl	I	d (Å)
002;010	6	7,10				038;145;242;	2	1,490
011	<1	6,46	032;124;124	2	2,290	241;241;240;119		
100	2	5,23	025;221;221;			315; 324;138	2,5	1,463
101	<1	4,96	220;220	2	2,176	324;052;228;129;	1,5	1,419
012	<1	4,74	007;133;222	2	2,061	129		
111;111	5	4,25	017	2	1,941	243;333;401;151;	2	1,382
013; 103; 112	1,5	3,82	117;205	3	1,886	150;152		
004;112;021	4	3,55	134;231;040;	5	1,789	401;410;237;1.1.10	2	1,354
113;022	2	3,28	230;127			326;153	1	1,320
014;113;022	3	3,13	226;141;028	1,5	1,659	155;247;238	1	1,287
121;121;114;	3	2,96	128;305;234;	4	1,631	245; 148;1.2.11	1	1,262
120;023			321;321;320;			156; 248; 1.3.10	2	1,220
005;122;121	5	2,87	320			405; 061; 060;	1,5	1,196
114;122;201;200	10	2,75	321;227;	1,5	1,596	0.1.12; 0.3.10;		
122;202	5	2,65	118;009			1.3.10		
123;123;211;210	1,5	2,56	044;324	3	1,551	426; 160; 0.1.12	1	1,171
211;203;115	2	2,48	322;128;	2,5	1,549	441;248;159;	1,5	1,094
006;115;212;031	2	2,385	T28;019					

^{*} Имеются также межплоскостные расстояния для вуоннемита из Хибинского массива [1] и Гренландии [6].

Литература

- 1. Буссен И.В., Денисов А.П., Забавникова Н.И., Козырева Л.В., Меньшиков Ю.П., Липатова Э.А. // Зап. ВМО. 1973. Ч. 102, вып. 4. С. 423.
- 2. Хомяков А.П., Семенов Е.И., Еськова Е.М., Быкова А.В., Катаева З.Т. // Тр. ИМГРЭ. 1973. Вып. 3. С. 121.
- 3. Хомяков А.П., Семенов Е.И., Еськова Е.М., Казакова М.Е., Шумяцкая Н.Г., Рудницкая Е.С. // Изв. АН СССР. Сер. геол. 1975. № 8. С. 78.
- 4. Horvath L., Gault R.A. // Miner. Rec. 1990. Vol. 21, N 4. P. 321.
- 5. Дроздов Ю.Н., Баталиева Н.Г., Воронков А А., Кузьмин Э.А. // ДАН СССР. 1974. Т. 216, № 1. С. 78.
- 6. Rønsbo J.G., Leonardsen E.S., Petersen O.V., Johnsen O. // Neues Jb. Miner. Monatsh. 1983. H. 10. S. 451.
- 7. Егоров-Тисменко Ю.К., Соколова Е.В. // Минерал. журн. 1990. Т. 12, № 4. С. 40.
- 8. Хомяков А.П. Минералогия ультраагпаитовых щелочных пород. М.: Наука, 1990. 200 с.
- 9. Гафт М.Л., Горобец Б.С., Хомяков А.П. // ДАН СССР. 1981. Т. 260, № 5. С. 1234.
- 10. Хомяков А.П. // Конституция и свойства минералов. Киев: Наук. думка, 1976. Вып. 10. С. 96.
- Хомяков А.П. // Научные основы н практическое использование типоморфизма минералов. М.: Наука, 1980. С. 152.

Бориеманит Bornemanite Na₇BaTi₂Nb $[Si_2O_7]_2(PO_4)O_3F$

Назван в честь И.Д. Борнеман-Старынкевич – известного нсследователя минералов Хибинского и Ловозерского массивов [1].

Характ. выдел. Пластинчатые выделения до $10 \times 8 \times 0.2$ мм, реже скопления изогнутых пластинок, состоящих из мельчайших ($0.2 \times 0.1 \times 0.05$ мм) чешуек или субпараллельных волокон [1].

Структ. и морф. крист. Ромб. с. D_{2h}^{28} -*Ibmm* или $C_{2\nu}^{22}$ -*Ibm*2. $a_0 = 5,48, b_0 = 7,10, c_0 = 48,2Å; a_0:b_0:c_0 = 0,772:1:6,788; V = 1875,4Å^3; Z = 4 [1].$

Волокна вытянуты вдоль оси а, кристаллы уплощены по (001).

Физ. св. [1]. Сп. весьма совершенная по (001). Пластинки хрупкие, волокна гибкие. Тв. 3,5–4, микротвердость 257–283 кгс/мм². Уд.в. 3,47–3,50 (вычисл. 3,50). Цв. светло-желтый, тонкие чешуйки почти бесцветны. Бл. перламутровый. Просвечивает, по краям пластинок прозрачный. ИК-спектр с хорошо разрешенными максимумами поглощения. Полоса 1070–870 см⁻¹ предположительно отвечает области валентных колебаний связей Si–O и P–O. Слабые максимумы в области 3600 и 1600 см⁻¹ указывают на присутствие OH-иона и молекулы H₂O.

Микр. [1]. Бледно-желтый. Слабо плеохроирует от буроватого до бесцветного. Ng > Nm = Np. Двуосный (+). Пл. оптических осей || (010). Ng = a, Nm = b, Np = c. Для разных образцов $n_g = 1,720$ и 1, 718, $n_m = 1,695$ и 1,687, $n_p = 1,682$ и 1,683; $2V = 40^{\circ}$ (вычисл. 66 и 40°).

Хим. Теор. состав: Na₂O – 22,02; BaO – 15,56; TiO₂ – 16,22; Nb₂O₅ – 13,49; SiO₂ – 24,39; P₂O₅ – 7,20; F – 1,93. Реальный состав очень сложен из-за большого количества изоморфных примесей и сложной структуры минерала. В сравнении с ломоносовитом и вуоннемитом натриево-фосфатная часть в борнеманите в 2 раза меньше. Спектральным анализом фиксируются Ве, Ga, Cu. Формула, приведенная у М. Флейшера (1990): BaNa₄Ti₂NbSi₄O₁₇(F, OH) · Na₃PO₄.

Анализы:

	1	2		1	2		1	2
Na ₂ O	19,62	20,00	Al ₂ O ₃	0,55	Не обн.	H ₂ O ⁺	2,44]	070
K ₂ O	0,65	0,67	SiO ₂	23,96	25,00	H₂O⁻	0,30∫	0,70
MgO	0,04	0,06	TiO ₂	18,72	18,00	F	1,52	1,64
CaO	0,33	0,77	ZrO ₂	0,20	0,25	Сумма	100,11*	99,87**
SrO	0,70	0,68	Nb ₂ O ₅	9,22	8,86	O=F2_	0,64	0,69
BaO	12,05	13,00	P ₂ O ₅	6,57	6,80	Сумма	99,47	99,18
MnO	2,97	2,48						

* В том числе FeO - 0,17, Li₂O - 0,10, Rb₂O - 0,0025, Cs₂O - 0,002.

^{**} В том числе $Ta_2O_5 - 0.66$, $Fe_2O_3 - 0.30$.

1,2 – Ловозерский массив: 1 – пластинки, развитые по ломоносовиту, анал. Забавникова, Каленчук
 [1]; 2 – изогнутые пластинки в натролите, анал. Быкова, Каленчук [1].

Диагн. исп. Разлагается на холоду 5%-ной HCl и HNO₃ с выделением геля кремнезема, в H_2SO_4 – при нагревании. П.п.тр. легко сплавляется в прозрачное буроватое стекло. При кипячении в дистиллированной воде в течение 2 ч из минерала выщелачиваются Na₂O (4,30) и P₂O₅ (3,00%), что соответствует отношению Na:P $\approx 3:1$ [1, 2].

Повед. при нагр. Потеря веса образца (анализ 2), прокаленного в азоте до 1000°, составила 0.7% [1]. Плавится при 720°, что на термограмме выражается в резкой энпотермической остановке.

Нахожл. Обнаружен как первичный минерал в натролитовой зоне пегматоилной залежи Юбилейная в Ловозерском массиве на Кольском п-ове [1, 2]. Кристаллизуется из остаточных расплавов. предельно насышенных шелочами, летучими и репкими элементами, но сохраняется лишь в специфических условиях низкой активности воды. По величине индекса щелочности (К_{аlt} = 50%, где К_{аlt} - отношение Na, K, Sr, Ba в сумме катионов, принятой за 100%) борнеманит значительно превосходит другие титано-ниобосиликаты [3]. В пегматитовом теле горы Карнасурт борнеманит (хим. анализ 1) развивается по спайности и на поверхности крупных пластин ломоносовита, реже образует скопления (хим. анализ 2) изогнутых пластинок в натролите.

Изм. Неустойчив при гипротермальном и гипергенном изменении пород и пегматитов.

FeK $_{\alpha}$ -нзлучение, $D = 57,3$ мм						
hki	ı	d (Å)	hkl	1	d (Å)	
002	10	24,1	2.1.17;1.1.23	1	1,894	
004	1	12,0	232;233;040	7	1,781	
006	10	8,04	216;239;048	3	1,704	
0.0.10;105	3	4,82	0.0.30;149;324;323	8	1,610	
112;019;107	1	4,26	328;0.3.23;3.1.14	1	1,570	
0.0.12	3	4,02	3.2.10;2.3.16;2.1.25	1	1,538	
116;109	5	3,80	0.0.32;1.1.30;2.2.23;1.3.23	4	1,507	
118;022;0.1.12	1	3.52	242;241;240;2.3.18;1.2.28;3.2.13	2	1,491	
0.0.14;1.0.11	10	3,44	1,3,25;332;333;2.2.25;331;330	1	1,442	
1.1.11;1.0.13;0.1.13	2	3,08	0.0.34;051;052;050;1.1.32	5	1,420	
0.0.16	10	3,02	339;2.4.12;056;2.1.29	1	1,396	
1.1.13;125	1	2,832	411;412;1.1.34;3.2.20;3.1.13;157;	1	1,346	
1.0,15;0.1.16;200	1	2,758	2.2.28;406;410			
0.0.18;1.1.14;128;204	8	2,682	4.1.21;068;0.1.41;2.1.37;1.1.40;	2	1,160	
1.1.15;206	1	2,586	2.4.26;3.4.17			
0.0.20	6	2,413	0.0.44;359;1.0.43;1.6.14	3	1,0976	
133;2.1.12;222	3	2,152	269;3.5.14;4.2.25;518	1	1,0653	
139;229;0.0.24	5	2,012	0.0.48;1.0.47;1.2.45;5.2.13;3.5.21;	1	1,0077	
1.3.10;2.2.10	3	1,970	0.6.25			

Махи постолька посстояная болиеманита из Порозевского моссира [1]

Литература

1. Меньшиков Ю.П., Буссен И.В., Гойко Е.А., Забавникова Н.И., Мерьков А.Н., Хомяков А.П. // Зап. ВМО. 1975. Ч. 104, вып. 3. С. 322.

2. Хомяков А.П. // Научные основы и практическое использование типоморфизма минералов. М.: Наука. 1980. C. 152.

СТРУКТУРА ТИПА ПЕРРЬЕРИТА

ГРУППА ПЕРРЬЕРИТА

Ранее (т. III, вып. 1, с. 776) группа включала перрьерит, чевкинит и условно орточевкинит*.

* Не числится среди минеральных видов (Флейшер, 1990).

Сингония a_0 b_0 c_0 β Уд.в. Стронциочевкинит Sr₂(La, Ce)_{1.5}× Монокл. 13,56 5,70 11,10 100,32° 5,44 ×Ca_{0.5}Fe $_{0.5}^{2+}$ Fe $_{0.5}^{3+}$ (Ti,Zr)₂Ti₂× ×[Si₂O₇]₂O₈

Стронциочевкинит Strontiochevkinite

$$Sr_2(La,Ce)_{1,5}Ca_{0,5}Fe_{0,5}^{2+}Fe_{0,5}^{3+}(Ti,Zr)_2Ti_2[Si_2O_7]_2O_8$$

Название дано по высокому содержанию строиция и близости к чевкиниту [1].

Характ. выдел. Округлые зерна 1,5 мм в диаметре.

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P_{21}/a$. $a_0 = 13,56$, $b_0 = 5,70$, $c_0 = 11,10$ Å; $\beta = 100,32^\circ$; $a_0:b_0:c_0 = 2,379:1:1,947$; V = 844,86 Å³; Z = 2 [1].

Обычны двойники – полисинтетические и двойники прорастания [1]. Для структуры минералов этой группы характерно [2-4] наличие групп сдвоенных тетраэдров [Si₂O₇] и цепочек из октаэдров разных типов – TiO₆, FeO₆ и (Ti, Zr, Fe)O₆. Атомы TR, Ca, Sr находятся между октаэдрами и кремнекислородными диортогруппами.

Физ.св. Тв. около 5. Уд.в. 5,44 (вычисл.). Бл. полуметаллический. Непрозрачный [1].

Микр. В отраженном свете серый с характерным розовым оттенком. Анизотропия слабая до средней. Показатели отражения на воздухе около 10%, в иммерсионном масле около 2%. Внутренние рефлексы (по краям зерен) темнокрасные [1].

Хим. Анализы (микрозонд.) [1]:

	I	2		1	2		I	2
Na ₂ O	0,02	0,05	Al ₂ O ₃	0,11	0,11	TiO ₂	23,16	27,78
K ₂ O	<0,01	0,02	Cr ₂ O ₃	0,04	0,46	ZrO ₂	10,30	10,60
MgO	<0,01	<0,01	Y ₂ O ₃	0,05	<0,01	ThO ₂	<0,01	<0,01
CaO	2,05	1,78	Ce ₂ O ₃	9,35	8,33	UO2	<0,01	<0,01
SrO	19,60	20,48	La2O3	9,18	8,79	Nb ₂ O ₅	<0,01	<0.01
BaO	0,38	0,31	TR ₂ O ₃	0,05	1,16	Проч.	0,06	_
PbO	<0,01	0,02	(проч.)			Сумма	100,90*	100.41
MnO	0,08	0,11	SiO2	20,45	19,71	-		·
FeO	6,02	5,70						

* В орнгинале сумма 100,85.

Приведенная выше формула получена при расчете хим. анализов на 22 атома О. Катионы распределены [1] согласно общей структурной формуле минералов группы перрьерита [5]: $A_4BC_2Ti_2Si_4O_{22}$, где A – TR, Sr, Ca, Ba; B – Fe²⁺, Mn; C – Ti. Zr, Fe³⁺, Al. Для компенсации валентности часть железа в положении В показана в виде Fe³⁺ (в анализе не определялось).

Бe	лы	(08	um
----	----	-----	----

Формула стронциочевкинита по М.Ф. Флейшеру (1990): (Sr, La, Ce, Ca)₄(Fe²⁺, Fe³⁺) (Ti, Zr)₄Si₄O₂₂; принятая нами формула отражает две позиции, занимаемые в структуре титаном: в (Ti, Zr)O₆- и (TiO₆)-октаэдрах.

Нахожд. Обнаружен в Сарамби (Парагвай) в реоморфических санидин-эгириннефелиновых фенитах, связанных с карбонатитами; находится в ассоциации с лампрофиллитом и стронциолопаритом [1].

Отл. От чевкинита и перрьерита отличается хим. составом: бо́льшим количеством SrO, ZrO₂ и меньшим Ce₂O₃+La₂O₃.

Межплоскостные расстояния стронциочевкинита (Парагвай) [1]
Eav manual D 1145	

ren _a -n	лучение,	<i>D</i> = 114,5 мм	
hkl	I	d(Å)	h

пкі	1	<i>a</i> (A)	nĸi	1	<i>a</i> (A)	пкі	1	a(A)	
301	5	3,88	414	1	2,15	134;532	<1	1,54	
	5	3,63	422	1	2,10	524;616	I	1,50	
310	5	3,46	314	1	2,03	135;416	3	1,44	
311	10	3,21	024	75	1,97	334;526	5	1,42	
401	100	3,01	415	2	1,90	435:142	3	1,37	
020	25	2,85	131;505	2	1,87	434;617	2	1,36	
004	30	2,73	230;703	3	1,83	534;417	<1	1,29	
220	5	2,61	231;132	3	1,79	435;616	1	1,26	
022	40	2,51	315;331	3	1,74	634;543	1	1,22	
114	I	2,34	233	10	1,67	535;641	I	1,21	
321	1	2,30	322;523	3	1,63	Кроме того	. 15 лині	ий до 0,875	ĵ
421	70	2,19	413;216	10	1,61				

Литература

1. Haggerty S.E., Mariano A.N. // Contrib. Miner. and Petrol. 1983. Vol. 84, N 4. P. 365.

2. Gottardi G. // Amer. Miner. 1960. Vol. 45, N 1/2. P. 1.

3. Пэн Чжи-чжун, Пан Чжао-лу // Scientia Sinica. 1964. Vol. 13, N 9. P. 1539.

4. Galli E. // Miner. petrogr. acta. 1965. Vol. 11. P. 39.

5. Ito J. // Amer. Miner. 1967. Vol. 52, N 7/8. P. 1094.

. . . .

СТРУКТУРА ТИПА БЕЛЬКОВИТА

	Сингония	a_0	c_0	Уд.в.
Бельковит Ba ₃ (Nb, Ti) ₆ [Si ₂ O ₇] ₂ O ₁₂	Гекс.	8,966	7,799	4,16

Бельковит Belkovite

Ba₃(Nb, Ti)₆[Si₂O₇]₂O₁₂

Назван в память о российском минералоге И.В. Белькове [1].

Характ. выдел. Призматические кристаллы длиной до 1 мм.

Структ. и морф. крист. Гекс. с. $D_{3h}^2 - P\overline{6}2m$. $a_0 = 8,966$, $c_0 = 7,799$ Å; V = 542,9Å³; Z = 1.

В структуре (Nb, Ti)-октаэдры и диортогруппы [Si₂O₇] образуют смешанный каркас, в каналах пентагонального сечения которого располагаются атомы Ba. Угол Si–O–Si в диортогруппах [Si₂O₇] равен 180°. Установлено неполное заполнение дополнительной (не входящей в формирование каркаса) позиции кислорода со статистическим его распределением. По данным структурного исследования кристаллохимическая формула: Ba₃(Nb_{4,8}Ti_{1,2})_{6,0}Si₄O_{25,4} = Ba₃(Nb_{4,8}Ti_{1,2})_{6,0}× \langle (Si₂O₇)₂O_{11,4}.

....

Структурные аналоги – синтетические соединения: $Ba_3Si_4Nb_6O_{26}$, $Ba_3Si_4Ta_6O_{26}$ и $Ba_3Si_4Ta_6O_{23}$.

Преобладают формы {1120} и {0001}. Нередко морфология кристаллов более сложная. Характерна ступенчатая структура поверхностей граней.

Физ. св. Сп. и отдельность отсутствуют. Тв. 6-7. Микротвердость 900-1030 кгс/мм² при нагрузке 40 г. Уд.в. 4,16 (вычисл. 4,25). Цв. коричневый. Прозрачный. Бл. алмазный. Хрупкий. Изл. неровный. В ультрафиолетовом свете и катодных лучах не люминесцирует.

Микр. Плеохроизм отсутствует. Одноосный (+). $n_0 = 1,928$, $n_e = 2,002$.

Хим. По содержанию основных компонентов кристаллы однородные. Распределение элементов-примесей часто зональное.

Эмпирическая формула (на 13 катионов): (Ba_{2,74}K_{0,16}Na_{0,09}Ca_{0,01})_{3,00}(Nb_{4,41}Ti_{0,97}× хFe_{0,31}Zr_{0,13}Al_{0,04}Ta_{0,01})_{5,87}Si_{4,12}O_{24,90} [1].

Анализы (микрозонд.):

	1	2	3	4	5	6	
Na ₂ O	0,21	0,00	0,00	0,00	0,00	0,20	
K ₂ O	0,87	0,99	0,40	0,95	0,47	0,55	
CaO	0,00	0,0 0	0,00	0,00	0,00	0,05	
SrO	0,00	0,00	0,61	0,67	0,28	0,00	
BaO	29,22	30,24	30,34	28,66	30,69	30,30	
Al ₂ O ₃	0,11	0,39	0,12	0,06	0,30	0,14	
Fe ₂ O ₃	3,32	1.64	2,38	1,51	1,56	1,78	
SiO ₂	18,76	17,74	17,89	19,19	17,85	17,80	
TiO ₂	3,89	3,99	5,28	2,79	6,12	5,60	
ZrO ₂	0,45	0,70	1,12	1,00	1,19	1,20	
Nb ₂ O5	43,35	43,90	41,95	43,92	41,52	42,20	
Ta ₂ O ₅	0,08	0,06	0,00	0,00	0,03	0,15	
Сумма	100,26	99.65	100.09	98.75	100.01	99.97	

1, 2 – кристаллы; 3–5 – зоиальный кристалл (3 – центральная зона, 4 – промежуточная зона, 5 – краевая зона); 6 – среднее из 3 анализов различных участков однородного кристалла.

Нахожд. Обнаружен в керне скважин в жилах доломит-кальцитовых карбонатитов, секущих пироксениты щелочно-ультраосновного массива Вуориярви, Кольский п-ов. Приурочен к полостям растворения в результате доломитизации пирохлорсодержащих кальцитовых карбонатитов. Встречается с магнетитом, пирохлором, пиритом, пирротином, минералами группы апатита, баритом, альстонитом, хлоритом и ненадкевичитом. Продукт гидротермального изменения пирохлора.

Межплоскостные расстояния бельковита из Вуориярви, Кольский п-ов [1]
СиКа-излучение. Дифрактометр	

hkl	Ι	d (Å)	hkl	Ι	d (Å)
001;010	35	7,81	130;141	5	1,657
011	1	5,53	124	3	1,624
110	10	4,48	232	16	1,621
002;111;020	51	3,888	142:050	11	1,553
012;021	24	3,481	051	5	1,523
112;120	100	2,937	330	4	1,494
022;121	25	2,750	115;224	5	1,473
003	6	2,603	233;331;240	8	1,468
030	16	2,590	025;134	4	1,446
031	1	2,459	241	4	1,442
					-

hkl	I	d(Å)	hkl	1	d(Å)
122	3	2,346	332;150	4	1,394
113	5	2,251	044;242;151	5	1,373
2 2 0	13	2,243	053	2	1,333
221;130	22	2,154	234;152	1	1,314
131	10	2,016	144;243	4	1,278
004	5	1,950	135	1	1,262
123;222;040	26	1,948	116	1	1,248
132	9	1,885	054;342	3	1,214
033	3	1,834	334;252;160	4	1,184
114	1	1,785	235;244	2	1,173
230	9	1,781	154,162	4	1,133
042;231	12	1,736	442;260	4	1,077
140	5	1,694	-		

1. Волошин А.В., Субботин В.В., Пахомовский Я А., Бахчисарайцев А.Ю., Ямнова Н.А., Пущаровский Д.Ю. // ДАН СССР. 1990. Т. 315, № 5. С. 1218.

СТРУКТУРА ТИПА КУСПИДИНА

ГРУППА КУСПИДИНА

Ранее (т. III, вып. 1, с. 792) в группе описаны: вёлерит, ловенит, ниокалит, куспидин, тиллеит, йортдалит (и условно рустумит, дженнит, гарстигит и гротин).

При последующем изучении уточнены структуры куспидина [1], вёлерита [2], ловенита [3], ниокалита [4] и расшифрована структура йортдалита с выделением двух его фаз, названных йортдалитом-I и йортдалитом-II [5, 6]. Кроме того, установлено, что минералы, условно отнесенные к группе куспидина, должны быть исключены из нее как имеющие другую структуру: гротин тождествен норбергиту (Никель, Мандарино, 1989), рустумит Ca₁₀[SiO₄][Si₂O₇]₂Cl(OH)₂ и гарстигит Ca₆Mn₆Be₄[SiO₄][Si₂O₇]₂ принадлежат к силикатам с одновременным присутствием в структуре диортогрупп [Si₂O₇] и ортотетраэдров [SiO₄] [7, 8]; в составе дженнита отсутствует Na (новая формула Ca₉[Si₆O₁₆(OH)₂](OH)₈ · 6H₂O), структура его предположительно состоит из кремнекислородных слоев, в пустых кольцах которых размещаются восемь атомов Ca. Слои в структуре дженнита [10] и соединены между собой дополнительными атомами Ca и молекулами H₂O [9].

	Сингония	a_0	b_0	<i>c</i> 0	β	Уд.в.
Багдадит Ca ₃ Zr[Si ₂ O ₇]O ₂	Монокл.	10,42	10,16	7,36	91,1°	3,48
Бурпалит Na ₂ CaZr[Si ₂ O ₇](F, OH) ₂	•	10,117	10,446	7,255	90,03	3,27
Янхаугит (Na, Ca) ₃ (Mn, Fe) ₃ (Ti, Zr,	"	10,668	9,787	13,931	107,82	3,71
Nb)2[S12O7]2(O, OH, F)4 Hoptgaлит-1 Na. Ca)4Ca8Z12M2[Si2O7]4O3F5*	Трикл.	11,015	10,941	7,353	109,87 ^{2*}	3,256
Иортдалит-II Na, Ca) ₄ Ca ₈ Zr ₂ M ₂ [Si ₂ O ₇] ₄ O ₃ F ₅ *	**	11,012	10.342	7,359	109.21 ^{3*}	
Цжаффент Ca ₆ [Si ₂ O ₇](OH) ₆ *M – Zr, Ti, TR, Y, Ca, Mn ²⁺ , Fe ^{2*} $\alpha = 109,35^{\circ}, \gamma = 83,43^{\circ}.$ 3* $\alpha = 89,92^{\circ}, \gamma = 90,66^{\circ}$	" ²⁺ , Nb.	10,026	-	7,482	-	2,58

Фиг. 29. Структура минералов группы куспидина *a* – тиллеитовая лента (по Белову), среди колонок из Са-октаэдров зажаты призмы с группами [Si₂O₇]; *б* – скематическое изображение основного мотива структуры вдоль оси *с* (по Мерлино и Перчиации)

Минералы группы характеризуются общей кристаллохимической формулой $X_{16}[Si_2O_7]_4(O, OH, F)_8$, где X – разновалентные катионы преимущественно в октаэдрической координации: Na, Ca, Mg²⁺, Mn²⁺, Fe²⁺, Y³⁺, TR³⁺, Zr⁴⁺, Nb⁵⁺.

Общим элементом структуры минералов являются так называемые "тиллеитовые ленты" (фиг. 29,*a*) (Белов, 1976). Тиллеитовые ленты представляют собой бесконечные вдоль оси *с* стенки из двух колонок, связанных боковыми ребрами октаэдров; октаэдрические стенки ориентированы под углом друг к другу и соединяются диортогруппами Si₂O₇, атомами O и (F, OH), определяя общую направленность лент по оси *b* и их гофрировку. В структуре тиллеита и джаффеита тиллеитовые ленты соединены в направлении оси *a* слоями: у тиллеита из дополнительных CaO₆-октаэдров и групп CO₃, у джаффеита из 2Ca(OH)₂ (Белов, 1976) [10]. В структуре других минералов группы соединительные слои между тиллеитовыми лентами отсутствуют, и они непосредственно примыкают друг к другу. Таким образом, октаэдрические стенки состоят не из двух, а из четырех колонок октаэдров. В общем мотиве структуры со стенками шириной в четыре колонки октаэдров теоретически выведено 10 возможных структурных типов с четырьмя типами элементарных ячеек [11]. В природных минералах реализуются
YETSIDE CTOVETVDHELY THEA	(1	4	6	8	۱۱	[11]	Ŀ
ACTOIDE CIDYRTYPHOLA THIA	ι.	, –,	, v,	, υ,	, ,		•

Минерал	Пр.гр.	Тип. струк- туры	Тип элем. яч.	Минерал	Пр.гр.	Тип струк- туры	Тип элем. яч.
Куспидин Ловенит Ннокалит	P2 ₁ Ia P2 ₁ Ia Pa	}1	I	Вёлерит Багдадит Бурпалит	P2 ₁ P2 ₁ /b [*] P2 ₁ /b ^{**}	8 } 6	A III
Янхаугит Йортда- лит-II	P2 ₁ /n P1	J		Йортда- лит-І	PĪ	4	IV

* Р2₁/а по [12]. ** Р2₁/а по [13].

В таблицу не включены тиллеит и джаффеит - минералы с дискретными тиллеитовыми лентами.

Структурные типы различаются характером распределения катионов в колонках и способом сочленения стенок из октаэдрических колонок диортогруппами [Si₂O₇] [11]. Сохранение общего структурного мотива объясняет близость межплоскостных расстояний у минералов группы и затрудняет их диагностику по порошковым рентгенограммам [14]. На фиг. 29,6 приведено схематическое изображение основного мотива структуры. Изображение всех десяти типов см. в [11], а для

Фиг. 30. Четыре типа элементарных ячеек в минералах группы куспидина (по Мерлино и Перчиации)

отдельных минералов – при их описании в соответствующих статьях. Четыре типа элементарных ячеек представлены на фиг. 30:

	I	Π	Ш	IV
<i>a</i> ₀ (Å)	10,93	10,3	10,3	10,93
<i>b</i> ₀	10,3	10,93	10,3	10,93
<i>c</i> 0	7,3	7,3	7,3	7,3
α.°	90	109,5	90	109,5
β	109,5	90	90	109.5
γ	90	90	90	83,6

Для минералов группы характерны различные типы двойникования, частичная разупорядоченность, доменные структуры [11].

Предполагается (Белов, 1976) [11] структурное сходство минералов группы куспидина и боратов. Связь между октаэдрическими элементами в структуре боратов осуществляется не через группы [Si₂O₇], а посредством двух параллельных групп ВО₃, чем достигается эквивалентность анионов [Si₂O₇]⁶⁻ и [2BO₃]⁶⁻.

Литература

1. Saburi S, Kawahara A., Henmi C., Kusachi L., Kihara K. // Miner. J. Jap. 1977. Vol. 8, N 5. P. 286.

2. Mellini M., Merlino S. // Tschermaks miner. und petrogr. Mitt. 1979. Bd. 26, H. 1/2. S. 109.

^{3.} Mellini M. // Ibid. 1981. Bd. 28, H. 2. S. 99.

- 4. Mellini M. // Ibid. 1982. Bd. 30, H. 3. S. 249.
- 5. Merlino S., Perchiazzi N. // Ibid. 1985. Bd. 34, H. 3/4. S. 297.
- 6. Merlino S., Perchiazzi N. // Miner. and Petrol. 1987. Vol. 37, N I. P. 25.
- Пущаровский Д.Ю. Структурная минералогия силикатов и их синтетических аналогов. М.: Недра, 1986. 160 с.
- 8. Поваренных А.С., Литвин Б.Н., Беднарх М. // Геол. журн. АН УССР. 1976. Т. 36, вып. 4. С. 76.
- 9. Gard J.A., Taylor H.F.W., Cliff G., Lormier G.W. // Amer. Miner. 1977. Vol. 62, N 3/4. P. 365.
- 10. Казак В.Ф., Блинов В.А., Илюхин В.В., Белов Н.В. // ДАН СССР. 1974. Т. 219, № 2. С. 340; Ямнова Н.А., Сарп Х., Егоров-Тисменко Ю.К., Пущаровский Д.Ю. // Кристаллография. 1993. Т. 38, № 4. С. 73.
- 11. Merlino S., Perchiazzi N. // Canad. Miner. 1988. Vol. 26, pt 4. P. 933.
- 12. Al-Hermezi H.M., McKie D., Hall A.J. // Miner. Mag. 1986. Vol. 50, N 1. P. 119.
- Merlino S., Perchiazzi N., Khomyakov A.P., Pushcharovskii D.Yu., Kulikova I.M., Kuzmin V.I. // Europ. J. Miner. 1990. Vol. 2, N 2. P. 177.
- 14. Хомяков А.П., Пущаровский Д.Ю., Куликова И.М., Кузьмин В.И. // Вестн. МГУ. Сер. 4, Геология. 1988. № 1. С. 181.

Багдадит Baghdadite Ca₃Zr[Si₂O₇]O₂

Назван по столице Ирака Багдаду [1].

Характ. выдел. Зерна и кристаллы (до 0,25 мм).

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1/c$. $a_0 = 10,42$, $b_0 = 10,16$, $c_0 = 7,36$ Å; $\beta = 91,1^\circ$; $a_0 : b_0 : c_0 = 1,026 : 1 : 0,724$; V = 779,0 Å³; Z = 4 [1].

По [2], относится к 6 структурному типу, элементарная ячейка III типа (см. Введение к группе).

Кристаллы короткопризматические, ось двойникования – ось b.

Физ. св. [1]. Сп. отсутствует. Тв. около 6. Микротвердость 725–785 кгс/мм² при нагрузке 50 г. Уд. в. 3,48 (вычисл.). Бесцветный. Бл. стеклянный. Имеет тенденцию к раковистому излому. Обладает катодолюминесценцией в зеленоватых тонах.

Микр. [1]. Не плеохроирует. Np = c, $Nm \parallel b$, Ng = a. Двуосный (+). $n_g = 1,670$, $n_m = 1,658$, $n_p = 1,652$; $2V = 72^{\circ}$.

Хим. Кальциевый аналог бурпалита; предполагается изоморфизм : Ca²⁺ + + O²⁻ → Na⁺ + F⁻ [3].

Анализ (микрозонд., среднее из 4 [1]): Na₂O – 0,02; MgO – 0,05; CaO – 41,44; Al₂O₃ – 0,03; Fe₂O₃ – 0,11; SiO₂ – 29,26; TiO₂ – 2,11; ZrO₂ – 27,00; сумма 100,02. Содержит около 0,16% HfO.

Эмпирическая формула (на 9 атомов О): Ca_{3,00}(Zr_{0.89}Ti_{0.11})(Si_{1.98}Fe_{0.01})O₉.

От других минералов группы отличается отсутствием F и OH.

Диагн. исп. Слаборастворим в конц. HCl, нерастворим в конц. HNO₃ и H₂SO₄ [1].

Нахожд. Обнаружен [1] в районе Калзат-Диза (северо-восток Ирака) в мелилитовом скарне на контакте с диоритами в тесной ассоциации с кальцитом, перовскитом, волластонитом, мелилитом, бадделеитом, циркониевым шорломитом.

Искусств. Легко образуется при обжиге смесей Ca_2SiO_4 , $CaSiO_3$, ZrO_2 или $Ca_3Si_2O_7$ и ZrO_2 . Наиболее полно синтез $Ca_3ZrSi_2O_9$ происходит из смеси $Ca_3Si_2O_7$ и ZrO_2 , хотя начало образования этого соединения микроскопически фиксируется уже при 1200° [4].

CoK_{α} -излучение, $D = 114,6$ мм							
hk!	1	d (Å)	hkl	I	d(Å)	1	d (Å)
110	45	7,30	421; 241	5	2,20	5	1,4946
011	5	5,94	510; 332	5	2,04	5	1,4591
111	5	5,21	332	15	2,02	5	1,4430
021	10	4,20	150; 313	10	1,987	8	1,3485
121	10	3,88	250	5	1,895	8	1,3367
012	5	3,46	004	30	1,842	8	1,3227
221	5	3,29	432	15	1,819	8	1,2373
130	80	3,23	432	25	1,795	5	1,1169
202	75	3,04	052; 530; 512	5	1,778	5	1,0457
202	85	2,98	322	30	1,724	5	1,0096
212	5	2,90	522	40	1,702	8	0,9725
320; 212	70	2,88		8	1,6765	8	0,9670
230	100	2,84		5	1,6070	10	0,9096
032	20	2,50		5	1,5945	15	0,9025
132; 312; 330; 132	35	2,43		8	1,5617	15	0.8998
240; 322	10	2,29		8	1,5502		
322	10	2,25		8	1,5380		

Межплоскостные расстояния багдадита из Калзат-Диза (Ирак) [1]

Литература

1. Al-Hermeri H M., McKie D., Hall A.J. // Miner. Mag. 1986. Vol. 50, N 355, pt. 1. P. 119.

2. Merlino S., Perchiazzi N. // Canad. Miner. 1988. Vol. 26, pt 1. P. 933.

- Merlino S., Perchiazzi N., Khomyakov A.P., Pushcharovskii D.Yu., Kulikova I.M., Kuzmin V.V. // Europ. J. Miner. 1990. Vol. 2, N 2. P. 177.
- 4. Кордюк Р.А., Гулько Н В. // ДАН СССР. 1962. Т. 142, № 3. С. 639.

Бурпалит Burpalite

Na₂CaZr[Si₂O₇](F, OH)₂

Назван по месту находки [1].

Первоначально описан как фаза "А" [2]. Полиморфный аналог ромбического ловенита [1].

Характ. выдел. Пластинчатые кристаллы (от субмикроскопических до 1×(3–5) мм), часто образующие веероподобные сростки.

Структ. и морф. крист. [1]. Монокл. с. (псевдоморфический). $C_{2h}^5 - P2_1/a$. $a_0 = 10,1173$, $b_0 = 10,4446$, $c_0 = 7,2555$ Å; $a_0 : b_0 : c_0 = 0,9686 : 1 : 0,6946$; $\beta = 90,039^\circ$; Z = 4.

Основу структуры составляют октаэдрические стенки-колонки, параллельные [001], и скрепляющие их диортогруппы [Si₂O₇]. Стенки содержат четыре независимые позиции, занятые атомами Zr, Ca и двумя сортами атомов Na, чередующихся с Zr (фиг. 31) вдоль оси c. Ca-октаэдры слагают внешние колонки стенок, Na₁- и Na₂-октаэдры – внутренние. [Si₂O₇] опираются немостиковыми вершинами на ребра крупных Na- и Ca-полиэдров. Основное отличие от структуры ловенита – в ином пространственном положении диортогрупп [Si₂O₇]: в бурпалите они сосредоточены в слоях, субперпендикулярных оси c, что определяет псевдоромбическую метрику ячейки минерала, тогда как в ловените – подобные слои имеют наклон в сторону угла моноклинности (108–110°) [1]. По [1], относится к 6 структурному типу, элементарная ячейка III типа (см. Введение к группе).

Средние межатомные расстояния (в Å): в диортогруппах Si(1)-O = 1,626,

Фит. 31. Структура бурпалита в проекции вдоль [100] (по Мерлино и др.)

Si(2)-O = 1,615; в ZrO_6 -октаэдрах Zr-O, F = 2,096; в Na- и CaO₆-октаэдрах Na(1)-O, F = 2,403, Na(2)-O, F = 2,378, Ca-O, F = = 2,423; угол Si(1)-O(1)-Si(2) = 161.1° [1].

Физ. св. Сп. не обнаружена. Изл. раковистый. Хрупкий. Тв. 5–6. Уд.в. 3,33 (вычисл. 3,27). Бесцветный до желтоватого. Бл. стеклянный. Черта белая. В рентгеновских лучах (77 и 300 К) наблюдается желто-оранжевое свечение.

Микр. Np = b, Nm = c, Ng = a. Двуосный (-). $n_g = 1,639$, $n_m = 1,634$, $n_p = 1,627$; $2V = 82^\circ$. Дисперсия слабая, r < v.

Хим. Анализ (микрозонд., среднее из 4): Na₂O - 13,86; CaO - 14,52; MnO - 0,60; FeO - 0,43; SiO₂ - 31,82; TiO₂ - 1,06; ZrO₂ - 31,11; Nb₂O₃ - 0,22; Y₂O₃ - 0,32; H₂O -1,23; F - 8,1; -O = F₂ - 3,41; сумма 99,96.

Эмпирическая формула (на основе O + F = 9): $(Na_{1,69}Mn_{0,03}^{2+}Fe_{0,02}^{2+}Y_{0,01})Ca_{0,98} \times (Zr_{0.96}Ti_{0.05}^{4+}Nb_{0.01}^{5+})Si_{2.00}O_7F_{1.61}(OH)_{0.26} \cdot 0,13H_2O$ или Na₂CaZrSi₂O₇(F,OH)₂ [1].

Нахожд. Обнаружен в фенитизированных песчаниках в контактовой зоне западной части Бурпалинского щелочного массива (Северное Прибайкалье) в ассоциации с альбитом, нефелином, эгирином, щелочными амфиболами, биотитом, катаплеитом, астрофиллитом, флюоритом и лопаритом [1, 3].

Изм. Легко разлагается 10%-ным раствором HCl при комнатной температуре [1].

Межплоскостные	расстояния	бурпалита	из Бурпалииского	массива [1]
	E V			

			гек _а -излу	чение. дифра	актометр			
hkl	Ι	d (Å)	h ki	Ι	d(Å)	hkl	I	d (Å)
110	Слаб.	7,3	400	Оч. слаб.	2,531	520	Ср.	1,886
020	Ср. слаб.	5,241	132;	Оч. слаб.	2,438	233	Оч. слаб.	1,849
210	Слаб.	4,552	132			432;	Сильн.	1,787
201	Ср. слаб.	4,153	013	Оч. слаб.	2,372	432		
211;	Слаб.	3,862	113	Оч. слаб.	2,291	530	Оч. слаб.	1,754
211			322;	Ср. слаб.	2,244	160	Слаб.	1,723
130	Cp.	3,306	322			243	Ср.	1,678
131	Ср.	3,035	150	Слаб.	2,052	352;	Оч. слаб.	1,602
202	Оч. сильн.	2,962	332	Ср. слаб.	2,020	352		
230	Ср. слаб.	2,881	313	Оч. слаб.	1,936	360	Ср.	1,556
212	Слаб.	2,839						

Литература

- 1. Merlino S., Perchiazzi N., Khomyakov A P., Pushcharovskii D.Yu., Kulikova I.M., Kuzmin V.I. // Europ. J. Miner. 1990. Vol. 2, N 2. P. 177.
- Хомяков А.П., Пущаровский Д.Ю., Куликова И.М., Кузьмин В.И // Вести. МГУ. Сер. 4, Геология. 1988. № 1. С. 87.
- 3. Жидков А.Я. // ДАН СССР. 1961. Т. 140, № 1. С. 181.

Янхаугит Janhaugite

(Na, Ca)₃(Mn, Fe)₃(Ti, Zr, Nb)₂[Si₂O₇]₂(O, OH, F)₄

Назван по имени любителя-минералога Яна Хауга, впервые обнаружившего минерал [1].

Характ. выдел. Пластинчатые агрегаты до 1,5 см, гипидиоморфные зерна, реже одиночные кристаллы до 4 мм длиной [1].

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1/n$. $a_0 = 10,668$, $b_0 = 9,787$, $c_0 = 13,931$ Å; $\beta = 107,82^\circ$; $a_0: b_0: c_0 = 1,0900: 1: 1,4234$; V = 1384,7 Å³; Z = 2 [1].

По параметрам элементарной ячейки, дебаеграмме и химическому составу наиболее близок ловениту, особенно титаноловениту, хотя параметр c_0 в янхаугите удвоен, что указывает на более высокую степень упорядоченности катионов [2, 3]. По [3], относится к 1 структурному типу, I тип элементарной ячейки (см. Введение к группе).

В структуре [2, 3] различаются ленты (стенки), параллельные (210) и ($\overline{2}$ 10), образованные октаэдрическими колонками, идущими вдоль оси *с*. Колонки состоят из полиэдров Na (Ca), Mn (Fe) и Ti (Zr, Nb) (по четыре полиэдра в колонке на элементарную ячейку). В центральных колонках чередуются Na- и Mn-полиэдры, во внешних располагаются последовательно Na-Ti-Mn-Ti-Na... с периодом повторяемости каждые четыре полиэдра (фиг. 32). Ленты соединяются группами [Si₂O₇], ориентированными также вдоль оси *с*. Непрочностью связей между стенками и группами [Si₂O₇] объясняется отчетливая спайность минерала. Катионы Mn, Ti и Na (1 и 2) находятся в шестерной, Na(3) – в восьмерной координации: Na(3)O₇F – искаженная гексагональная бипирамида, включающая мостиковые атомы O из диортосиликатных групп.

Средние межатомные расстояния (в Å): Si(1)–O = 1,620; Si(2)–O = 1,623; Si(3)–O = 1,622; Si(4)–O = 1,621; Ti(1)–O = 2,013; Ti(2)–O = 2,010; Mn(1)–O, F = 2,206; Mn(2)–O, F = 2,173; Mn(3)–O, F = 2,199; Na(1)–O, F = 2,399; Na(2)–O, F = 2,374; Na(3)–O, F = 2,534.

Установлены формы: c(001), b(010), m(110), n(120) и l(130), а также две неидентифицированные (*hkl*). Кристаллы призматические, удлиненные по [001], уплощенные по (010), часто слегка искривлены. На гранях наблюдается вертикальная штриховка [1].

Физ. св. Сп. по (010) отчетливая. Очень хрупок. Тв. около 5. Уд. в. 3,60 (вычисл. 3,71). Цв. красновато-бурый. Черта светло-бурая. Бл. стеклянный. В ультрафиолетовых лучах не флюоресцирует. На ИК-спектре сильное поглощение в области 1080–870 см⁻¹ обусловлено валентными колебаниями связей в Si–O-тетраэдрах. Отчетливо проявленные максимумы поглощения при 3550, 3510 и 3460 см⁻¹ относятся к колебаниям ОН-ионов. Очень слабые полосы в области 1640–1620 см⁻¹ указывают на присутствие H₂O [1].

Микр. Слабо плеохроирует от почти бесцветного по Np до бежевого по Nm. cNp = 15, b = Ng. Удлинение (–). Двуосный (+). $n_g = 1,910$ (вычисл.), $n_m = 1,828, n_p = 1,770; n_g - n_p = 0,140; 2V = 80°$. Наблюдались двойники, вероятно, по (100) [1].

Хим. Анализ (микрозонд., среднее для 3 зерен): Na₂O – 11,02; K₂O – 0,19; CaO – 1,45; MnO – 22,26; FeO – 5,52; SiO₂ – 29,79; TiO₂ – 15,18; ZrO₂ – 5,98; Nb₂O₅ – 5,00; Ta₂O₅ – 0,26; H₂O – 1,63; F – 2,69; –O=F₂ – 1,13; сумма 99,84. H₂O рассчитана из (O + OH + F) = 18.

Эмпирическая формула: $(Na_{2,75}Ca_{0,20}K_{0,03})_{2,98}(Mn_{2,43}Fe_{0,60})_{3,03}(Ti_{1,32}Zr_{0,38} \times Nb_{0,29}Ta_{0,01})_{2,00}(Si_{3,84}Ti_{0,15})_{3,99}O_{15,50}OH_{1,40}F_{1,10}$; в более общем виде: $(Na, Ca)_3 \times (Mn, Fe)_3(Ti, Zr, Nb)_2 Si_4(O, OH, F)_{18}$.

Фиг. 32. Элементы структуры янхаугита (по Аннейду и др.) *а* – слой Мп-Ті-октаэдров, параллельный (001); *б* – слой Na-Мп-октаэдров и Na(3)-полиэдров, параллельный (001); пунктиром показаны проекции [Si₂O₇]-групп

Дополнительно для различных образцов определены: $H_2O = 0,32$, 1,6 и 1,3 (элементный анализатор [1]) и F = 4,4 и 5,1% [2].

Нахожд. [1]. Обнаружен в миароловых пустотах пермских сиенитов и гранитов Южной Норвегии, севернее Осло, в р-не оз. Гьердингер. Там же найден в экерите – полевошпатовом щелочном граните, богатом натрием. Характерные элементы флюидов поздней стадии экеритовой магмы – F, Mn, Ti и Zr. Местами является породообразующим минералом. Встречается с эгирином, арфведсонитом, эльпидитом и минералами астрофиллитовой группы, главным образом куплетскитом. Часто ассоциирует с пирофанитом, иногда включен в тонкозернистый эльпидит. Наблюдался в контакте с делиитом, монацитом и глиноподобной смесью монтмориллонита и каолинита.

Межплоскостные расстояння янхаугита из Норвегии [1]

			Fe	К _α -излуче	ение			
hkl	Ι	d (Å)	hkl	1	d (Å)	hkl	1	d (Å)
011	5	7,89	031	ব	3,169	234	5	2,309
002	30	6,65	130	20	3,108	333	ব	2,287
112	5	5,462	123	く	2,935	420	20	2,253
200	5	5,087	124	100	2,839	134	10	2,165
120	< 5	4,412	322	90	2,833	334	10	2,145
ī22	40	3,920	320	90	2,782	126	ব	2,091
202	20	3,546	024	40	2,742	510	10	1,988
220	20	3,529	224	40	2,717	416	20	1,956
122	ব	3,466	204	30	2,454	434	10	1,933
T23	20	3,348	041	30	2,404	144	ব	1,870
212	20	3,330	134	10	2,379	613	50	1,744
114	20	3,280	225	20	2,374	208	30	1,740
312	20	3,276	330	5	2,349	244	30	1,732
303	60	3,202	421	20	2,327	226	30	1,715
						614	30	1.712

Литература

1. Raade G., Mladeck M.H. // Amer. Miner. 1983. Vol. 68, N 11/12. P. 1216.

2. Annehed H., Fälth L., Raade G. // Neues Jb. Miner. Monatsh. 1985. H. 1. S. 7.

3. Merlino S., Perchiazzi N. // Canad. Miner. 1988. Vol. 26, pt 4. P. 933.

Йортдалит Hiortdalite

(Na, Ca)₄Ca₈Zr₂M₂[Si₂O₇]₄O₃F₅; где M – Zr, Ti, TR, Y, Ca, Mn²⁺, Fe²⁺, Nb

Ранее описанный (т. III, вып. 1, с. 815) "гиортдалит" (другая транскрипция названия) не был охарактеризован структурно. Последующее изучение структуры минерала показало наличие двух фаз – І и II [1, 2].

Структ. и морф. крист. Трикл. с. $C^{1}-P\overline{1}$. $a_{0} = 11,015$, $b_{0} = 10,941$, $c_{0} = 7,353$ Å; $a_{0}: b_{0}: c_{0} = 1,007: 1:0,672$; $\alpha = 109,35^{\circ}$, $\beta = 109,87^{\circ}$, $\gamma = 83,43^{\circ}$ (йортдалит из Лангензундфьорда (Норвегия) [1]); $a_{0} = 11,012$, $b_{0} = 10,342$, $c_{0} = 7,359$; $a_{0}: b_{0}: c_{0} =$ = 1,065: 1:0,712; $\alpha = 89,92$, $\beta = 109,21$, $\gamma = 90,06^{\circ}$ (йортдалит из Кипава-Ривер (Канада) [2]).

Описание структуры см. во Введении к группе куспидина.

По классификации С. Мерлино и Н. Перчиацци [3], йортдалит-І относится к 4 структурному типу, элементарная ячейка IV типа, йортдалит-II (вместе с куспидином и ловенитом) – к 1 структурному типу, элементарная ячейка I типа. В йортдалите-II каждая октаэдрическая стенка сохраняет центр инверсии, подобно куспи-

дину и ловениту, однако стенки неэквивалентны друг другу, что приводит к понижению симметрии от P2/a до P1. Во внешних колонках одной стенки чередуются Ca(1)- и Zr-октаэдры, а в другой – Ca(2)- и Ca(3)-октаэдры; у йортдалита-II происходит чередование Ca(2)-, Zr- и Ca(4)-, Y-октаэдров. Внутренние колонки построены неодинаково (фиг. 33).

Из восьми независимых октаэдрических позиций в йортдалите-I Са занимает четыре – Ca(1), Ca(2), Ca(3) и Ca(4), по одной позиции приходится на Na и Zr, две позиции заняты смешанными катионами NaCa и M (M – 1/3Zr, 1/6Ti, 1/6Ca, 1/6Mn²⁺, 1/6Fe²⁺). Для ряда катионов октаэдрическая координация дополнена до 7 и 8. Zr находится в разупорядоченной октаэдрической координации (пять коротких расстояний Zr–O от 2,04 до 2,09 Å и одно длинное 2,21 Å).

В йортдалите-II три позиции заняты Ca – Ca(1), Ca(2), Ca(4), одна позиция – Zr, четыре – смешанные: NaCa(1), NaCa(2), Ca(3) (с Y), Y (с Na).

Средние межатомные расстояния йортдалита-I, II [1,2] (в Å):

Si(1)-O	1,621	1,612	
Si(2)-O	1,612	1,599	
Si(3)O	1,612	1,614	
Si(4)O	1,614	1,595	_
Ca-O(F)	2,524; 2,380; 2,346; 2,418	2,352; 2,516; 2,288; 2,375	•
Zr-0	2,090	2,149	
Y-O(F)	-	2,296	
Na, Ca – O(F)	2,569	2,432; 2,468	
M-O(F)	2,235	_	

Литература

1. Merlino S., Perchiazzi N. // Tschermaks miner. und petrogr. Mitt. 1985. Bd. 34, H. 3/4. S. 297.

2. Merlino S., Perchiazzi N. // Miner. and Petrol. 1987. Vol. 37, N 1. P. 25.

3. Merlino S., Perchiazzi N. // Canad. Miner. 1988. Vol. 26. pt 4. P. 933.

Джаффеит Jaffeite Ca₆[Si₂O₇](OH)₆

Назван по фамилии американского минералога и петрографа, профессора Х. Джаффе. Аналог цементного гидрата трехкальциевого силиката (TSH, C₃CH) [1].

Характ. выдел. Кристаллы (до 0,4 мм в длину) с гексагональным поперечным сечением (по 0.25 мм) [1].

Искусственный – игольчатые кристаллы до 10 мм, волокнистые кристаллы и их сростки [2, 3].

Структ. и морф. крист. Триг. с. (псевдогексаг.). $C_3^1 - P3$ [4]; гексаг. $C_{6h}^2 - P6_3/m$ [3]. Параметры гексагональной ячейки (в Å):

a _h	10,026	10,035	10,024	10,09
c _h	7,482	7,499	7,520	7,7
$a_h: c_h$	1:0,7462	1:0,7472	1:0,7501	1 : 0 ,7532
Местонахождение	Рудник Комбат	(Намибия)	Искусств.	Искусств.
Ссылка	[1]	[4]	[2]	[3]

Z = 2. Параметры ромбической ячейки: $a_0 = 17,2, b_0 = 10,5, c_0 = 7,5$ Å; $a_0: b_0: c_0 = 1,6380: 1:0,7142$ [2].

Основу структуры искусственного [2] и природного [4] джаффеита составляют Ca₄[Si₂O₇](OH)₂, представляющие собой вытянутые вдоль оси *с* колонки из сдвоенных Са-октаэдров, скрепленных диортогруппами [Si₂O₇]. Ленты соединяются добавочными слоями ("линейками") из отдельных спаренных Са-октаэдров в окружении дополнительных групп ОН (фиг. 34). Структурная формула (Белов, 1976) приведена выше. Установлено структурное подобие джаффеита с боратами: флюоборитом, еремеевитом и паинитом [5].

Межатомные расстояния (пр. группа P3) (в Å): в Са-октаэдрах Са(1)–O = 2,27– -2,48, Са(2)–O = 2,34–2,67, Са(3)–O = 2,31–2,61, Са(4)–O = 2,29–2,49; в Si-тетраэдрах Si(1)–O = 1,54 и 1,60, Si(2)–O = 1,714 и 1,60, Si(3)–O = 1,67 и 1,60, Si(4)–O = = 1,53 и 1,66 [2]. Кристаллы вытянуты по оси с с простыми формами (001) и (100) [1].

Физ. св. Сп. по (001) несовершенная. Изл. раковистый. Хрупкий. Уд.в. 2,65 (вычисл. 2,58). Бесцветный. Бл. стеклянный. Прозрачный.

Микр. Удлинение (+). Одноосный (+).

n _e	1,604	1,608	1,602
n _o	1,596	1,594	1,590
$n_e - n_o$	0,008	0,014	0,012
Местонахождение	Рудник Комбат	Искусств.	Искусств.
	(Намибия)		
Ссылка	[1]	[3]	[2]

Хим.[1]. Теор. состав Са₆[Si₂O₇](OH)₆: CaO – 65,88; SiO₂ – 23,53; H₂O – 10,59. Анализ (микрозонд., среднее из 3): CaO – 64,98; SiO₂ – 23,96; H₂O – 11,06 (по разности); сумма 100,00.

Диаги. исп. Растворяется в HCl.

Нахожд. [1]. Найден в слабо метаморфизованных породах вместе с дефернитом, гаусманнитом, гиллебрандитом, апатитом, галенитом и самородной медью на

.

Фыг. 34. Идеализированная проекция ab структуры джаффеита (по Ямновой и до.)

руднике Комбат (Намибия). Предположительно кристаллизовался в гидротермальных условиях при температуре менее 350° и низкой активности кремния.

Искусств. Один из главных компонентов цементного камня с широким диапазоном условий получения [1, 2]. В системе CaO–SiO₂–Na(OH) в гидротермальных условиях кристаллизуется в виде игл до 10 мм, волокнистых кристаллов и их сростков [2]. Бесцветные, прозрачные игольчатые кристаллы джаффеита образуются в автоклаве при 450° и давлении 500–2000 бар при обработке щелочным раствором (LiOH) хибинского титанита [3].

Межплоскостные расстояния джаффента из Намие	бин [1]
CuK_{α} -излучение, $D = 114.6$ мм	

hkl	1	d (Å)	hkl	I	d (Å)	hki	1	d (Å)
010	100	8,66	212	30	2,466	014	5	1,820
110	5	4,995	131	5	2,292	232	30	1,757
012	5	3,417	040	10	2,174	142	25	1,691
210	50	3,279	222	30	2,083	330	5	1,675
112	9 0	2,996	132	5	2,028	24 0	5	1,641
030	70	2,887	320	10	1,994	214	5	1,627
022	90	2,883	042	25	1,872	034	25	1,572

Литература

1. Sarp H., Peacor D.R. // Amer. Miner. 1989. Vol. 74, N 9/10. P. 1203.

- 2. Казак В.Ф., Блинов В.А., Илюхин В.В., Белов Н.В. // ДАН СССР. 1974. Т. 219, № 2. С. 340.
- 3. Блинов В.А., Мельников О.К., Дорфман М.Д., Илюхин В.В., Белов Н.В. // Минерал. сб. Львов. 1974. № 28, вып. 2. С. 4.
- 4. Ямнова Н.А., Сарп Х., Егоров-Тисменко Ю.К., Пущаровскии Ю.Д. // Кристаллография. 1993. Т. 38, № 4. С. 73.
- 5. Пущаровский Ю.Д // Вестн. МГУ. Сер. 4, Геология. 1994, № 5. С. 71.

ГРУППА СЕЙДОЗЕРИТА

В составе группы описаны: ринкит^{*}, кальциевый ринкит^{2*}, сейдозерит, розенбушит (т. III, вып. 1, с. 819).

* = мозандриту (Флейшер, 1990). 2* = гетцениту (Clark, 1993).

	Сингония	<i>a</i> ₀	b_0	<i>c</i> ₀	β	Уд.в.
Накарениобсит-(Се) NbNa2Ca2(Ce, La, Nd)[Si2O2]2OF2	Монокл.	18,901	5,683	7,462	101 ,29 °	3,45

Накареинобсит-(Ce) Nacareniobsite-(Ce) NbNa₂Ca₃(Ce, La, Nd)[Si₂O₇]₂OF₃

Назван по составу (по символам элементов Na, Ca, REE, Nb, Si) и преобладанию Се среди редких земель [1]. Впервые описан [2] как Nd-ринкит с формулой $Na_6Ca_6Ce_2Ne_2Si_8O_{30}F_6$. Образует изоморфный ряд с ринкитом TiNa₂Ca₄TR[Si₂O₃]₂OF₄-NbNa₃Ca₅TR[Si₂O₃]₂OF₄ с замещением Ti⁴⁺Ca²⁺ \Leftrightarrow Nd⁵⁺Na⁺ [1].

Характ. выдел. Кристаллы (до 3,0 × 0,4 × 0,04 мм) и их агрегаты.

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P_2 a_0 = 18,901$, $b_0 = 5,683$, $c_0 = 7,462$ Å; $\beta = 101,29^\circ$; $a_0: b_0: c_0 = 3,3259: 1: 1,3130$; V = 786,0 Å³; Z = 2 [1].

Структура ринкита.

Кристаллы уплощенные по (100) и удлиненные по [001] с простыми формами (100), (410) и (310).

Физ. св. [1, 2]. Сп. совершенная по (011). Тв. 5. Уд.в. 3,45 (вычисл. 3,43). Цв. желтый, бесцветный, Бл. стеклянный. Прозрачен.

Микр. Двуосный (+). Np = b, Nm = c, $aNg = 11^{\circ}$ в тупом углу β ; $n_g = 1,6924$, $n_m = 1,6706$, $n_p = 1,6681$ (при $\lambda = 589$ ммк); $2V = 66^{\circ}$ [1].

Хим. Анализ (микрозонд., среднее из 10) [1]: Na₂O – 10,01; CaO – 19,92; SrO –0,27; Al₂O₃ – 0,05; Y₂O₃ – 0,78; La₂O₃ – 4,09; Ce₂O₃ – 10,32; Pr₂O₃ – 1,42; Nd₂O₃ – 4,19; Sm₂O₃ – 0,81; Dy₂O₃ – 0,05; SiO₂ – 29,63; TiO₂ – 2,79; ZrO – 0,10; Nd₂O₅ – 11,61; Ta₂O₅ – 0,34; F – 6,87; сумма (при –O=F₂) 100,36 (см. также хим. анализ 3 в т. Ш. вып. 1, с. 825).

Нахожд. Найден в щелочном комплексе Илимаусак (Южная Гренландия) в науяитах на горе Наколак близ контакта с гидротермальной анальцимовой жилой, в пустотах выщелачивания в луявритах вместе с арфведсонитом и содалитом, а также в массивных луявритах в ассоциации с арфведсонитом, микроклином, альбитом, нефелином, содалитом, эвдиалитом и виллиомитом.

Изм. В поверхностных условиях неустойчив. Легко выщелачивается Na и Ca (см. также т. III, вып. 1, с. 829).

Отд. От ринкита отличается повышенным содержанием ниобия.

Межплоскостные расстояния накарениобсита-(Се) из Илимаусака (Южная Гренландия) [1]

 CuK_{α} -излучение

hkl	į	d (Å)	hkl	I	d(Å)	hkl	I	d (Å)
200	1	9,31	220;610	3	2,715	812	2	2,018
110	1	5,442	400;602	2	2,629	204;712	4	1,865
310	1	4,192	512	2	2,589	91 2	2	1,859
410	2	3,591	-	1	2,541	522;722	2	1,823
311;411	1	3,421	420	1	2,422	822	1	1,718
112	1	3,122	800	1	2,318	132;530	4	1,687

156	Силикаты со сдвоенными кремнекислородными тетраэдрами									
hkl	I	d(Å)	hkl	I	d (Å)	hkl	,	d (Å)		
510	1	3,107	512;322	2	2,196	214;614	1	1.655		
600	5	3,089	802	1	2,157	804;912	3	1.595		
212	10	3,077	222;422	1	2,123	10.20	5	1.551		
112;312	5	2,955	522	5	2,031	10.02	2	1.536		
120	3	2,809						,		

Литература

1. Petersen O.V., Rønsbo J., Leonardsen E. // Neues Jb. Miner. Monatsh. 1989, H. 2. S. 84.

2. Семенов Е.И. Минералогия щелочного массива Илимаусак. М.: Наука, 1969. 165 с.

СТРУКТУРА ТИПА ФЕРСМАНИТА

	Сингония	Пр. гр.	a ₀	b_0	<i>c</i> 0	γ
Ферсманит [*] Fersmanite Ca ₅ Na ₃ Ti ₃ Nb[Si ₂ O ₇]O ₈ F ₂	Тригон.	C ⁶ _{2h} -R2/b	10,212	20,450	10,198	97,22°

Без структурных данных с формулой (Ca, Na)₂(Ti, Nb)SiO₅(O, F) условно был включен в группу титанита (т. III, вып. 1, с. 353).

Фиг. 35. Структура ферсманита (по Сафьянову и др.)

a – сетки из Ті- и Nа-полиздров; δ – сетки из диортогрупп [Si₂O₇] и Caполиздров; e – фрагмент структуры в проекции (001) В основе структуры [1] лежат сетки двух сортов – CaSi и NaTi (фиг. 35, *a-в*). Сетки имеют пустоты, расположенные в шахматном порядке.

Кремнекислородный анион представлен диортогруппами [Si₂O₇], образующими совместно с цепочками из Са-шестивершинников сетки (см. фиг. 35, *б*). Другой строительный элемент – сетки из цепочек (Ti_{0,80}Nb_{0,20})-октаэдров, сочлененных через общие ребра с Na-полиэдрами (деформированный куб). На фиг. 35, *в* показан механизм формирования из этих сеток посредством элементов симметрии двухслойной структуры. Na, Ti-пакеты переложены Ca, Si-пакетами параллельно (010). Сетки накладываются друг на друга так, что на заселенные "клетки" приходятся пустые и наоборот. Уточненная кристаллохимическая формула: Ca_{4,72}Na_{3,28}Ti_{3,20}Nb_{0,80}× ×[Si₂O₇]₂O₈F₃.

Межатомные расстояния (в Å): Si-O = 1,56–1,66; Ca-O = 2,52–2,77; Na-O = 2,16-2,70; Ti-O = 1,92–2,07.

Литература

1. Сафьянов Ю.Н., Бочкова Р.И., Илюхин В.В. // Кристаллография. 1984. Т. 29, N 1. С. 56.

СТРУКТУРА ТИПА КИЛЛАЛАИТА

	Сингония	<i>a</i> 0	b_0	<i>c</i> 0	β	Уд.в.
Киллалаит Са _{3+х} Н _{1-х} [Si ₂ O ₇](OH)	Монокл.	6,807	15,459	6,811	97, 46°	2,94

Киллалант Killalaite

 $Ca_{3+r}H_{1-r}[Si_2O_7](OH)$

Назван по месту находки [1].

Характ. выдел. Мелкие кристаллы (до 2 мм) [1].

Структура и морф. крист. Монокл. с. $C_{2h}^2 - P2_1/m$. Псевдоячейка с параметрами: $a_0 = 6,807, b_0 = 15,459, c_0 = 6,811$ Å; $\beta = 97^\circ 46'$; V = 710,2 Å³; Z = 4. Очень слабые рефлексы указывают на существование истинной В-центрированной ячейки с удвоенными параметрами *a* и *c* [2].

В структуре [2] кремнекислородный радикал представлен группами [Si₂O₇]. Параллельно (010) чередуются слои состава Ca₂(HSi₂O₇)⁻ и Ca(OH)⁺ (фиг. 36). Атомы Ca(1) и Ca(2) слоев Ca₂(HSi₂O₇)⁻ находятся в искаженных октаэдрах. Ca-(O, OH) = 2,303-2,484; Ca(3) и Ca(4) слоев Ca(OH)⁺ имеют к.ч. = 7; Ca-(O, OH) = = 2,305-2,746 Å. Имеют вакантные октаэдрические позиции, в которые входят дополнительные ионы Ca(5)²⁺; в исследованном кристалле их число составляет 0,2. Избыток положительных зарядов компенсируется удалением части протонов, которые локализованы между атомами O(2) и O(4) соседних диортогрупп с образованием сильной водородной связи.

Кристаллы до 2 мм, хорошо образованы, удлинены по оси b.

Физ. св. Сп. совершенная по (001) и несовершенная по (010) и (100). Уд.в. 2,94 (вычисл. при x = 0,2). Бесцветный [2].

Микр. Nm = b, aNg = 16, $n_g = 1,642$, $n_p = 1,635$ (Na); $2V_{\alpha} = 26^{\circ}$. Характерны ромбические сечения с двойниками в виде "галстука-бабочки" [1].

Хим. Теор. состав Ca₃H[Si₂O₇](OH): CaO – 54,90; SiO₂ – 39,22; H₂O – 5,88; для состава с x = 0,2: CaO – 57,14; SiO₂ – 38,27; H₂O – 4,59.

Фиг. 36. Структура киллаланта в проекции вдоль оси в (по Тейлору). Цифры – высота атомов (×100)

Анализ киллалаита из Инишкроне (микрозонд.): CaO – 57,0; SiO₂ – 39,8; MgO, Fe₂O₃, Al₂O₃ < 0,1; H₂O – не опр. Микрохимическим анализом CO₂ и F не обн. [1].

Нахожд. Образуется на поздних стадиях гидротермального изменения контактово-метаморфических пород, обогащенных кальцием, при $t = 350-550^\circ$, P = 500--3500 бар, в условиях дефицита CO₂ [1].

Близ Инишкроне, на восточном берегу зал. Киллала, графство Слайго (Ирландия), обнаружен в контактной зоне известняков и базальт-долеритовых даек в спёррит-волластонитовых породах, которые подверглись гидротермальному изменению и частичному замещению скоутитом, куспидином и тиллеитом. Кристаллики киллалаита включены в кальцит, выполняющий пустоты и трещины [1]. Ассоциирует с афвиллитом, иногда развивается по тиллеиту, замещается ксонотлитом [1].

Близ Карнил, в графстве Антрим (Северная Ирландия), встречен в продуктах гидротермального изменения ларнитовых пород, содержащих магнетит, перовскит, шпинель и спёррит. Наряду с афвиллитом, иногда также портландитом или кальцитом приурочен к центральным частям прожилков и округлых выделений пломбьерита, размер которых не превышает 2 мм в поперечнике [3].

Отл. В шлифах легко узнается по ромбическим сечениям кристалликов и характерным двойникам.

Межилоскостные расстояния киллаланта из Инишкроие (Ирлавдия) [2]
CuK_{α} -излучение, Ni-фильтр, $D = 114.88$ мм

hkl	I	d(Å)	hkl	1	d (Å)	hkl	I	d (Å)
020	3	7,40	060	30	2,560	272	35	1,673
100	10	6,75	240	30	2,540	333	30*	1,620
120	25	5,10	142;052	45 [*]	2,275	2 24	3	1,566
111	3	4,97	300	10	2,250	124;421;	3	1,550
101	5	4,50	310;301	45	2,224	144;441		
040	30*	3,86	023;123;242	3	2,150	432;431	30*	1,520

hkl	ı	d (Å)	hkl	1	d (Å)	hkl	I	d (Å)
200	30	3,38	260	10	2,055	303	1	1,493
012	10	3,30	252	15	1,975	291;144	8	1,469
201	25	3,19	080;143	30*	1,920	461;164	40 *	1,413
220	25	3,09	072	2	1,849	164	5	1,357
221	2	2,97	252	10	1,815	471;0.12.0;	5	1,285
201	2	2,85	203	5	1,766	404;511		
032	100	2,824	172;271	15	1,748	136;1.10.4	10	1,108
ī32	60	2,724	322	5	1,720	633	20*	1,044
ī51	5	2.650	104:004:361	35	1.688			•

[•] Интенсивность изменена из-за примеси кальцита, которая использовалась как внутренный стандарт.

Литература

1. Nawaz R. // Miner. Mag. 1974. Vol. 39, N 305. P. 544.

2. Taylor H.F.W. // Ibid. 1977. Vol. 41, N 319. P. 363.

3. Nawaz R. // Ibid. N 320. P. 546.

СТРУКТУРА ТИПА ИЛЬВАИТА

ГРУППА ИЛЬВАИТА

В группе описаны ильваит и лавсонит (т. III, вып. 1, с. 680).

	Сингония	<i>a</i> 0	<i>b</i> ₀	<i>c</i> ₀	У д.в.
Хенномартинит SrMn ₂ [Si ₂ O ₂](OH) ₂ · H ₂ O	Ромб.	6,245	9,031	13,404	3,68

Хенномартинит Hennomartinite

 $SrMn_2^{3+}[Si_2O_7](OH)_2 \cdot H_2O$

Назван в честь немецкого геолога Хенно Мартина, исследователя марганцевых месторождений пустыни Намиб в Африке [1].

Характ. выдел. [1]. Ксеноморфные пойкилобласты (до 1 мм в диаметре), реже войлокоподобные агрегаты.

Структ. и морф. крист. [1]. Ромб. с. $D_{2h}^{17} - Cmcm$. $a_0 = 6,245$, $b_0 = 9,031$, 0 = 13,404 Å; $a_0: b_0: c_0 = 0.691: 1: 1,484$; V = 756,0 Å³; Z = 4.

Структура хенномартинита [2] близка структуре лавсонита, где Al полностью замещен на Mn^{3+} , а Ca – на Sr. Основной элемент структуры – $[Mn^{3+}O_6]$ -октаэдры, соединенные ребрами и образующие бесконечные цепи, параллельные *a* (фиг. 37). Октаэдры искажены и имеют четыре короткие (1,909–1,972) и две длинные 2,170 Å) Mn^{3+} —О-связи. Цепочки октаэдров соединены друг с другом группами Si₂O₇]⁶⁻, вытянутыми вдоль оси *c*.

Межатомные расстояния (в Å): Si-O = 1,614–1,646; О-O = 2,53–2,73 (в Si-Oтетраэдрах); угол Si-O-Si = 146,6°.

Атомы Sr и молекулы H₂O расположены беспорядочно в каналах структуры. Координационное число атомов Sr равно 8: шесть коротких расстояний Sr--O (2,587-2.691) и два длинных (2,892).

Фиг. 37. Структура хенномартниита (по Армбрустеру и др.) O(5) – молекулы H₂O; O(4) – группы OH

Физ. св. Тв. 4. Микротвердость 200–400 кгс/мм² при нагрузке 100 г. Уд.в. 3,68 (вычисл.). Цв. желто-коричневый. Бл. стеклянный. Полупрозрачный [1]. Для ИК-спектра характерны полосы при 3555 и 1650 см⁻¹ (H₂O и/или OH) и в интервалах от 1200 до 850 и от 600 до 350 см⁻¹ (колебания [Si₂O₇]-групп). ИК-спектр схолен с таковым давсонита и ильваита

Микр. Плеохроизм сильный от желтовато-коричневого до темного красно-коричневого. Двуосный. n > > 1,82; 2V = 63°.

Хим. Анализ (микрозонд.) [1]: SiO₂ – 28,22; CaO – 0,02; Мп₂O₃^{*} – 37,82; Fe₂O₃ – 0,53; SrO – 24,32; BaO – 0,46; H₂O^{**} – 8,62; сумма 99,99.

* Валентность Мл определена из стехиометрии и Мл-О-расстояний, полученных при анализе структуры [2].

^{*} Н₂О вычислена по разности.

Эмпирическая формула (на 10 атомов О): (Sr_{0,98}Ba_{0,01})(Mn³⁺_{2,01}Fe³⁺_{0,03})× × [Si_{1 97}O₇](OH)₂ · H₂O.

Нахожд. В метаморфизованных и гидротермально измененных стратифицированных рудных залежах марганцевой области Калахари в Южной Африке, где найден на руднике Весселс вместе с корнитом, сугилитом (70%), серандит-пектолитом (25%) в рудах, обогащенных В и Li и содержащих, кроме перечисленных минералов, стурманит и годефруаит. Обрастает идиоморфные кристаллы сугилита и игольчатые выделения серандит-пектолита. Наблюдаются взаимные срастания с сугилитом и корнитом [1]; последний обычно окаймляет хенномартинит.

Отл. От лавсонита отличается более высоким показателем преломления.

Межплоскостные расстояния хенномартинита из рудника Весселс (Южная Африка) [1] FeK_n-излучение. Камера Гинье

hkl	1	d(Å)	hkl	1	d(Å)	hLl	I	d (Å)
110	30	5,149	114	82	2,807	223	54	2,231
111	86	4,804	130	58	2,715	134	20	2,113
020	42 [*]		024	98	2,695	043	20	2,018
021	56	4,287	131	24	2,666	311	20	2,009
022	26	3,752	220	26*		206	40	1,819
113	66	3,3 7 3	132	48	2,518	117	14	1,795
004	22	3,347	222	68	2,401	226	38	1,687
202	100	2,833	115	26	2,379			
*								

Линии сугилита.

Литература

- 1. Armbruster T., Oberhänsli R., Bermanec V., Dixon R. // Schweiz, miner, und petrogr. Mitt. 1993. Bd. 73, H 3 S 349
- 2. Armbruster T., Oberhänsli R., Bermanec V. // Europ. J. Miner, 1992, Vol. 4, N I. P. 17.

СТРУКТУРА ТИПА НАЗОНИТА

	Сингония	Пр.гр.	a ₀	<i>c</i> ₀
Hазонит [*] Nasonite Pb ₆ Ca ₄ [Si ₂ O ₇] ₃ Cl ₂	Гексаг.	$P6_{3}/m-C_{6h}^{2}$	10,08	13,27

Описан ранее как минерал с невыясненной структурой (т. III, вып. 1, с. 841).

CI. CI. CL

Фиг. 38. Структура назонита в проекции вдоль оси с (по Пжузепетти и др.)

Структура [1] характеризуется наличием изолированных диортогрупп [Si₂O₇], между которыми находятся катионы Pb и Ca (фиг. 38). Вокруг атомов Pb атомы O образуют неправильный координационный полиэдр. Атомы Са лежат на тройных осях и находятся внутри правильных треугольных призм из атомов О. В Si-тетраэпрах Si-O = 1.55-1.68 Å; угол O-Si-O от 106 до 129°.

Литература

1 Giuseppetti G., Rossi G., Tadini C. // Amer. Miner. 1971. Vol. 56, N 7/8. P. 1174.

СТРУКТУРА ТИПА ГАНОМАЛИТА

	Сингония	Пр. гр.	<i>a</i> ₀	<i>c</i> 0
Ганомалит [*] Ganomalite Pb ₉ Ca ₅ Mn×	Тригон.	$P3-C_3^1$	9,82	10,13
×{Si2O2]2{SiO4]2		_		

Описан ранее с формулой Pb₆Ca₄[Si₂O₇]₃(OH)₂ как минерал с невыясненной структурой (т. III, вып. 1, с. 843).

В структуре выделяются одиночные тетраэдры [SiO₄] и сдвоенные группы [Si₂O₇] [1, 2]. Катионы Рb находятся в тройной и пятерной координации; Са и Мп

располагаются в октаэдрах [3]. Как показал анализ межатомных расстояний, заселение октаэдров Са и Мп упорядоченное. Изоморфизм Са и Мп не наблюдается.

Литература

1. Engel G. // Naturwissenschaften. 1972. Bd. 59, H. 3. S. 121.

2. Newnham R.E., Wolfe R.W., Darlington C.N. // J. Solid. State Phys. 1973. Vol. 6. P. 378.

3. Dunn P.J., Peacor D.R., Valley J.W., Randall C.A. // Miner. Mag. 1985. Vol. 49, N 353. P. 579.

СТРУКТУРА ТИПА ЭПИДОТА

ГРУППА ЭПИДОТА

Ранее (т. III, вып. 1, с. 720) в группе описаны: клиноцоизит, эпидот, пьемонтит, ханкокит, ортит^{*}, ломбардит, сурсассит.

* = алланиту-(Ce) (Никель, Мандарино, 1989).

	Сингония	a_0	<i>b</i> ₀	<i>c</i> ₀	β	Уд.в.
Стронциопьемонтит CaSr(Al, Mn ³⁺ , Fe ³⁺) ₃ [Si ₂ O ₇][SiO ₄]O(OH)	Монокл.	8,849	5,671	10,203	114,63°	3,7
Диссакисит-(Се) CaCeMgAl ₂ [Si ₂ O ₇][SiO ₄]O(OH)	n	8,916	5,700	10,140	114,72	3,75
Долласеит-(Се) CaCeMg ₂ Al[Si ₂ O ₇][SiO ₄]F(OH)	u	8,934	5,721	10,176	114,31	3,9
Христовит-(Се) CaCeMgMnAl[Si ₂ O ₇][SiO ₄]F(OH)	•	8,903	5,748	10,107	113,41	4,05
Макфаллит Са ₂ Мп ₃ ³⁺ [Si ₂ O ₇][SiO ₄](OH) ₃	"	10,235	6,086	8,970	110,75	3,43

Отнесены к группе эпидота на основании структурного сходства [1]. Характерная черта структуры – наличие двух типов октаэдрических колонок: одинарной – из

Фиг. 39. Два типа колонок из октаэдров в структуре минералов группы эпидота (по Долесу)

октаздрических колонок. Одинарной – из октаздров M(2), объединенных общими ребрами, и более сложной, в которой октаздры M(1) и M(3) имеют четыре и два общих ребра (фиг. 39). Колонки соединяются группами [SiO₄] и [Si₂O₇], образуя каркас с пустотами A(1) (к.ч. = = 6–9) и более крупными A(2) (к.ч. = 8– 12). Это определяет общую формулу минералов группы – $A_2M_3[Si_2O_7][SiO_4] \times$ ×O(OH). Октаздрические позиции чаще всего заполняют: Mg, Fe, Mn – M(1) и M(3); Al, как правило, M(2); Ca находится в полиздрах A(1); Sr или TR – в A(2).

В стронциопьемонтите позиция A(2) заполнена в основном Sr. В диссакисите-(Ce) и долласеите-(Ce), принимавшихся ранее за ортит, TR занимают позицию A(2), Mg (Mg > Fe²⁺) располагается в позициях M(3) и M(1,3). В христовите-(Ce) позицию M(3) заполняет Mn^{2+} . В долласеите-(Ce) и христовите-(Ce) атом O, не связанный с Si, замещается на F, (OH). Предполагается наличие водородной связи типа O–H...F.

Литература

1. Dollase W.A. // Amer. Miner. 1968. Vol. 53, N 11/12. P. 1882; 1969. Vol. 54, N 5/6. P. 710.

Строициопьемонтит Strontiopiemontite $CaSr(Al, Mn^{3+}, Fe^{3+})_{3}[Si_{2}O_{7}][SiO_{4}]O(OH)$

Назван по составу и сходству с пьемонтитом [1].

Характ. выдел. Мелкие призматические кристаллы (до 0,5 мм), удлиненные по [010].

Структ. и морф. крист. [1]. Монокл. с. $C_{2h}^2 - P2_1/m$. Для двух образцов (с участков Молинелло и Кассанья): $a_0 = 8,849$ и 8,870, $b_0 = 5,671$ и 5,681, $c_0 = 10,203$ и 10,209 Å; $\beta = 114,63$ и $114,88^\circ$; $a_0 : b_0 : c_0 = 1,560 : 1 : 1,799$ и 1,561 : 1 : 1,797; V = 465,4 и 466,7 Å³. $a_0 = 8,862$, $b_0 = 5,682$, $c_0 = 10,191$ Å; $\beta = 114,70^\circ$ (по порошкограмме); Z = 2.

Средние октаэдрические М-О-расстояния соответствуют катионному распредетению в позициях М(1), М(2) и М(3). Позиция А(2) занята главным образом Sr (до 70%). Размещение Sr в десятикоординированном положении А(2) вызывает увеличение среднего расстояния А(2)-О и соответственно величины полиэдра. За счет этого несколько уменьшается А(1)-О.

Кристаллохимические формулы двух структурно изученных образцов: (Ca_{0.78}× ×Mn_{0.22})(Sr_{0.73}Ca_{0.27})(Al_{0.78}M_{0.22})Al(M_{0.98}Al_{0.02})Si₃O₁₃H и (Ca_{0.97}Sr_{0.03})(Sr_{0.59}Ca_{0.41})× × (Al_{0.72}M_{0.28})Al(M_{0.98}Al_{0.02})Si₃O₁₃H, где $M - M\pi^{3+} + Fe^{3+}$.

Средние межатомные расстояния (в Å) в тех же образцах соответственно: A(1)-O = 2,578 и 2,588; A(2)-O = 2,712 и 2,706; M(1)-O = 1,929 и 1,934; M(2)-O = 1,885 и 1,890; M(3)-O = 2,061 и 2,058; Si(1)-O = 1,615 и 1,615; Si(2)-O = 1,620 и 1,624; Si(3)-O = 1,629 и 1,629.

Встречаются двойники по (100) и (010).

Физ. св. [1]. Сп. совершенная по (001). Тв. 6. Уд.в. от 3,65 до 3,73 (вычисл. 3.73). Цв. темно-красный. Черта пурпурно-бурая. Бл. стеклянный. Прозрачен.

Микр. Сильный плеохроизм: по Ng – красновато-фиолетовый, по Nm – фиотетовый, по Np – желто-оранжевый. Nm = b. Двуосный (+). n (вычисл.) = 1,763 [1] соответствует величине n = 1,763 для пьемонтита) [2].

Хим. [1]. Анализ стронциопьемонтита из рудного участка Молинелло (микрозонд., несколько кристаллов):

	Среднее	Пределы колебаний
CaO	11,69	10,47–13,21
SrO	13,45	12,20-14,62
MgO	< 0,10	_
MnO	2,87*	
Mn ₂ O ₃	12,93	12,32-13,32
Fe ₂ O ₃	4,89	4,29-5,66
Al ₂ O ₃	17,56	17,00-18,05
TiO ₂	< 0,10	-
SiO ₂	34,27	33,97–34,48
H ₂ O	1,72**	
Comment	00.20	

Сумма

 МпО/Мп₂O₃ рассчитано по балансу валентностей и распределению по позициям.

** H₂O рассчитана на основе 1 атома Н в форм. ед.

Эмпирическая формула (на 13 атомов О): $(Ca_{0,79}Mn_{0,21}^{2+})(Sr_{0,68}Ca_{0,31})(Al_{1,81} \times Mn_{0,86}^{3+}Fe_{0,32}^{3+})Si_3O_{12}OH$; идеализированная для конечного Sr-члена: CaSr × (Al, Mn, Fe³⁺)₃Si₃O₁₂(OH).

Нахожд. Встречен в прожилках 3-4 мм толщиной, секущих черную марганцеворудную залежь, сложенную кварцем и браунитом, в рудных участках Молинелло и Кассанья месторождения Валь-Гравелия (Лигурия, Италия). Кроме стронциопьемонтита, прожилки содержат кальцит, родонит, родохрозит и ганофиллит Минеральные ассоциации предположительно относятся к низкотемпературным метаморфизованным комплексам [1, 2].

Отл. От сходного пьемонтита отличается наличием Sr.

		Межплоскост	ные расстоян	нн стронц	нопьемонтита	из Италин [1]						
	СиК _а -излучение											
hk!	1	d (Å)	hk!	1	d(Å)	hki	1	d (Å)				
ī02	20	5,031	202	10	2,553	222	10	1,899				
200	10	4,019	ī22	5	2,470	224	30	1,881				
2 02	10	3,971	022	25	2,421	4 15	10	1,702				
211	50	3,493	313	20	2,399	Ī33	15	1,654				
Ĩ13	100	2,916	Ž22	10	2,308	424	30	1,626				
020	50	2,836	4 01	30	2,165	331	50	1,590				
013	10	2,713	221	20	2,132	412	10	1,554				
120	40	2,678	223	40	2,117	040	30	1,421				
311	50	2,601	023	10	2,092							

Литература

1. Bonazzi P., Menchetti S., Palenzona A. // Europ. J. Miner. 1990. Vol. 2, N 4. P.519.

2. Cortesogno L., Lucchetti G., Penco A.M. // Rend. Soc. ital. miner. e petrol. 1979. Vol. 35, N 1. P. 151.

Диссакисит-(Ce) Dissakisite-(Ce) CaCeMgAl₂[Si₂O₇][SiO₄]O(OH)

Название от греч. δισσακις (диссакнс) – повторно, дважды, и по составу р.з.э. [1]. Мд-аналог алланита-(Се), за который первоначально принимался долласеит-(Се).

Синон. Магнезиальный ортит, магнезиоортит [2], алланит, Мд-алланит [3, 4].

Разнов. Субалюминиевый железистый диссакисит-(Се) [1, 2], хромовый диссакисит-(Се) [5].

Характ. выдел. Неправильные зерна 0,05–0,6 мм в диаметре, каймы [1], таблитчатые кристаллы (15×2×3 мм) [4].

Структ. и морф. крист. [1]. Монокл. с. $C_{2h}^2 - P2_1/m$ или $P2_1 - C_2^2$. $a_0 = 8,916$, $b_0 = 5,700$, $c_0 = 10,140$ Å; $\beta = 114,72^\circ$; $a_0 : b_0 : c_0 = 1,564 : 1 : 1,780$; V = 468,10 Å³; Z = 2 [1]. $a_0 = 8,905$, $b_0 = 5,684$, $c_0 = 10,113$ Å; $\beta = 114,62^\circ$ [6].

Структура сходна с таковой долласеита-(Се) [6]. Распределение атомов по позициям: в октаэдрах M(1) – A1, Ti, в M(2) – A1, в M(3) – Mg, Fe. Положения A(1) и A(2) упорядоченно заняты Са и элементами TR. OH и F занимают позицию O(10).

Бруттоформула: CaTR(Al_{0.83}Ti_{0.17})Al(Mg_{0.85}Fe_{0.15})Si₃O₁₂(O_{0.25}OH_{0.69}F_{0.06}).

Средние межатомные расстояния (в Å): A(1)-O = 2,463; A(2)-O = 2,599; M(1)-O = 1,941; M(2)-O = 1,890; M(3)-O = 2,110; Si(1)-O = 1,625; Si(2)-O = 1,616; Si(3)-O = 1,633; H-O(10) = 0,768; H-O(4) = 2,134.

Физ. св. Сп. не наблюдалась. Уд.в. 3,75 (вычисл. 3,79–4,02) [1]. Цв. бледнокоричневый [3]. Бл. стеклянный. Прозрачный в тоиких сколах. Катодолюминесценция в электронных лучах не наблюдалась [1]. Микр. [1]. Светлый желтовато-коричневый. Слабо плеохроирует от бледнокоричневого по Np до бледно-желто-коричневого по Nm и Ng. Np < Nm = Ng. Двуосный (+). Nm = b, $aNg = 23,7^{\circ}$ (в тупом углу β). $n_g = 1,758$, $n_m = 1,741$, $n_p = 1,735$; $n_g - n_p = 0,023$; $2V = 64,2^{\circ}$ (вычисл. 62°). Дисперсия средняя, r > v.

Хим. Теор. состав (сумма TR_2O_3 рассчитана как Ce_2O_3): CaO – 10,16; VigO - 7,31; $Ce_2O_3 - 29,75$; $Al_2O_3 - 18,48$; SiO₂ – 32,67; $H_2O - 1,63$.

Образует изоморфный ряд с алланитом-(Се). Описание промежуточных членов - того ряда см. [5, 7].

Анализы (1-3 - микрозонд.):

	1	2a	26	3	4
CaO	10,64	10,75	11.00	11.0	12.80
MgO	6,73	6,84	6.71	6.20	4 00
MnO	0,03	Не обн.	0.02	0.06	0.09
FeO	1,96*	1.80*	2.04*	1 39*	4.26
CdO	0,11	0,10	0.08		-
La_2O_3	9,92	9,80	9,58	9.49	_
Ce ₂ O ₃	17,64	16,94	17,01	12.3	22 492*
Pr ₂ O ₃	0,93	0,86	0,83	2.83	
Nd ₂ O ₃	2,44	2,08	2,25	1.95	_
Sm ₂ O ₃	0,13	0,13	0.10	0.11	_
Eu ₂ O ₃	< 0,10	< 0,10	< 0.10		_
Gd ₂ O ₃	< 0,10	< 0,10	< 0.10		_
Dy ₂ O ₃	< 0,05	< 0,05	< 0.05	_	_
Er ₂ O ₃	< 0,05	< 0,05	< 0.05	-	_
Y ₂ O ₃	0,03	0,04	0.02	_	_
Al ₂ O ₃	17,02	17,67	17.78	19.0	19.00
TiO ₂	0,89	0,89	1.22	0.02	13,00
ThO ₂	0,09	0.08	0.04	-	1,20
SiO ₂	31,73	32.09	32 19	32.0	21.60
P_2O_5	0.02	0.02	0.04	52,9	51,00
H ₂ O	1.493*	1.543*	1 573*	-	-
F	0.27	0.21	0.18	-	1,87
Сумма	102.07	101.84	102.66		
$-\Omega = F_{-}$	0.11	101,04	102,00	98,6ª*	99,99 ^{5*}
	0,11	0,09	0,08		
Сумма	101,96	101,75	102.58	-	

* Все железо рассчитано на Fe²⁺.

^{2*} Сумма TR₂O₃.

^{3*} H₂O рассчитана при O + (OH, F) = 12.

^{4*} В том числе 1,36 Ge₂O₃.

^{5*} В том числе 2,37 Fe₂O₃.

1, 2 – Антарктида (2а – центральная часть зерна, 26 – краевая) [1]; 3 – Китай [3]; 4 – Южная Якутия, анал. Быкова [7].

Эмпирические формулы (пересчет на O + (OH, F) = 12, анализ 4 – на 12 атомов O; сумма TR₂O₃ пересчитана на Ce):

$$\begin{split} &1-Ca_{1,05}Ce_{1,05}(Mg_{0,93}Fe \stackrel{2*}{}_{0,15})(Al_{1,85}Ti_{0,06})Si_{2,93}O_{12}(OH_{0,92}Fe_{0,08});\\ &2a-Ca_{1,05}Ce_{1,00}(Mg_{0,93}Fe \stackrel{2*}{}_{0,14})(Al_{1,91}Ti_{0,06})Si_{2,94}O_{12}(OH_{0,94}Fe_{0,06});\\ &26-Ca_{1,07}Ce_{0,99}(Mg_{0,91}Fe \stackrel{2*}{}_{0,15})(Al_{1,90}Ti_{0,08})Si_{2,92}O_{12}(OH_{0,95}Fe_{0,05});\\ &3-Ca_{1,07}Ce_{0,95}(Mg_{0,84}Fe \stackrel{2*}{}_{0,09})Al_{2,03}Si_{3,00}O_{12}(OH);\\ &4-Ca_{1,25}(Ce_{0,75}Th_{0,03})(Mg_{0,54}Fe \stackrel{2*}{}_{0,33}Mn_{0,01})(Al_{2,05}Fe \stackrel{3+}{}_{0,16}Ti_{0,01})Si_{2,89}O_{12}OH_{1,14}. \end{split}$$

Помимо изовалентного изоморфизма в позиции М(3), отмечаются гетерова-

лентные замещения в позициях A и M(1,2): Ca + Al \rightarrow Ce + Mg, Ca + 2(Al, Fe³⁺) \rightarrow Th + 2(Mg, Fe²⁺). Предполагается значительная роль замещения Al + O \rightarrow \rightarrow Mg + F. Содержание F увеличивается с увеличением его количества в ассоциярующих минералах гр. гумита: F = 0,18–0,27% в диссакисите с клиногумитом [1] 0,87 – в Fe³⁺-диссакисите-(Ce) с хондродитом [2] и 3,00–3,31 – в долласеите-(Ce) - норбергитом [2, 8].

Элементы-примеси – Ве, Ge, Ga [1, 7].

Иногда кристаллы зональны по составу [3]: внутренние зоны обогащены TR внешние – Са. Содержание СаО и TR₂O₃ 10,9 и 28,0% в ядре кристалла и 12,5 **в** 24,5% в краевой части соответственно.

Нахожд. Встречается в различных парагенезисах: на Алдане (Южная Якутия Федоровское и Эмельджакское месторождения) [7] в диопсид-флогопитовых в магнезиальных скарнах; во Франции (деп. Арьеж) [4] – в тальковых породах, в жеодах доломита с множеством редкоземельных минералов.

Обнаружен в Восточной Антарктиде на горе Белчен [1] в мраморах, в ассоциации с кальцитом, доломитом, клиногумитом, флогопитом, хлоритом, ильменитгейкилитом, шпинелью, пирротином и др. В Восточном Китае (пров. Джиансу) [3 наблюдался с Mg-ставролитом, паргаситом, хлоритом и клиноцоизитом, в гранаткорундовых породах с флогопитом, цоизитом и апатитом. В обоих месторождениях образовался при высоких температуре и давлении: 600 [1] и 800° [3], 7 и 11 кбар соответственно.

Общие признаки месторождений диссакисита-(Се) – породы обогащены Mg пс отношению к Fe, недонасыщены Si и относительно богаты Ca.

Разнов. По составу.

Субалюминиевый железистый диссакисит-(Се) subaluminous ferroan dissakisite-(Се).

Синон. Ортит.

Из месторождения Останмосса (район Норберг, Швеция) [1, 2], промежуточного состава между диссакисит-алланитом-(Се) и долласеитом-(Се): CaCe_{0,97}

 \times (Mg_{1,08}Fe²⁺_{0,43}Mn_{0,02})(Al_{1,16}Fe³⁺_{0,43})Si_{3,10}O_{11,57}(OH)_{1,16}F_{0,27}. См. хим. анализ 32 в т. III вып. 1, с. 757. Встречен в тремолитовых скарнах с кальцитом и хондродитом и в магнетитовой руде с церитом-Се и актинолитом.

Хромовый диссакисит-(Ce) – chromian dissakisite-(Ce [1, 5].

Синон. Хромовый алланит.

Наблюдался в Финляндии в слюдистых сланцах, перемежающихся с кварц-полевошпатовыми слоями, в ассоциации с Сг-флогопитом и Zn- и Сг-шпинелью Наиболее обогащенный Mg имеет формулу Ca_{1,06}Ce_{0,87}Mg_{0,64}Fe_{0,11}Cr_{0,29}Al_{1,95} × × Si₃O₁₂OH.

Межплоскостные	расстояния	диссакисита-	(Се) из	Антарктиды	[1]
----------------	------------	--------------	---------	------------	-----

 CuK_{α} -излучение, D = 114,6 мм

hkl	Ι	d(Å)	hki	1	d (Å)	1	d (Å)
001	40	9,1	301	20	2,368	40	1,636
100	20	8,1	123	40	2,177	30	1,590
101	5	5,12	221	40	2,137	30	1,560
011	2	4,85	314	5	2,120	10	1,531
111	10	4,59	023	5	2,081	5	I,460

h kl	1	d (Å)	h kl	1	d (Å)	I	d (Å)
112	5	3,77	203	2	2,070	20	1,423
211	50	3,50	41 ī	2	2,032	2	1,412
212	30	3,25		20	1,879	5	1,379
302	90	2,910		5	1,846	10	1,298
020	50	2,842		2	1,820	10	1,280
013	100	2,698		5	1,782	5	1,258
31Ĩ	60	2,622		5	1,750	5	1,194
202	20	2,559		5	1,698	5	1,158
104	10	2,495		2	1,689		
313	10	2,398		30	1,651		

Литература

I. Grew E.S., Essene E.J., Peacor D.R., Su Shu-Chun, Asami M. // Amer. Miner. 1991. Vol. 76, N 11/12. P. 1990.

2. Geijer P. // Sver. geol. unders. C. 1926-1927. N 343, bd. 20, N 4. S. 1.

3. Enami M., Zang Q. // Amer. Miner. 1988. Vol. 73, N 1/2. P. 48.

4. Moėlo Y., Choutier J.-P., Gilles C. // Bull. Soc. franç. miner. et cristallogr. 1974. Vol. 97, N 6. P. 521.

5. Treloar P.J., Charnley N.R. // Canad. Miner. 1987. Vol. 25, pt 3. P. 413.

5. Rouse R.C., Peacor D.R. // Ibid. 1993. Vol. 31, N 1. P. 153.

7 Хвостова В.А., Быкова А.В. // Тр. ИМГРЭ. 1961. Вып. 7. С. 130.

Reacor D.R., Dunn P.J. // Amer. Miner. 1988. Vol. 73, N 7/8. P. 838.

Долласент-(Ce) Dollaseite-(Ce) CaCeMg₂Al[Si₂O₇][SiO₄]F(OH)

Назван в честь д-ра У. Долласа и по составу р.з.э. [1].

Синон. Магнезиальный ортит, магнезиоортит [2] (см. т. III, вып. 1, с. 763), доласит (Семенов, 1991).

Характ. выдел. Массивные скопления, субидиоморфные кристаллы до 0,3 мм в лиаметре [1]; радиально-лучистые агрегаты [2].

Структ. и морф. крист. [1]. Монокл. с. $C_{2h}^2 - P2_1/m$. $a_0 = 8,934$, $b_0 = 5,721$, $c_0 = 10,176$ Å; $\beta = 114,31^{\circ}$ (по порошкограмме); $a_0: b_0: c_0 = 1,562: 1:1,778; Z = 2$.

В структуре [3] три октаэдрические позиции заняты: M(1) - Mg, $M(2) - A1 + Fe^{3+}$ (сл.), $M(3) - Mg + Fe^{2+}$. В полиэдре A(1) размещается Са, в большем по размеру A(2) – TR. F и OH распределяются упорядоченно в положениях O(4) и O(10) соответственно. Н-атом находится между O(4) и O(10) на расстояниях 1,88 и $\Omega.96$ Å соответственно, что указывает на наличие водородной связи типа J-H...F.

Средние межатомные расстояния (в Å) : A(1)-O = 2,375; A(2)-O = 2,523; M(1)-O = 2,028; M(2)-O = 1,902; M(3)-O = 2,131; Si(1)-O = 1,627; Si(2)-O = 1,623; Si(3)-O = 1,639.

Физ. св. [1]. Уд.в. 3,9. Цв. коричневый.

Микр. [2]. Плеохроизм в розовато-коричневых тонах. Двуосный (+). $n_g = 1,720-.733$, $n_m = 1,715-1,717$, $n_p = 1,710-1,715$; $n_g - n_p = 0,010-0,018$; $2V = 50^\circ$. Цвета интерференции голубые.

Хим. Теор. состав: CaO – 10,16; MgO – 14,61; Ce₂O₃ – 29,73; Al₂O₃ – 9,23; SiO₂ – 32,65; H₂O – 1,63; F – 3,44.

Анализ (микрозонд.) [1]: CaO – 9,2; MgO – 13,1; FeO – 3,3; Al₂O₃ – 8,9; Ce₂O₃ – 3.2; La₂O₃ – 6,0; Pr₂O₃ – 2,6; Nd₂O₃ – 6,0; Sm₂O₃ – 2,4; Gd₂O₃ – 2,1; SiO₂ – 32,4; F – 3.0; H₂O – 2,02*; –O = F₂ – 1,3; сумма 102,9.

*H₂O - по хим. анализу [2].

Эмпирическая формула (при пересчете на 3 Si): $(Ca_{0.91}Ce_{0.45}La_{0.20}Nd_{0.20} \times Pr_{0.09} Sm_{0.08} Gd_{0.06})_{1.99}$ (Mg_{1 81} Fe_{0.25})_{2,06} Al_{0.97} Si_{3,00} (OH)_{1.25} F_{0.88} O_{10.99}; упрощенная: CaCeMg₂AlSi₃O₁₁(OH)F.

См. также хим. анализ 33 в т. Ш, вып. 1, с. 757.

Нахожд. Встречен в контактово-метасоматических месторождениях Останмосса (район Норберг, Швеция) в ассоциации с церитом, тремолитом, норбергитом хондродитом, бастнезитом, кальцитом и магнетитом. На контакте с кальцитом образует субидиоморфные кристаллы [1, 2].

	CuK_{α} -излучение, Ni-фильтр, $D = 114,6$ мм											
hk!	1	d(Å)	hkl	1	d (Å)	1	d (Å)					
001	20	9,29	22 <u>1</u>	2	2,403	5	1,567					
100	10	8,25	22 2	2	2,323	1	1,483					
101	10	5,13	123	10	2,185	2	1,465					
011	5	4,87	403	20	2,150	5	1,430					
110	10	4,65	314	5	2,124	2	1,418					
112	5	3,77	023	2	2,089	2	1,404					
211	20	3,52	321	1	2,046	2	1,386					
201	15	3,26		5	1,887	5	1,302					
113	100	2.915		2	1,756	1	1,283					
020	30	2,852		1	1,730	2	1,229					
300	70	2,709		2	1,702	2	1,200					
202	5	2,576		5	1,659	2	1,164					
204	2	2,503		10	1,601	2	1,130					

Межплоскостные расстояния долласента-(Се) из Швеции [1]

Литература

1. Peacor D R., Dunn P.J. // Amer. Miner. 1988. Vol. 73, N 7/8. P. 838.

2. Geijer P. // Sver. geol. unders. C. 1926-1927. N 343, bd. 20, N 4. S. 1.

3.Соколова Е.В., Надежина Т.Н., Паутов Л.А. // Кристаллография. 1991. Т. 36, № 2. С. 330.

Христовит-(Ce) Khristovite-(Ce) CaCeMgMnAl[Si₂O₇][SiO₄]F(OH)

Назван в честь Е.В. Христова – геолога, исследователя Тянь-Шаня, и по главному редкоземельному элементу [1].

Характ. выдел. Удлиненные зерна ромбовидного сечения (до 1,5 мм длиной) [1; кристаллы до 0,3 мм в длину [2].

Структ. и морф. крист. [1, 2]. Монокл.с. (в [2] ошибочно указана гексаг.с. $P2_1/m-C_{2h}^2$. $a_0 = 8,903$, $b_0 = 5,748$, $c_0 = 10,107$ Å; $\beta = 113,41^\circ$; V = 477,6 Å³; $a_0 : b$: $c_0 = 1,549 : 1 : 1,754$; Z = 2.

Структура сходна с таковой долласеита-(Се) [3]. A(1)-позиция статистически заполнена Са и La, A(2) – Се и другими TR, M(1) – Mg, Fe, Cr, Ti, M(2) – Al, M(3) – Мп (фиг. 40). O(4)-позиция занята F и O. Атом H, располагаясь между O(4) и O(10). образует водородную связь типа O–H...F [2].

Кристаллохимическая формула с учетом данных микрозондового анализа $(Ca_{0,60} La_{0,20})_{0,80} (Ce_{0,50} La_{0,12} Nd_{0,15} Dy_{0,10} Pr_{0,05} Sm_{0,02})_{0,94} (Mg_{0,40} Fe_{0,15} Cr_{0,12} Ti_{0,12} Al_{0,12} \times V_{0,09})_{1,00} MnAlSi_{3}O_{11}(OH)(F_{0,63}O_{0,37})_{1,00}.$

Фиг. 40. Структура христовита-(Се) в проекции на плоскость (010) (по Соколовой и др.)

Средние межатомные расстояния (в Å): в полиэдрах A(1)-O = 2,33 (к.ч. = 6) и 2,59 (к.ч. = 9), A(2)-O = 2,70 (к.ч. = 10) и 2,75 (к.ч. = 12); в октаэдрах M(1)-O = 2,01, M(2)-O = 1,91, M(3)-O = 2,20; в тетраэдрах Si(1)-O = 1,63, Si(2)-O = 1,65, Si(3)-O = = 1,65; водородная связь: O(10)-H = 0,90, O(4), F - H = 1,98.

Кристаллы призматические, плохо ограненные. Наблюдались формы: (001), (102), (101) и (100).

Физ. св. [1]. Сп. не наблюдалась. Тв. 5. Уд.в. 4,05 (вычисл. 4,11). Цв. бурый, в толстых зернах темно-бурый. Бл. стеклянный, сильный. Прозрачен. Спектры пропускания в видимой области выявили сильную абсорбцию в интервале 400–500 нм, предпопожительно обусловленную наличием Mn²⁺.

Микр. [1]. Бурый. Плеохроизм сильный: по Ng – бурый, по Nm – темный, краснобурый, по Np – очень светлый, желтый.

 $Nm > Ng \gg Np$. Двуосный (-). Пл. опт. осей ориентирована поперек удлинения кристалла. На разрезах, перпендикулярных острой биссектрисе, Nm образует угол с направлением удлинения 1,5-3°. На разрезах, перпендикулярных тупой биссектрисе, угасание минерала прямое. $n_g = 1,803$, $n_m = 1,790$, $n_p = 1,773$; $n_g - n_p = 0,030$; 2V = 83°. Дисперсия средняя, r < v.

Хим. [1]. Анализ (микрозонд.):

	Сред- нее	Пределы коле- баний		Сред- нее	Пределы коле- баний
CaO	5,6	4,16,0	Dy ₂ O ₃	3,1	2,5-3,2
MgO	2,7	2,1-3,4	Pr ₂ O ₃	1,4	0,8-1,5
FeO	1,8	1,73,5	SiO ₂	29,9	28,0-33,7
MnO	11,8	11,6-16,8	TiO ₂	1,6	1,5-1,8
Al ₂ O ₃	9.5	8,6-10,5	F	2,0	1,52,5
V,0,	1,1	1,0-1,7	H ₂ O (вы-	1,5	
Cr ₂ O ₃	1,5	1,3-2,1	числ.)		
Ce ₂ O ₃	13,6	11,4-14,0	Сумма	100,6	
La_2O_3	8,7	8,6-8.8	$-0 = F_2$	0,8	
Nd ₂ O ₃	4,2	2,2-4,3	Сумма	99,8	
Sm ₂ O ₃	0,6	0,2-0,6	-		

Упрощенная эмпирическая формула: (Ca,La)Ce(Mg,Fe)MnAlSi₃O₁₁(OH)(F,O).

По составу и формуле минерал близок долласеиту-(Се) [3], отличаясь от него содержанием Мп.

Нахожд. [1]. Обнаружен в Юго-Восточном Тянь-Шане (Киргизия) в хр. Иныльчек, в гранат-биотит-кварцевых роговиках экзоконтакта массива субщелочных гранитов, несущих олово-вольфрамовое оруденение. Встречен в единичных образцах в родонитовом проявлении с преобладанием кварца, родонита, спессартина

и алабандина. Менее распространены родохрозит, барит, сонолит, аллеганит, фриделит, гюбнерит и гиалофан. В непосредственной ассоциации с христовитом-(Се) находятся родонит, тефроит, родохрозит, гиалофан, барит, гейтманит, гюбнерит и хлорсодержащий силикат марганца.

Отл. От сходных пьемонтита и долласеита-(Се) отличается химическим составом и распределением атомов по позициям, а также по показателям предомления.

	Fe-излучение, $D = 57,3$ мм								
hkl	1	d(Å)	hki	1	d(Å)	hkl	1	d (Å)	
001	2	9,32	201	1	3,28	311	1	2,19	
101	2	5,23	302;113	10	2,91	2 23	1	2,11	
T10;110	2	4,67	300;013;300	7	2,73		1	1,603	
111	1	3,83	303	8	2,63		1	1,437	
211	4	3,52	Ī 04	1	2,50		1	1,218	

Межплоскостные расстояния христовита-(Се) из Киргизии [1]

Литература

1. Паутов Л.А., Хворов П.В., Игнатенко К.И., Соколова Е.В., Надежина Т.Н. // Зап. ВМО. 1993. Ч. 122, вып. 3. С. 103.

2. Соколова Е.В., Надежина Т.Н., Паутов Л.А. // Кристаллография. 1991. Т. 36, № 2. С. 330.

3. Peacor D.R., Dunn P.J. // Amer. Miner. 1988. Vol. 73, N 7/8. P. 838.

Макфаллит Macfallite

Ca2Mn3³⁺[Si2O7][SiO4](OH)3

Назван в честь Макфалла – бывшего издателя "Чикаго трибюи", любителя-минералога, автора популярных книг о минералах, породах и полезных ископаемых [1].

Характ. выдел. Плотные массы, тонкозернистые и волокнистые агрегаты Кристаллы редки, игольчатой формы (длиной до 10 мм) [1, 2].

Структ. и морф. крист. Монокл. с. $C_{2h}^2 - P Z_1 / m$. $a_0 = 10,235$, $v_0 = 6,086$, $c_0 = 8,970$ Å; $\beta = 110,75^\circ$; $a_0 : b_0 : c_0 = 1,682 : 1 : 1,474$.

В структуре [3] присутствуют одиночные тетраэдры SiO₄ и диортогруппы $[Si_2O_7]$ (фиг. 41), которые соединяются через общие вершины с вытянутыми в направлении оси *с* цепочками MnO₄(OH)₂-октаэдров, связанных друг с другом общими ребрами. Кремнекислородные группы и цепочки октаэдров образуют слои, между которыми имеются Ca- и Mn-полиэдры (катионы находятся в семерной координации), также соединенные друг с другом общими ребрами.

Структурно близок сурсасситу (Флейшер, 1990).

Сходные структурные элементы – колонки соединенных по ребрам Мп-октаэдров – имеют руицит (с. 196) и ориентит (с. 192). У руицита они соединяются с группой [Si₄O₁₁(OH)₂], состоящей из четырех [SiO₄]-тетраэдров, у ориентита – с группой [Si₃O₁₀], состоящей из трех [SiO₄]-тетраэдров.

Средние межатомные расстояния (в Å) [3]: Mn(1)-O = 1,97; Mn(3)-O = 2,03: Mn(2)-O = 2,07; Ca(1)-O = 2,44; Ca(2)-O = 2,41; Si(1)-O = 1,64; Si(2)-O = 1,63; Si(3)-O = 1,65.

Характерно двойникование по (100), часто полисинтетическое [1].

Физ. св. Сп. по (001) совершенная. Тв. 5. Уд.в. 3,43. Цв. каштановый (игольчатые кристаллы), красно-коричневый (волокнистые агрегаты), розовый (тонкозернистые агрегаты) и шоколадно-коричневый (плотные массы). Черта коричневая с красноватым оттенком. Бл. шелковистый до алмазного [1].

Фиг. 41. Структура макфаллита (по Муру и др.) *а* – расположение тетраэдров вдоль [001]; *б* – проекция вдоль [010]. Цифры – высога атомов; штрих-пунктирные линии – связи Са–О

Микр. Плеохроизм: по Ng – темно-коричневый, по Nm – светло-коричневый, по Np – желтый. $Ng \parallel b$. Двуосный (–). $n_g = 1,815$, $n_m = 1,795$, $n_p = 1,773$; $n_g - n_p = 0,042$ 1]; 2V – оч. большой.

Хим. Предполагается [1], что V⁵⁺ и S⁶⁺ замещают Si⁴⁺, а Cu²⁺ – Mn³⁺ (анализы 1 и 2).

Анализы (1 – химический, 2, 3 – микрозонд.):

	1	2	3		1	2	3
Na ₂ O	0,03	_	_	Cr ₂ O ₃	0,03	-	-
K ₂ O	0,12	0,08	-	Mn ₂ O ₃	35,96	27,48	41,47
CaO	19,75	20,04	20,40	Fe ₂ O ₃	0,18	Не обн.	-
MgO	0,39	Не оби.	0,73	SiO ₂	32,04	31,83	33,88
MnO	0,69	-	_	TiO ₂	Сл.	_	-
CuO	1,13	1,54	-	so ₃	-	0,47	-
Al ₂ O ₃	3,95	7,93	1,03	H ₂ O	5,39	5,39*	-
V_2O_5	0,28	0,73	-	Сумма	99,94	95,49	97,51

* Методы определения ие указаны.

1 – из района Коппер Харбор, шт. Мичиган (США), аиал. Ито [1]; 2 – из района Коппер Харбор. шт. Мичиган (США), анал. Хервиг (среднее из 6 анализов) [1]; 3 – Восточная Лигурия (Италия) (среднее из 8 анализов) [2].

Диагн. исп. Слабо растворяется в 1 : 1 HCl при комнатной температуре.

Нахожд. Обнаружен в окисных марганцевых рудах в районе Коппер Харбор, округ Кивино, шт. Мичиган (США) [1]. Находится в тесной ассоциации с кальцитом, браунитом, пиролюзитом, манганитом, ориентитом. Вместе с другими марганцевыми минералами образовался в результате воздействия растворов вероятно, фумарольного происхождения) на жильный кальцит в условиях высокой активности кислорода при сравнительно низкой температуре и при недостатке элюминия.

В Восточной Лигурии (Италия) встречен [3] вместе с ориентитом в кварцевых и карбонатных жилах, секущих марганценосные (браунитовые) слои метасланцев офиолитовой серии. Образовался в результате низкотемпературной метаморфической перекристаллизации.

Отл. От пьемонтита отличается цветом, от ориентита – более интенсивным плеохроизмом, более высоким удельным весом [1].

Межплоскостные расстояния макфаллита из района Коппер Харбор, шт. Мичиган (США) [1]

	СиК _α -излучение												
hkl	1	d(Å)	hkl	1	d(Å)	hkl	I	d (Å)					
001	50	9,499*	312	20	2,667	502	10	1,754					
ī01	20	8,346	ī22	10	2,633	033	10	1,701					
100	25	7,803	022	10	2,556	116	10	1,663					
ī02	30	5,398	202	10	2,485	420	10	1,641					
101	10	4,961	2 22	15	2,449	214	10	1,636					
002	90	4,763*	ī 14	15	2,443	006	85	1,588*					
2 01	55	4,457	310	45	2,381		10	1,560					
2 02	10	4,175	314	5	2,269		15	1,556					
200	80	3,904	4 02	30	2,227		5	1,540					
ī03	15	3,616	014	20	2,214		5	1,515					
2 03	70	3,400	2 05	7 0	2,181		10	1.483					
210	5	3,269	Ī05	10	2,102		5	1,449					
201	25	3,116	321	30	2,091		5	1,394					
112	70	2,971	302	5	1,922		15	1,352					
301	25	2,895	005	30	1,905*		5	1,336					
3 03	15	2,787	024	5	1,870		10	1,271					
2 04	100	2,699	4 15	5	1,812								

* Интенсивности усиливаются за счет сп. по (001).

Литература

1. Moore P.B., Ito J., Steele I.M. // Miner. Mag. 1979. Vol. 43, N 327. P. 326.

2. Basso R., Lucchetti G., Palenzon A. // Neues Jb. Miner. Monatsh. 1989. H. 10. S. 455.

3. Moore P.B., Shen J., Araki T. // Amer. Miner. 1985. Vol. 70, N 1/2. P. 171.

СТРУКТУРА ТИПА ПУМПЕЛЛИИТА

ГРУППА ПУМПЕЛЛИИТА

Минералы, известные ранее под названиями "пумпеллиит" и "джулголдит" (т. III, вып. 1, с. 769), оказались смешанными по составу; каждое из этих названий объединяет несколько самостоятельных минеральных видов [1]. Их номенклатура (при сохранении группового названия "пумпеллиит") разработана Е. Пассаглиа и Дж. Готтарди [1], утверждена КНМ ММА и принята М. Флейшером (1990). Она базируется на анализе многочислеиных образцов, состав которых определяется распределением катионов по структурным позициям согласно формуле W₈X₄Y₈Z₁₂O_{56-n}(OH)₆ (на элементарную ячейку), где W – Ca, Na, K в семерной координации; X и Y – октаэдрические позиции: X – Mg, Fe²⁺, Mn, Al, Y – Fe³⁺, Al, Cr, Ti; Z – тетраэдрическая позиция – Si, Al [1].

Так же как и в ранее предложенной схеме П. Мура [2], основное название ("пумпеллиит" или

"джулголдит") определяется преобладанием Al или Fe³⁺ в позиции Y (Al – в пумпеллиитах, Fe³⁺ – в джулголдитах), но к этому основиому названию присоединяется в виде суффикса символ катиона, преобладающего в позиции X.

Номенклатура минералов группы пумпеллиита, по Е. Пассаглиа и Дж. Готтарди [1], с дополнением иовых минералов (отмечены звездочкой):

	x	Y		х	Y
Пумпеллиит-(Mg)	Mg	AI	Джулголдит-(Fe ²⁺)	Fe ²⁺	Fe ³⁺
Пумпеллиит-(Fe ²⁺)	Fe ²⁺	Al	Джулголдит-(Fe ³⁺)	Fe ³⁺	Fe ³⁺
Пумпеллиит-(Fe ³⁺)	Fe ³⁺	Al	Охотскит*	Mn ²⁺	Mn ³⁺
Пумпеллиит-(Mn ²⁺)*	Mn ²⁺	Al	Шуйскит*	Mg	Cr
Джулголдит-(Mg)	Mg	Fe ³⁺			

Минералы, выделенные Е. Пассаглиа и Дж. Готтарди, в отдельности не описаны. Их надо рассматривать (учитывая переменный состав пумпеллиитов и джулголдитов) как члены изоморфных рядов, ограниченных не только пределами пумпеллиитов и джулголдитов, но и между этими основными минералами. По М. Флейшеру (1990), такими изоморфными рядами являются: пумпеллиит-(Mg)пумпеллиит-(Fe²⁺); пумпеллиит-(Mg)-джулголдит-(Fe²⁺); пумпеллиит-(Fe²⁺).

Пумпеллиит-(Mn²⁺) [3], охотскит [4] и шуйскит [5] хорошо индивидуализированы и достаточно детально изучены.

	Сингония	a ₀	b_0	<i>c</i> 0	β	Уд.в.
Пумпеллият-(Mn ²⁺) Ca ₂ (Mn ²⁺ ,Mg) × ×(Al, Mn ³⁺ , Fe ³⁺) ₂ [Si ₂ O ₇]×	Монокл.	8,923	5,995	19,156	97° 08'	3,34
×[SiO ₄](OH) ₂ · 0,5H ₂ O						
Охотскит $Ca_2(Mn^{2+}, Mg) \times \times (Mn^{3+}, Al, Fe^{3+})_2[Si_2O_7] \times$	"	8,887	6,000	19,53	97 08	3,40
\times [SiO ₄](OH) ₂ ; Mn ³⁺ > Mn ²⁺						
Шуйскит Са ₂ (Mg, Al)×	"	8,897	5,843	19,41	98 0 0	3,24
\times (Cr, Al) ₂ [Si ₂ O ₇][SiO ₄] \times						

 \times (OH)₂ · H₂O; Cr > Al

В пумпеллиите-(Mn²⁺) в позиции Х преобладает Mn²⁺, в охотските в позиции Y – Mn³⁺, в шуйските в позиции Y – Cr. Между пумпеллиитом-(Mn²⁺) и охотскитом наблюдается непрерывная серия составов с переменным содержанием Mn²⁺ и Mn³⁺ [6].

Описан [7], но не выделен как новый минерал пумпеллиит, у которого в обеих позициях (X и Y) преобладает V^{3+} ; содержание в нем V_2O_3 достигает 25,7%.

Литература

- 1. Passaglia E., Gottardi G. // Canad. Miner. 1973. Vol. 12, pt 3. P. 219.
- 2. Moore P B. // Lithos. 1971. Vol. 4, N 2. P. 93.
- 3. Kato A., Matsubara S., Yamamoto R. // Bull. minér. 1981. Vol. 104, N 4. P. 396.
- 4. Togari K., Akasaka M. // Miner. Mag. 1987. Vol. 51, N 362. P. 611.
- 5. Иванов О.К., Архангельская В.А., Мирошникова Л.Д., Шилова Т.А. // Зап. ВМО. 1981. Ч. 110, вып. 4. С. 508.
- Dasgupta S., Chakraborti S., Sengupta P., Bhattacharya P.K., Banerjee H., Roy S. // Amer. Miner. 1991. Vol. 76, N 1/2. P. 241.
- 7. Pun Y., Fleet M.E. // Canad. Miner. 1992. Vol. 30, pt 1. P. 153.

Пумпеллиит-(Mn²⁺) Pumpellyite-(Mn²⁺) Ca₂(Mn²⁺, Mg)(Al, Mn³⁺, Fe³⁺)₂[Si₂O₇][SiO₄](OH)₂ · 0,5 H₂O

Назван по составу в соответствии с принятой номенклатурой [1].

Характ. выдел. Мелкие чешуйки, пластинки, волокнистые и радиальнолучистые агрегаты; очень мелкие (до 0,1 мм) зерна [1].

Структ. и морф. крист. Монокл. с. $C_{2h}^3 - A2/m$. Z = 4.

a ₀	<i>b</i> 0	<i>c</i> 0	β	$a_0: b_0: c_0$	Местона- хождение	Ссылка
8,923	5,995	19,156	97°08'	1,488 : 1 : 3,195	Япония	m
8,856	5,915	19,105	97,35°	1,497 : 1 : 3,230	Италия	[2]
8,98	6,00	19,19	98,1°	1.497 : 1 : 3.198	Инлия	[3]

Чешуйки удлинены по оси b, пластинки – по оси c.

Физ. св. Сп. по (001) совершенная. Тв. 5 (агрегатов). Уд.в. 3,34 (вычисл.). Цв. светло-серовато-розовый до коричневато-розового. Бл. стеклянный.

Микр. [1]. Плеохроизм: по Ng = Nm – буровато-желтый, по Np – светлорозовый. Np почти \perp (001). Удлинение (+). Двуосный (-). $n_g = 1,800$, $n_m = 1,795$, $n_p = = 1,752$; $2V = 40^{\circ}$. Дисперсия незаметна [1]. Для минерала из Италии [2]: $n_g = 1,710$, $n_m = 1,700-1,705$, $n_p = 1,695-1,700$.

Хим. Анализы (микрозонд.):

	1	2	3	4
Na ₂ O	0,01	0,12	0,10	Не обн.
MgO	0,89	2,12	1,99	1,94
CaO	20.69	21,18	21,20	21,71
FeO _{общ}	_	1,85	1,28	0,93
MnO	13,41*	9,22 ^{3*}	9,79 ^{3*}	10,163*
Mn ₂ O ₃	7,74*	-	_	_
Al ₂ O ₃	13,40	18,56	19,49	17,99
Fe ₂ O ₃	2,43*	_	-	_
SiO ₂	35,66	34,62	33,90	34,57
TiO ₂	0,02	Не оби.	Не обн.	Не обн.
H ₂ O ^{2*}	5,75	_	-	_
Сумма	100,00	87,67	87,75	87,30

 * Способ определения валентности Fe, соотношения Mn²⁺ и Mn³⁺ не указан.

^{2*} Определена по разности.

^{3*} Общий.

 нз браунитовой руды, месторождение Охиаи, преф. Яманаси (Япония) [1]; 2-4 – из габброидной брекчии, Восточная Лигурия (Италия) [2] Эмпирические формулы (расчет на 8 катионов):

 $1 - Ca_{1,89}(Mn_{0,97}^{2+}Mg_{0,11})(Al_{1,34}Mn_{0,50}^{3+}Fe_{0,16}^{3+})Si_{3,03}$ (6e3 yuera H₂O);

 $2 - Ca_{1,97} Na_{0,02} (Mn_{0,59}^{2+}Mg_{0,28} Fe_{0,14}^{2+}) (Al_{1,90} Mn_{0,09}^{3+}) Si_{3,01};$

 $3 - Ca_{1,95}Na_{0.02}(Mn_{0.66}^{2+}Mg_{0.29}Fe_{0.09}^{2+})(Al_{1,94}Mn_{0.06}^{3+})(Si_{2,94}Al_{0.05});$

 $4 - Ca_{2,04}(Mn_{0,61}^{2+}Mg_{0,25}Fe_{0,07}^{2+})(Al_{1,86}Mn_{0,14}^{3+})Si_{3,03}.$

См. также микрозондовые анализы пумпеллиита-(Mn²⁺) из метаморфизованных марі анцевых руд Говари Вадхона (Индия) [3].

Нахожд. Обнаружен на марганцевом месторождении Охиаи, преф. Яманаси (Япония) [1], в виде агрегатов очень мелких зерен и чещуек в массивных браунитовых рудах, сингенетичных метаморфизованным (ломонтит-пренит-пумпелтиитовая фация) пирокластическим породам миоценового возраста. Наблюдается вдоль границ зерен браунита. Находится в тесной ассоциации с пьемонтитом и клиноцоизитом.

В Восточной Лигурии (Италия) встречен [2] в габброидной метаморфизованной брекчии (пренит-пумпеллиитовая фация). Образует волокнистые, радиальнотучистые и мелкозернистые агрегаты; сопутствующие минералы – пренит, альбит, хлорит, кварц, гематит.

В Говари Вадхона, шт. Мадхья-Прадеш (Индия), найден [3] в метаморфизованных марганцевых рудах докембрийского возраста. Вместе с охотскитом, тиродитом, богатым марганцем пироксеном и пьемонтитом развит на контакте марганцевой руды с пегматитовыми дайками и кальцитовыми жилами; образует узкие каймы вокруг браунита и небольшие прожилки в нем.

Отл. От охотскита отличается характером плеохроизма и показателями претомления.

Межплоскостные расстояния пумпеллинта-(Мп²⁺) из месторождения Охиан (Япония) [1] Условия съемки не указаны

hkl	1	<i>d</i> (Å)	hkl	1	d(Å)
004;111	65	4,75	224	15	2,142
200	35	4,427	402	20	2,095
113	8	4,033	40 4	5	1,916
202	65	3,844	028	10	1,862
204;211	35ш	3,445	422	10	1,720
204	5	3,056	135	10	1,714
300;115;302;	100	2,930	2.0.10;1.1.11	25	1,669
302	90	2,725	424;235;037	30ш	1,613
304	55	2,654	0.0.12	20	1,584
024	50	2,533	335;2.0.12	25ш	1,555
0,17;117	30ш	2,460	426;515	35	1,490
222;313	35	2,356	240;433	1011I	1,420;1,419
208	45	2,205			

Литература

Kato A., Matsubara S., Yamamoto R. // Bull. minér. 1981. Vol. 104, N 4. P. 396.

2. Lucchetti G. // Neues Jb. Miner. Monatsh. 1983. H. 12. S. 563.

3. Dasgupta S., Chakraborti S., Sengupta P., Bhattacharya P.K., Banerjee H., Roy S. // Amer. Miner. 1991. Vol. 76, N 1/2. P. 241.

Охотскит Okhotskite

 $Ca_{2}(Mn^{2+}, Mg)(Mn^{3+}, Al, Fe^{3+})_{2}[Si_{2}O_{7}][SiO_{4}](OH)_{2}; Mn^{3+} > Mn^{2+}$

Назван по местонахождению – рудник, где обнаружен минерал, находится вблизи Охотского моря [1].

Характ. выдел. Агрегаты призматических кристаллов длиной до 0,2 мм.

Структ. и морф. крист. Монокл. с. $C_{2h}^3 - A2/m$. $a_0 = 8,887$, $b_0 = 6,000$, $c_0 = 19,53$ Å; $3 = 97,08^\circ$; $a_0 : b_0 : c_0 = 1,481 : 1 : 3,255; Z = 4$ [1].

Физ. св. Тв.6. Уд.в. 3,40 (вычисл.). Цв. темно-оранжевый. Черта светло-оран-

жевая. Бл. стеклянный. Прозрачный. Не флюоресцирует. Приведен мессбауэровский спектр [1].

Микр. Сильный плеохроизм: по Ng – желтый, по Nm = Np – темно-оранжевый. Двуосный (-). Nm = b, $cNg = 9-14^{\circ}$ в остром углу β . $n_g = 1,827$, $n_m = 1,820$, $n_p = =1,782$; $2V = 46^{\circ}$ [1].

Хим. Анализы (микрозонд.):

	1	2	3	4
Na ₂ O	0,25	_	0,01	0,04
K ₂ O	0,03	Не опр.	Не опр.	He onp.
MgO	2,08	1,64	0,26	0,38
CaO	20,11	21,19	21,08	19,77
MnO*	9,18	9,69	11,92	11,95
Al ₂ O ₃	4,49	6,14	2,15	1,60
Mn ₂ O ₃	16,69	18,32	20,96	25,93
$Fe_2O_3^{2*}$	6,03	0,90	4,48	-
SiO ₂	34,25	33,65	33,09	31,90
TiO ₂	0,09	0,03	0,19	0,01
H ₂ O ^{3*}	6,89	6,67	6,61	6,60
Сумма	100.00	98.23	100.75	98.18

* Способ определения соотношения Mn²⁺ и Mn³⁺ для анализа 1 не указан, для анализов 2–4 применен метод Е. Пассаглиа и Дж. Готтарди (ссылка [1] во Введении к группе пумпеллиита).

^{2*} Для анализа 1 валентность определена по мессбауэровскому спектру, для анализов 2-4 - общее.

3* Определена по ТГА.

1 – месторождение Кокурики, Хоккайдо, Япония [1]; 2-4 – месторождение Говари Вадхона, шт. Мадхья-Прадеш, Индия [2].

Эмпирические формулы (на 56 атомов О):

 $1 - (Ca_{7,63}Na_{0.17}K_{0.01})_{7,81}(Mn_{2,75}^{2+}Mg_{1,10})_{3,85}(Mn_{4,50}^{3+}Al_{1,87}Fe_{1,61}^{3+}Ti_{0,02})_{8,00}Si_{12,13}O_{39,71}(OH)_{16,29};$

 $2-Ca_{8,16}(Mn_{2,81}^{2+}Mg_{0,88})_{3,69}(Mn_{5,15}^{3+}Al_{2,60}Fe_{0,24}^{3+})_{7,99}Si_{12,09}O_{40,10}(OH)_{15,90};$

 $3-Ca_{8,19}(Mn_{3,66}^{2+}Mg_{0,14})_{3,80}(Mn_{5,78}^{3+}Al_{0,92}Fe_{1,24}^{3+}Ti_{0,05})_{7,99}Si_{12}O_{40,00}(OH)_{16};$

 $4 - (Ca_{7,93}Na_{0,03})_{7,96}(Mn_{3,79}^{2+}Mg_{0,21})_{4,00}(Mn_{7,39}^{3+}Al_{0,71})_{8,10}(Si_{11,95}Al_{0,10})_{12,05}O_{40,28}(OH)_{15,72}.$

Нахожд. Установлен на месторождении Кокурики, Хоккайдо (Япония), в стратифицированных марганецсодержащих гематитовых рудах, претерпевших зеленосланцевую стадию метаморфизма. Находится в прожилках, секущих гематитовые руды, в ассоциации с кварцем, пьемонтитом, неотокитом, бементитом, фторапатитом [1].

На месторождении Говари Вадхона, шт. Мадхья-Прадеш (Индия), присутствует в марганцевых рудах, прошедших амфиболитовую стадию метаморфизма, на контакте с пегматитовыми дайками и кальцитовыми жилами. Тесно ассоциирует с браунитом, калиевым полевым шпатом, кальцитом, биксбиитом, флогопитом, диопсидом, пумпеллиитом-(Mn²⁺) [2].

Межплоскостные расстояния охотскита из месторождения Кокурики (Япония) [1]

СиК_а-излучение

hkl	1	<i>d</i> (Å)	hkl	1	d(Å)	hkl	1	<i>d</i> (Å)
004	60	4,76	024	45	2,553	028	20	1,873
104	30	4,43	017	10	2,511	317	45	1,815
104	15	3,96	215	20	2,500	233	10	1,724
202	70	3,87	ī17	10	2,491	228	25	1,669

Шуйскит								
hki	I	d(Å)	hkl	1	d(Å)	hki	ı	<i>d</i> (Å)
113	15	3,84	304	45	2.384	331	30	1,636
211	25	3,43	222	30	2,376	333	20	1,627
204	20	3,093	402	30	2,214	· 419	15	1,588
020	15	3,025	026	40	2,197	335	20	1,561
115	100	2,961	126	25	2,164	328	15	1,514
022	25	2,879	320	30	2,096	040	15	1,512
302	70	2,720	404;415	20	1,915	426	25	1,492
3 04	45	2,665	413	10	1,906			

Литература

1. Togari K., Akasaka M. // Miner. Mag. 1987. Vol. 51, N 362. P. 611.

2. Dasgupta S., Chakraborti S., Sengupta P., Bhattacharya P.K., Banerjee H., Roy S. // Amer. Miner. 1991. Vol. 76, N 1/2. P. 241.

Шуйскит Shuiskite

$Ca_2(Mg, Al)(Cr, Al)_2[Si_2O_7][SiO_4](OH)_2 \cdot H_2O; Cr > Al$

Назван по имени литолога В.П. Шуйского [1].

Синон. Хромовый пумпеллиит - chromian pumpellyite [2].

Характ. выдел. Призматически-зернистые, радиально-лучистые, параллельнотистовые агрегаты. Кристаллы и зерна до 6 мм.

Структ. и морф. крист. Монокл. с. $C_{2h}^3 - A2/m \cdot a_0 = 8,897$, $b_0 = 5,843$, $c_0 = = 19,41$ Å; $\beta = 98^\circ$; $a_0 : b_0 : c_0 = 1,523 : 1 : 3,322$; Z = 4 [1].

Кристаллы длиннопризматические, игольчатые. Грани часто искривлены и исштрихованы. На измеренных кристаллах грани не индексированы [2].

N грани	φ	ρ	N грани	φ	ρ
1	0°04'	89°58'	4	134°55'	89°56'
2	81 44	89 57	5	24	38 17
3	29 47	90 01	6	172	38 30

Отмечаются двойники [3].

Физ. св. Сп. по (001) совершенная. Тв. около 6. Уд.в. 3,24. Цв. в агрегате темно-коричневый с фиолетовым оттенком; под бинокуляром в направлении удлинения – черный, черно-фиолетовый, поперек удлинения – светло-фиолетовый, грязно-фиолетовый с коричневым оттенком. Черта светло-коричневая с зеленым оттенком. В мелких зернах прозрачен. Бл. стеклянный. От немагнитного до среднемагнитного.

Микр. Сильный плеохроизм: по Ng – темно-фиолетовый, по Nm – желтоватозеленый, по Np – фиолетово-синий. Двуосный (–). В разрезах $||NgNp| cNg \approx 0^{\circ}$; в разрезах $\perp Np cNg = 3,5-9,5^{\circ}$. Удлинение (+). $n_g = 1,769-1,775$, $n_m = 1,762-1,772$, $n_p = 1,725-1,733$; $n_g - n_p = 0,040-0,044$. В густо- и черно-фиолетовых зернах $n_g = 1,759$, $n_n = 1,733$ до 1,720; $2V = 40-50^{\circ}$. Дисперсия сильная, r < v.

Хим. В массиве Рош Нуар (Франция) описаны хромовые пумпеллииты с переменным содержанием $Cr_2O_3 = 9,32-26,48\%$) [2]. Очевидно, часть их, с высоким содержанием Cr_2O_3 , относится к шуйскиту, а с низким содержанием Cr_2O_3 является промежуточными членами изоморфного ряда шуйскит–пумпеллиит-(Mg). Сюда же относится хромовый пумпеллиит из района Фускальдо, Калабрия (Италия), с 4,5% Cr_2O_3 [4].

1 11144			Mie, 5 Mintp	030114.).			
	1	2	3		1	2	3
Na ₂ O	0,19	0,21	Не опр.	Cr ₂ O ₃	19,34	28,64	26,48
К ₂ О	0,22	0,06	"	Fe ₂ O ₃	1,65	1,57	-
MgO	5,07	5,10	2,99	SiO ₂	31,42	33,57	34,60
CaO	21,00	18,25	18,25	TiO ₂	0,65	0,42	Не опр.
MnO	Сл.	Сл.	0 ,6 6	H_2O^+	7,03	3,77	••
FeO	-	-	1,69*	H ₂ O ⁻	0,50	<u> </u>	
Al ₂ O ₃	12,75	8.19	9,05	Сумма	99,82	99,78	93,72**

Описана маловодная разновидность шуйскита из Сарановского рудника [3] – H₂O почти в 2 раза меньше, чем у минерала из Бисерского месторождения.

* Общее.

** В оригинале сумма 92,71.

1 – шуйскит, Бисерское месторождение, Урал, анал. Архангельская [1]; 2 – маловодный шуйскит, Сарановское месторождение, Урал, анал. Архангельская [3]; 3 – хромовый пумпеллиит, массив Рош Нуар (Франция) [2].

Эмпирические формулы для шуйскита (для ан. 1- на 16 катионов, для ан. 2 - 56 атомов О):

 $1 - (Ca_{3,82}K_{0,05}Na_{0,06})_{3,93}(Mg_{1,28}Fe_{0,21}^{3*}Al_{0,51})_{2,00}(Cr_{2,60}Ti_{0,08}Al_{1,39})_{4,07}(Si_{5,34}Al_{0,6})_{6,00}O_{22,00}(OH)_{4,00} \times (1-1)^{10} + (1-1)^{$

×1,97 H₂O;

 $2 - (Ca_{6.95}Na_{0.15}K_{0.03})_{7,13}(Mg_{2,70}Al_{3,36}Fe_{0,47}^{3+})_{6,53}(Cr_{8.05}Ti_{0.11})_{8,16}(Si_{11,93}Al_{0.07})_{12,00}O_{47,06}(OH)_{8,94}.$

Повед. при нагр. На кривой нагревания имеются два экзотермических (при 390 и 1000°) и один эндотермический (при 830°) эффекты [1]. У маловодного шуйскита присутствует слабый эндотермический эффект при 275° и четкий экзотермический пик при 900° [3].

Нахожд. Обнаружен на Урале [1, 3] в хромитовых рудах Бисерского месторождения и Сарановского рудника. Выполняет трещины в руде. Тесно ассоциирует с уваровитом, а также с ярко-розовым хлоритом, редко – с хромсодержащим титанитом. Образуется в гидротермальных, сравнительно высокотемпературных (500-600°) условиях [1].

В офиолитовом массиве Рош Нуар (Франция) [2] описан хромовый пумпеллиит. Офиолиты вместе с включенными в них габбровыми брекчиями претерпели метаморфизм фации голубых сланцев (высокое давление и низкая температура). Находится в ассоциации с хромсодержащим жадеитом, фенгитом и лавсонитом.

Межплоскостные расстояния шуйскита из Бисерского месторождения, Урал [1]

 FeK_{α} -излучение, D = 57,3 мм

hkl	1	d(Å)	hki	1	d(Å)	1	<i>d</i> (Å)
004	1	4,75		1,5	1,881	2	1,261
202	1	4,18	028	1,5	1,857	2	1,248
202	2	3,83		1,5	1,719	2	1,236
115;300	9	2,90	0.0.12	10	1,593	2	1,220
206	7	2,73		1,5	1,577	2	1,105
311	5	2,64	2.2.10	3	1,560	4	1,090
024	5ш	2,52		2	1,539	3	1,076
117;2.0.10	5	2,46	408	3	1,506	3	1,059
222	3	2,34		8	1,487	2	1,048
208	4	2,22		4ш	1,462	2	1,035

hkl	I	d(Å)	1	d(Å)	1	<i>d</i> (Å)
402	1	2,17	1	1,409	2	1,024
	4	2,12	1,5	1,371	3	1,010
402	3	2,07	1	1,350	1	1,005
	1	2,007	1	1,320	1	0,998
	1	1,929	4	1,304		

Литература

Иванов О.К., Архангельская В.А., Мирошникова Л.Д., Шилова Т.А. // Зап. ВМО. 1981. Ч. 110, вып. 4. С. 508.

2. Mevel C., Kienast J B. // Miner. Mag. 1980. Vol. 43, N 332. P. 979,

3. Иванов О.К., Кайнов В.И., Малиновский Ю.А. // Зап. ВМО. 1985. Ч. 114, вып. 1. С. 49.

-. Roever E.W.F.de // Proc. konkl. nederl. Acad. wetensch. B. 1970. Vol. 73, N 5. P. 585.

СТРУКТУРА ТИПА КВЕЙТИТА

	Сингония	<i>a</i> ₀	<i>b</i> 0	c_0	β	Уд. в.
Квейтит Pb ₄ Zn ₂ [Si ₂ O ₇] [SiO ₄] (SO ₄)	Монокл.	11,362	5,266	12,655	108,16°	6,07

Квейтит Queitite Pb₄Zn₂[Si₂O₇] [SiO₄] (SO₄)

Назван в честь К. Квейта, исследователя вторичных руд месторождения Цумеб, Юго-Западная Африка [1].

Характ. выдел. Радиально-лучистые агрегаты таблитчатых кристаллов размером $10 \times 3 \times 0.5$ мм.

Структ. и морф. крист. Монокл. с. $P2_1$ [2] (возможна $P2_1/m$ [1]). $a_0 = 11,362, b_0 = 5,266, c_0 = 12,655$ Å; $a_0 : b_0 : c_0 = 2,1576 : 1 : 2,4031; \beta = 108,16^\circ; V = 719,3$ Å³; Z = 2 [1, 2].

В структуре [2] участвуют деформированные XO₄-тетраэдры с X – Si, S, Zn, полиэдры Pb с к.ч. = 8 и 9.

Основу структуры составляют неправильные пятичленные кольца из двух тетраэдров ZnO, имеющих по одной общей вершине с одиночным тетраэдром [SiO₄] с одной стороны и сдвоенными тетраэдрами группы [Si₂O₇] – с другой. Свободные вершины тетраэдров соединяют кольца в направлении оси *b* в слои, параллельные плоскости (010) (фиг. 42, *a*), а по оси *c* – в пакеты слоев (см. фиг. 42, *б*) состава Zn₂Si₃O₁₁. Слои из пятичленных колец связаны вдоль оси *c* полиэдрами ионов Pb²⁺.

Межатомные расстояния (в Å): в тетраэдрах Si-O = 1,60-1,66, S-O = 1,47-1,50 (по данным ИК-спектров 1,48) [3], Zn-O = 1,96; в координационных полиэдрах Pb-O = 2,71-2,92.

Кристаллы таблитчатые по (001), удлинены по оси *b*. Наиболее развитые формы (001), (101), (112) и (110). Двойники по (100), реже по (001).

Физ. св. Сп. очень слабая по (010) и (001). Тв. 4. Уд.в. 6,07 (вычисл.). Бесцветный или бледно-желтый. Прозрачный. В ИК-спектре [3] проявлены полосы поглощения 1077, 1062 и 1038 см⁻¹, отвечающие валентным колебаниям связей)—Si—O; 956, 928, 874 и 828 см⁻¹ – колебаниям связей SiO-тетраздра. Деформалонным колебаниям связей Si—O₄ отвечает дублет 656 и 620 см⁻¹, мостиковых

a – проекция на (010); прерывистые линии – связи Рb с атомами O, лежащими выше и ниже плоскости рисунка; δ – проекция на (100); фрагмент структуры при $x \approx 0$; цифры – высота атомов
связей О–Si–O–полоса поглощения 592 см⁻¹, длинной связи Si–O₄ – интенсивные полосы поглощения 512 и 486 см⁻¹. Валентным колебаниям самой слабой связи в структуре (Zn–O₄) соответствует полоса 446 см⁻¹. Полосы, отражающие колебания связей Pb–O в интервале частот 4000–400 см⁻¹, отсутствуют из-за высокой координации ионов Pb²⁺ (к.ч.=8 и 9). Полоса поглощения 1168 см⁻¹ отвечает валентным колебаниям связей S–O₄.

Микр. [1]. Двуосный (-). Ng = a, Np = b, $n_g = 1,903$, $n_m = 1,901$, $n_p = 1,899$; $n_g - n_p = 0,004$. Цвета интерференции аномальные. $2V = 90^\circ$. В плоскости (010) $aNg = 0.40^\circ$ в зависимости от плины волны.

Хим. Теор. состав: ZnO – 12,37; PbO – 67,84; SiO₂ – 13,70; SO₃ – 6,09. Анализы (микрозонд., 2 кристалла) [1]: ZnO – 12,37 и 12,97; PbO – 67, 10 и 66,71; SiO₂ – 14,33 и 14,52; SO₃ – 6,06 и 6,04; CaO, MgO, FeO – следы; сумма 99,86–100,24 (анал. Хесс).

Эмпирическая формула (на 15 атомов О): Pb_{3,87}Zn_{2,01}Si_{3,10}S_{0,98}O₁₅ или Pb₄Zn₂Si₉SO₁₅.

Нахожд. Вторичный минерал частично измененных галенитовых руд со сфалеритом и теннантитом зоны окисления рудника Цумеб, развитой по контакту с вмещающими породами. Находится в ассоциации с аламозитом, ларсенитом, меланотекитом II генерации и более ранними кварцем, меланотекитом I генерации, виллемитом, ледлихитом.

Межплоскостные расстояния квейтита из месторождения Цумеб, Юго-Западная Афр	яка [1]
---	--------	---

hkl	1	d (Å)	hkl	1	d (Å)	hkl	1	d (Å)
102	¹ /2	6,06	310	3	2,97	160	4	1,892
201	1	5,60	212	3	2,93	511;420;314	5	1,884
200	2	5,39	113	¹ /2	2,186	016;016	5	1,873
110	4	4,73	203	5	2,82	106	4	1,866
111	1	4,61	313	1	2,74	502	2	1,854
103	4	4,19	020	5	2,63	125	1	1,818
112	4	3,99	021; 021	2	2,57	416;421	¹ /2	1,805
012;012	2	3,95	412	4	2,482	424	¹ /2	1,783
211	1	3,83	410,005	2	2,405	611	¹ /2	1,760
210	5	3,77	220	2	2,363	131;610	1	1,704
203	1	3,62	500	3	2,156	117	1	1,691
300	5	3,59	322	1	2,133	032;032	2	1,684

FeK₀-излучение, D = 57,3 мм

Литература

1. Keller P., Dunn P.J., Hess H. // Neues Jb. Miner. Monatsh. 1979. H. 5. S. 203.

2. Hess H., Keller P. // Ztschr. Kristallogr. 1980. Bd. 151, H. 3/4. S. 287.

3. Povarennykh A.S., Keller P., Kristiansen R. // Canad. Miner. 1982. Vol. 20, N 4. P. 601.

СТРУКТУРА ТИПА ДЕЛЛАИТА

	Сингония	• •	b_0	<i>c</i> ₀	α	β	γ	Уд.в.
Деллант	Трикл.	6,825	6,931	12,907	90,68°	97 , 57 °	98,18°	2,94
Ca6[Si2O7][SiO4](OH)2								

* Для синтетической фазы.

Деллаит Dellaite

Ca₆[Si₂O₇][SiO₄](OH)₂

Назван по имени Делла М. Роя, снитезировавшего фазу Y цементного клинкера – предположительно структурного аналога делланта [1].

Характ. выдел. Неправильные зерна и уплощенные кристаллы, размером до 1–2 мм (Килхоан, Шотландия) [1].

Структур. и морф. крист. Трикл. с. $C_1^{l} - P\overline{1}$. $a_0 = 6,80$, $b_0 = 6,91$, $c_0 = 12,85$ Å; $\alpha = 88,42^{\circ}$; $a_0 : b_0 : c_0 = 0,984 : 1 : 1,860$ [1]; Z = 2. $a_0 = 6,825$, $b_0 = 6,931$, $c_0 = 12,907$ Å; $\alpha = 90,68$, $\beta = 97,57$, $\gamma = 98,18^{\circ}$; $a_0 : b_0 : c_0 = 0,956 : 1 : 1,826 - для синтетической фазы Y [2].$

В кристаллической структуре, расшифрованной для синтетической фазы Y [2, 3], четверки и пары Са-октаэдров соединены в непрерывные ленты через ОНгруппы. Пары Са-октаэдров связаны двумя ортогруппами [SiO₄], четверки Саоктаэдров – двумя диортогруппами [Si₂O₇]. Расстояния О–Н в группах ОН равны 0,813 и 0,887. Однако ионы ОН⁻ не образуют водородных связей, так как кратчайшее расстояние от них до соседних атомов О слишком велико: Н...О = 2,557 и 2,737 Å. Слой Са-полиэдров рассматривают как портландитоподобный с ориентацией протонов навстречу друг другу.

Кристаллы синтетической фазы Ү пластинчатые и призматические [4-6].

Физ. св. Микротвердость 30–400 кгс/мм². Уд.в. 2,94 [6]. ИК-спектр фазы Ү обнаруживает в структуре присутствие ОН–H₂O: 3559 и 3436 см⁻¹. Полоса поглощения 1449 см⁻¹ обусловлена ионами CO₃, примесь кальцита [5].

Микр. Двуосный (-). Удлинение (+) [1]. $n_g = 1,660, n_p = 1,650; 2V = 65^{\circ}$ (деллаит) [1]; для фазы Y $n_g = 1,664$ [5], $n_m = 1,661$ [5], $n_p = 1,650$. Двупреломление низкое [5]. $2V = 30-60^{\circ}$ [5, 6]. Двойники по (010) [6].

Хим. Теор. состав: CaO – 62,92; SiO₂ – 33,71; H₂O – 3,37.

Повед. при нагр. [6]. Дегидратация протекает постепенно, потеря веса отмечена при 550° и более значительная – при 650°. Продукт полной дегидратации при 810° – β-C₂S. Температура дегидратации близка таковой ксонотлита.

Нахожд. [1]. Найден в небольших количествах в поздних кальцитовых прожилках среди спёрритовых мраморов и гроссуляр-волластонитовых пород района Килхоан (Шотландия). Образуется в позднюю ретроградную стадию метаморфизма при высоком отношении CO₂/H₂O в тесной ассоциации с кальцитом, рустумитом, килхоанитом.

Искусств. Синтезирован [1,5] из смеси SiO₂ (гель) и Ca(OH)₂ при t > 800° и умеренном давлении. Начальный материал – ранкинит и гель трикальциевого силиката.

Образуется при отвердении силикатных минералов цементного клинкера [5].

Устойчив в широком интервале температур (350–790°), давления (175– 2500 атм) и концентраций NaOH (от 0 до 60%) [4]. Межилоскостные расстояния фазы У [6]

0 1

			Cun_{α} -	излуче	ние			
hkl	1	d (Å)	hkl	1	d(Å)	hkl	1	d(Å)
010	25	6,90	022	50	3,067	220	2	2,594
100			022	40	2,986	005	25	2,556
012	10	4,61	120	25	2,890	204	2	2,488
020	70	3,435	211;122	15	2,860	222	2	2,473
201;200	25	3,349	203:202	35	2,823	105;030	100	2,290
021	20	3,293	212	10	2,736	214;130	5	2,270
120	25	3,258	023;213	20	2,718	301	2	2,243
210	5	3,209	023; 123;114	15	2,634	301;032	5	2,135

Литература

1. Agrell S.O. // Miner. Mag. 1965. Vol. 34, N 268. P. 1.

2. Сафронов А.Н., Невский Н.Н., Илюхин В.В., Белов Н.В. // ПАН СССР. 1981. Т. 256. № 6. С. 1387.

3. Ганиев Р. М., Илюхин В.В., Белов Н.В. // Там же. 1970. Т. 190, № 4. С. 831.

4. Бакшутов В.С., Ганиев Р.М., Кузнецов В.А., Илюхин В.В., Белов Н.В. // Изв. АН СССР. Неорган материалы. 1968. Т. 4, № 12. С. 2146.

5. Roy Della M. // Amer. Miner. 1958, Vol. 43, N 11/12, P. 1009.

6. Glasser L.D., Roy D.M. // Ibid. 1959. Vol. 44, N 3/4. P. 447.

СТРУКТУРА ТИПА РУСТУМИТА

	Сингония	Пр. гр.	a_0	b ₀	c_0	β
Рустумит* Rustumite	Монокл.	Che C ⁶	7,62	18,55	15,51	104°20'
Ca ₁₀ [Si ₂ O ₇] ₂ [SiO ₄](OH) ₂ Cl ₂		C2/C-C 2h				

Ранее с формулой Ca₄[Si₂O₇](OH)₂ без структурных данных был условно включен в группу куспидина (т. Ш., вып. 1, с. 807).

В отличие от куспидина, в структуре которого имеется лишь [Si₂O₇]-группа, содержит два типа изолированных кремнекислородных анионов – [Si₂O₇] и [SiO₄]. Характерны бесконечные одиночные колонки и сдвоенные ленты из Са-полиздров [1], подобные таким же элементам в структурах тиллеита и куспидина. Однако в

Фиг. 43. Структура рустумита (по Бакакину и Белову). Проекция слоев А и Б на плоскость (010)

данной структуре они объединены в слои двух типов – A и B, перпендикулярные оси b (фиг. 43). Слои A состоят из спаренных лент Са-полиэдров тиллеитового типа, которые соединяются друг с другом выступающими вершинами полиэдров, между которыми располагаются одиночные тетраэдры [SiO₄]. Слои B представлены лентами из Са-полиэдров и Са-колонок, связанных через диортогруппы [Si₂O₇]. Межатомные расстояния (в Å): Si-O = 1,576–1,671; Са-O = 2,258–3,008.

Литература

1. Бакакин В.В., Белов Н.В. // ДАН СССР. 1979. Т. 248, N 6. С. 1332.

СТРУКТУРА ТИПА САМФОУЛЕРИТА

Самфоулерит	Сингония	<i>a</i> 0	<i>b</i> 0	<i>c</i> 0	β	Уд.в.
	Монокл.	9,086	17,992	14,586	104,86°	3,28
$Ca_{14}Mn_3Zn_2(Zn, Be)_2Be_6 \times$						

 $\times [Si_2O_7]_4[SiO_4]_6(OH, F)_6$

Самфоулерит Samfowlerite

Ca14Mn3Zn2(Zn, Be)2Be6[Si2O7]4[SiO4]6(OH, F)6

Назван в честь М.Д. Самуэля Фоулера (1779–1844), сыгравшего большую роль в освоении месторождения Франклин, шт. Нью-Джерси, США [1].

Характ. выдел. Кристаллы (до 0,05 мм в диаметре) и их агрегаты (0,5 мм).

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1/c$. $a_0 = 9,086$, $b_0 = 17,992$, $c_0 = 14,586$ Å; $\beta = 104,86^\circ$; Z = 2.

Новый структурный тип среди силикатов со смешанными изолированными Si-Oанионами [Si₂O₇] и [SiO₄]. Катионы Be²⁺ и Zn²⁺ расположены в тетраэдрах, Mn²⁺ – в октаэдрах, Ca²⁺ – в двухшапочных тригональных призмах. Тетраэдры Si, Be и Zn связаны друг с другом общими вершинами, образуя слой, параллельный плоскости (102) (фиг. 44, *a*). Анионы [Si₂O₇] и [SiO₄] смешанного тетраэдрического слоя разделены катионами Be²⁺ и Zn²⁺. Между слоями тетраэдров Si, Be и Zn расположены слои из полиэдров MnO₆ и CaO₈, сочлененные вершинами или ребрами

(см. фиг. 44, б). Содержание элементарной ячейки – $Ca_{28}Mn_6^{2+}Zn_4(Zn_{1,5}Be_{2,5})x$ ×Be₁₂[Si₂O₇]₈[SiO₄]₁₂(OH, F)₁₂.

Средние межатомные расстояния (в Å): Si-O = 1,619–1,630; Be-O = 1,62–1,64; Zn-O = 1,758 и 1,936; Mn-O = 2,200 и 2,239; Ca-O = 2,498–2,555.

Физ. св. Сп. не наблюдалась. Очень мягкий. Тв. около 3. Уд.в. 3,28 (вычисл. 3,31). Бесцветный (в кристаллах), белый (в агрегатах). Черта белая. Бл. стеклянный.

Флюоресцирует очень слабо красным цветом в ультрафиолетовом свете (в длинно- и коротковолновой областях).

Микр. Двуосный (-). Nm = b, $cNg = 29^{\circ}$, $aNp = 44^{\circ}$, $n_g = 1,681$, $n_m = 1,680$, $n_p = 1,674$; $n_g - n_p = 0,007$; $2V = 29^{\circ}$. Дисперсия не наблюдалась.

Хим. Анализ (электронный и ионный микрозонд): CaO – 34,1; MnO – 9,3; ZnO – 9,5; BeO – 5,6; SiO₂ – 36,9; F – 1,0, H₂O – 3,8 (по разности); –O = F₂ – 0,4; сумма 100,0.

Эмпирическая формула (расчет по параметрам элементарной ячейки и удельному весу): $Ca_{27,8}Mg_{0,2}Mn_{6,0}Zn_{5,3}Bc_{10,2}Si_{28,0}O_{113,0}F_{2,4}H_{19,3}$.

Фиг. 44. Структура самфоулерита (по Роузу и др.)

a – слой тетраэдров Si, Be, Zn; δ – проекция вдоль оси b; цифры – высота атомов (×100) Нахожд. Встречен на месторождении Франклин (шт. Нью-Джерси, США) в выстланных андрадитом пустотах в франклинит-виллемитовой руде вместе с баритом.

Межплоскостиые расстояния самфоулерита из месторождения Франклин, шт. Нью-Джерси (США) [1] СиК_л-нэлучение, D = 114,6 мм. Камеда Гандольфи

- u ,		· · · · · · · · · · · · · · · · · · ·		
1	d(Å)	hkl	1	d (Å)
2	7,735	351;323	2	2,184
3	4,923	106;420;164	2	2,132
2	4,515	246;155	2	2.064
5	4,228	421	2	2.036
2	3,827	0,27;174	2	1.959
10 ш	3,570	327;406;066	20	1.860
2	3,336	374	30	1.832
2	3,239	381;0.10.0; 382	20	1.803
2	3,054	138	5	1.744
100	2,863	4 46	5	1.721
40	2,771	1.10.2;038;328;530	20	1.689
50	2,653	551;502; 119;1.11.1	5	1.613
10	2,582	564;257	10	1.526
5	2,492	208;0.12.0;523	2	1.504
10	2,459		5	1.458
50	2,388		5	1.432
20	2,329		2	1.403
30	2,272		2	1,384
			5	1,303
	/ 2 3 2 5 2 10 ш 2 2 100 40 50 10 50 20 30	$\begin{array}{cccc} I & d(Å) \\ 2 & 7,735 \\ 3 & 4,923 \\ 2 & 4,515 \\ 5 & 4,228 \\ 2 & 3,827 \\ 10 & 11 & 3,570 \\ 2 & 3,336 \\ 2 & 3,239 \\ 2 & 3,054 \\ 100 & 2,863 \\ 40 & 2,771 \\ 50 & 2,653 \\ 100 & 2,863 \\ 40 & 2,771 \\ 50 & 2,653 \\ 10 & 2,582 \\ 5 & 2,492 \\ 10 & 2,459 \\ 50 & 2,388 \\ 20 & 2,329 \\ 30 & 2,272 \end{array}$	I $d(\hat{A})$ hkl 27,735351;32334,923106;420;16424,515246;15554,22842123,8270,27;17410 μ 3,570327;406;06623,33637423,239381;0.10.0; $\bar{3}82$ 23,0541381002,863446402,7711.10.2;038; $\bar{3}28;530$ 502,653551;502; $\bar{1}19;\bar{1}.11.1$ 102,582 $\bar{5}64;257$ 52,492208;0.12.0;523102,459502,388202,329302,272	I $d(\hat{A})$ hkl I27,735351;323234,923106;420;164224,515246;155254,228421223,8270,27;174210 m3,570327;406;0662023,3363743023,239381;0.10.0; $\bar{3}82$ 2023,05413851002,8634465402,7711.10.2;038; $\bar{3}28; 530$ 20502,653 $551; 502; 119; \bar{1}.11.1$ 5102,582 $564; 257$ 1052,492208; 0.12.0; 523 2102,45955502,3285202,3292302,2722

Литература

1. Rouse R.C., Peacor D.R., Dunn P.J., Su Shu-Chun, Chi P.H., Yeates H. // Canad. Miner. 1994. Vol. 32, pt 1. P. 43.

.

СИЛИКАТЫ С ИЗОЛИРОВАННЫМИ НЕКОЛЬЦЕВЫМИ ГРУППАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ (ОЛИГОСИЛИКАТЫ)

Ранее (т. III, вып. 2) выделялся раздел "Силикаты с линейными трехчленными группами кремнекислородных тетраэдров", который включал лишь два минерала: аминовит Ca₃(BeOH)₂[Si₃O₁₀] и киноит Cu₂Ca₂[Si₃O₁₀]. Другие минералы, содержащие наряду с линейными Si–O-группами радикалы [SiO₄] и [Si₂O₇], относились по более простому радикалу соответственно к орто- и диортосиликатам (т. III, вып. 1). Среди первых описаны: арденнит Mn₅Al₅(As, V)O₄[SiO₄][Si₂O₇]₂(OH)₂·2H₂O, зуниит Al₁₂(OH, F)₁₈[SiO₄][Al(SiO₄)₄]Cl, лейкофёницит Mn₇[SiO₄]₂[SiO₄(OH)₂]; к диортосиликатам был отнесен корнерупин Mg₃Al₆[Si₂O₇][(Al, Si)₂(Si,B)O₁₀]. Все эти минералы объединяет наличие в их структурах изолированных некольцевых групп Si–O-тетраэдров (помечены двумя звездочками).

В настоящее время открыт ряд новых минералов с группировками из трех и более тетраэдров, что позволяет выделить самостоятельный подкласс – олигосиликаты.

СИЛИКАТЫ С ТРЕХЧЛЕННЫМИ ГРУППАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа килхоанита Килхоанит^{*} Ca₆[Si₃O₁₀][SiO₄] Структура типа арденита Арденнит^{**} Mn₄(Al, Mg)₆[Si₃O₁₀][SiO₄]₂(As, V)O₄(OH)₆ Структура типа суринамита Суринамит^{*} Mg₃Al₄Be[Si₂AlO₁₀][SiO₄]O₄ Структура типа корнерупина Корнерупин^{**} Mg₃Al₆[Si₃O₁₀][Si₂O₇]O₃ Структура типа тирагаллоита Тирагаллоит Mn₄[Si₃O₉(OH)]AsO₃ Структура типа ориентита Ориентит^{*} Ca₂Mn²⁺Mn³⁺₂[Si₃O₁₀](OH)₄ Структура типа таленита Таленит-(Y)^{*} Y₃[Si₃O₁₀]F

СИЛИКАТЫ С ЧЕТЫРЕХЧЛЕННЫМИ ГРУППАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа акатореита Акатореит Mn₉²⁺Al₂[Si₄O₁₂(OH)]₂(OH)₆ Структура типа рущита

Руицит Ca₂Mn₂³⁺[Si₄O₁₁(OH)₂](OH)₂·2H₂O

СИЛИКАТЫ С ПЯТИЧЛЕННЫМИ ГРУППАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа медаита Медаит Mn₆V[Si₅O₁₅(OH)]O₃ Структура типа зуниита Зуниит^{**} Al₁₃[Si₅O₁₆](OH)₁₅₋₁₆O₄F₃₋₂Cl

СИЛИКАТЫ С ДЕФЕКТНЫМИ МОТИВАМИ ИЗ ДВУХ СВЯЗАННЫХ ПО РЕБРУ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа риббеита Риббеит Mn₅[(Si, □)O₄(OH)₂][SiO₄] Структура типа лейкофёницита Лейкофёницит^{**} Mn₇[SiO₄(OH)₂][SiO₄]₂ Структура типа вюнцпахкита Вюнцпахкит-(Y) (Y, TR)₈(Al₅□₃)[Si₁₀Al□₅O₃₄(OH)₁₄]

СИЛИКАТЫ С ТРЕХЧЛЕННЫМИ ГРУППАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА КИЛХОАНИТА

	Сингония	Пр.гр.	a ₀	b_0	c ₀
Килхоанит [*] Kilchoanite	Ромб.	Imam	11,42	5,09	21,95
Ca ₆ [Si ₃ O ₁₀][SiO ₄]		(Imcm, Ima2, I2cm)			

Без структурных данных с формулой Ca₃[Si₂O₇] был условно включен в группу астрофиллита (т. III, вып. 1, с. 658).

В структуре [1] выделяются оливиноподобные γ -Ca₂[SiO₄] фрагменты (фиг. 45, область q) и области, где наблюдаются трехчленные группы тетраэдров [Si₃O₁₀], между которыми находятся катионы Ca. Предполагается существование структуры с более высокой концентрацией оливиноподобной составляющей и кристаллохимической формулой Ca₈[Si₃O₁₀][SiO₄]₂. Межатомные расстояния Si-O = 1,57-1,71 Å.

Литература

1. Taylor H.F.W. // Miner. Mag. 1971. Vol. 38, N 293. P. 26.

СТРУКТУРА ТИПА СУРИНАМИТА

	Сингония	Пр. гр.	<i>a</i> 0	b_0	<i>c</i> 0	β
Суринамит [*] Surinamite	Монокл.	P2/n	9,916	11,384	9,631	109°30'
Mg ₃ Al ₄ Be[Si ₂ AlO ₁₀][SiO ₄]O ₄						

Без структурных данных с формулой (Al, Mg, Fe)₃(Si, Al)₂(O, OH)₈ был условно включен в группу энигматита (т. III, вып. 2, с. 584). Основу структуры составляют

Фиг. 45. Структура килхоанита в проекции *ac* (по теилору) **Фиг. 46.** Структура суринамита в проекции на плоскость (001) (по Муру и Аракн)

Фиг. 47. Структура тирагаллоита (по Грамалиюли и др.). Упаковки фрагментов арсеносили-• ьтной цепн в проекции вдоль оси *а* •

параллельные (001) ленты из Mg- и Al-октаэдров, связанных общими ребрами. Ш.рина ленты в направлении оси *а* изменяется следующим образом: 3 октаэдра–3 октаэдра–2 октаэдра (фиг. 46). Вдоль оси *b* ленты соединяются открыто разветвленными тетраэдрическими цепочками [T₅O₁₅], где T – Si, Al, Be. Характер заселения тетраэдров приводит к выделению изолированного Si-тетраэдра и группы из трех тетраэдров состава [Si₂AlO₁₀], в связи с чем структура суринамита попадает в подкласс островных некольцевых силикатов с n = 3. Ленты Mg, Al-октаэдров пс оси *с* связаны через дополнительный октаэдр состава (Mg, Be)O₆.

Межатомные расстояния (в Å): в тетраэдрах Si-O = 1,612-1,678, Be-O = 1,640-1,656, Al-O = 1,747-1,766; в октаэдрах Al-O = 1,871-2,101, (Mg, Be)-O = 2,065-2,347, (Mg, Al)-O = 1,865-2,097.

Литература

1. Moore P.B., Araki T. // Amer. Miner. 1983. Vol. 68, N 7/8, P. 804.

СТРУКТУРА ТИПА ТИРАГАЛЛОИТА

	Сингония	a_0	b_0	<i>c</i> ₀	β	Уд.в.
Тирагаллоит Mn ₄ [Si ₃ O ₉ (OH)] AsO ₃	Монокл	6,66	19 ,92	7,67	9 5,7°	3,84

Тирагаллоит Tiragalloite Mn₄[Si₃O₉(OH)]AsO₃

Назван в честь Паоло Тирагалло, любителя-минералога [1].

Характ. выдел. [1]. Зерна до 1,5 мм (обычно 0,2–0,4 мм), их агрегаты до 4–6 мм в диаметре.

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1/n$. $a_0 = 6,66$, $b_0 = 19,92$, $c_0 = 7,67$ Å; $\beta = 95,7^\circ$; $a_0 : b_0 : c_0 = 0,334 : 1 : 0,385$; V = 1012,6 Å³; Z = 4 [1,2]; $a_0 = 6,671$, $b_0 = 19,915$, $c_0 = 7,581$ Å; $\beta = 95,6^\circ$ [3].

Кремнекислородный радикал представлен трехчленной группой [Si₃O₁₀]. К ее крайнему тетраэдру присоединен анион AsO₄ (фиг. 47). По [2], такая четырехчленная группировка из трех SiO₄- и одного AsO₄-тетраэдров может рассматриваться как структурная единица – арсеносиликатный анион [Si₃AsO₁₂OH]. Между анионами размещаются катионы Mn (к.ч. = 6 и 7); дополнительное взаимодействие – за счет H-связи между атомами O из AsO₄ и OH-группой, локализованной на одной из вершин SiO₄-тетраэдра соседней четырехчленной тетраэдрической группировки.

Средние межатомные расстояния (в Å): Si–O = 1,627; Si–OH = 1,650; As–O = 1,693; Mn (к.ч. = 6)–O = 2,220–2,225; Mn (к.ч. = 7)–O = 2,370; O–H = 0,98.

Физ. св. Сп. совершенная по (100). Отдельность отчетливая ⊥удлинению. Уд.в. 3,84 (возможны включения медаита) (вычисл. 3,829 [1], 3,86 [2]). Цв. оранжевый, иногда коричневый. Бл. полуалмазный. Просвечивает в тонких сколах. прозрачен в мелких осколках.

Микр. [1]. Цв. оранжевый до желтого. Плеохроизм отсутствует. Двуосный (+). $Np \simeq a$, Nm = b, Ng = c. Угол Np с полюсом сп. = 5–6°. Удлинение (+). $n_g = 1,760$, $n_m = 1,751$, $n_p = 1,745$; $n_g - n_p = 0,015$; 2V = 38-46°. Дисперсия осей наклонная. Наблюдались двойники с двойниковой плоскостью, совпадающей с плоскостью спайности.

Хим. [1]. Теор. состав: MnO – 48,27; SiO₂ – 30,66, As₂O₅ – 19,54; H₂O – 1,53. Анализы (микрозонд., среднее из 29 анализов на 9 зернах):

MnO	48,34	As ₂ O ₅	16,07	
FeO	0,17	_V ₂ O ₅	1,67	_
CaO	0,75	Сумма	99,38	
SiO ₂	32,38			

Эмпирическая формула (на сумму катионов = 8): $(Mn_{3,91}Ca_{0,07}Fe_{0,01})_{4,00} \times \times [(As_{0,80}V_{0,11})_{0,91}Si_{3,09}O_{12}(OH)_{0,91}].$

Днаги. исп. [1]. Слабо растворим в HNO₃ с образованием бледно-розового раствора. Нерастворим в HCl и H₂SO₄.

Нахожд. Встречен в мелких прожилках (около 1 мм толщиной), секущих марганцевые руды месторождения Молинелло (Лигурия, Италия). Прожилки состоят в основном из кварца, браунита и следов серпентина [1, 3, 4]. Ассоциирует с кварцем, Мп-кальцитом, парсеттенситом, медаитом и пругими силикатами.

Изм. На контакте с Мп-кальцитом у зерен тирагаллоита наблюдается изменение в виде тонкого пористого ободка.

Межплоскостные расстояння тирагаллонта из Лигурии (Италии) [1]

			Cuiλα-r	ылучст	unc			
hkl	I	d(Å)	hk!	I	d (Å)	hk!	1	d(Å)
110	14	6,298	071; 241	25	2,657	272; 361; 312	10	1,822
^{~31;} 040	18	4,979	212; 202; 152	65	2,608	0.11.1; 044	28	1,756
:01; 130	21	4,779	241; 222	29	2,529	144; 124; 1.11.0	11	1,742
751; 022	34	3,514	0.62:171:013	∫45	2,499	342; 32 3 ; 253	10	1,718
210; 032; 122	100	3,258	0,02, 111, 015	\5 8	2,489	273; 1.11.1;	18	1,691
220	73	3,151	023 ; 103; 171	29	2,440	183; 2.10. 1		
211	25	3,118	222; 242; 072;	17	2,296	400; 0.12.0; 263	40	1,659
. 61; 1 51	72	3,034	113; 103			410; 343	27	1,654
221; 042; 122	72	3,003	301; 310	21	2,189	0.12.1; 244;	21	1,605
211	31	2,889	320; 270	22	2,157	292; 193; 381		
32; 2 3 1	30	2,846	143; 082	21	2,062	135; 442; 392	18	1,408
·61	40	2,782	280; 31 <u>2</u>	10	1,993			
:52	54	2,736	153	8	1.975			
231	31	2,695	34 2 ; 024; 192	16	1,853			

Литература

. Gramaccioli C.M., Griffin W.L., Mottana A. // Amer. Miner. 1980. Vol. 65, N 9/10. P. 947.

: Gramaccioli C.M., Pilati T., Liborio G. // Acta crystallogr. B. 1979. Vol. 35, pt 10. P. 2287.

Gramaccioli C.M., Griffin W.L., Mottana A. // Rend. Soc. ital. miner. e petrol. 1979. Vol. 35, fasc. 1. P. 145.

- Cortesogno L., Lucchetti G., Penco A.M. // Ibid. P. 151.

СТРУКТУРА ТИПА ОРИЕНТИТА

	Сингония	a_0	b_0	<i>c</i> ₀
Ориентит [*] Orientite Ca ₂ Mn ²⁺ Mn ³⁺ [Si ₃ O ₁₀](OH) ₄	Ромб.	9,074	19,130	6,121

Ранее относился к силикатам с одиночными кремнекислородными тетраэдрами и был условно помещен в группу монтичеллита (т. III, вып. 1, с. 222).

Согласно последним исследованиям [1], структура ориентита характеризуется наличием кремнекислородной группы $[Si_3O_{10}]$, состоящей из трех SiO_4 -тетраэдров (фиг. 48,*a*), которая через общие вершины соединена с вытянутыми в направления оси *с* цепочками $MnO_4(OH)_2$ -октаэдров, связанных общими ребрами (см. фиг. 48,*6*). Кремнекислородные группы и цепочки октаэдров образуют слои, между которыми располагаются Са- и Мл-полиэдры (катионы находятся в семерной координации).

Средние межатомные расстояния (в Å) [1]: Si(1)-O = 1,68; Si(2)-O = 1,63: Mn(1)-O = 2,02; Mn(2)-O = 2,13; Ca-O = 2,45.

Литература

1. Moore P.B., Shen J., Araki T. // Amer. Miner. 1985. Vol. 70, N 1/2. P. 171.

СТРУКТУРА ТИПА ТАЛЕНИТА

	Сингония	Пр.гр.	<i>a</i> 0	b 0	<i>c</i> ₀	β
Таленит-(Y) [*] Thalenite Y ₃ [Si ₃ O ₁₀]F	Монокл.	$C_{2h}^5 - P2_1/n$	7.218	11,134	10,379	94,24°

Описан без структурных данных с формулой Y₂[Si₂O₇] в группе тортвейтита (т. III, вып. 1, с. 581).

В структуре [1] чередуются параллельные (100) слои из Y-полиэдров и слоев смешанного состава. Последние построены из изолированных группировок [Si₃O₁₀], которые совместно с Y-полиэдром образуют четырехчленные кольца. Между слоями в плоскости *ас* выделяются шестичленные кольца из четырех Si–O-тетраэдров в двух Y-полиэдров в следующей последовательности в кольце: 2Si-Y-2Si-Y (фиг. 49,*a-в*).

Межатомные расстояния (в Å): Si-O = 1,61-1,66; Y-O = 2,33-2,59 - в семивершиннике, 2,22–2,94 – в восьмивершиннике.

Лит ература

1. Корнева А.Н., Баталиев Н.Г., Максимов Б.А., Илюхин В.В., Белов Н.В. // ДАН СССР. 1972. Т. 202. № 6. С. 1324.

СИЛИКАТЫ С ЧЕТЫРЕХЧЛЕННЫМИ ГРУППАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА АКАТОРЕИТА

	Сингония	a_0	b_0	<i>c</i> ₀	α	β	γ	Уд.в.
Акатореит Mn ²⁺ Al ₂ × ×[Si ₄ O ₁₂ (OH)] ₂ (OH) ₆	Трикл.	8,337	10,367	7,629	104,46°	93,81°	104,18°	3,48

Фиг. 48. Структура ориентита (по Муру и др.) *а* – расположение тетраэдров вдоль [100]; *б* – проекция вдоль [001]

Фиг. 49. Структура таленита-(Y) (по Корневой и др.)

Сетки из [Si₃O₁₀]-групп и Y-семивершинников в трех проекциях (*а--в*); выделены цепочки, параллельные [010]

7. Минералы т. 1V, вып. 3

Акатореит Akatoreite $Mn_9^{2+}Al_2[Si_4O_{12}(OH)]_2(OH)_6$

Назван по месту находки близ горы Акаторе-Крик на о-ве Южный, Новая Зеландия [1].

Характ. выдел. Призматические кристаллы длиной до 1 см, радиальные агрегаты [1].

Структ. и морф. крист. Трикл. с. $C_i^{l} - P\overline{1}$. $a_0 = 8,337$, $b_0 = 10,367$, $c_0 = 7,629$ Å; $\alpha = 104,46^{\circ}$, $\beta = 93,81^{\circ}$, $\gamma = 104,18^{\circ}$; $a_0 : b_0 : c_0 = 0,804 : 1:0,736$; V = 613,2 Å³; Z = 1[2]. По [1]: $a_0 = 8,344$, $b_0 = 10,358$, $c_0 = 7,627$ Å; $\alpha = 104^{\circ}29'$, $\beta = 93^{\circ}38'$, $\gamma = 103^{\circ}57'$; $a_0 : b_0 : c_0 = 0,8056 : 1:0,7363$; V = 614,03 Å³; Z = 1.

Кристаллическая структура [2] состоит из слоев Mn-, Al-октаэдров и Mnтетраэдров, соединенных в трехмерную систему через Si-тетраэдры. Последние образуют изолированные линейные группировки состава [Si₄O₁₂(OH)] (фиг. 50). Mnи Al-октаэдры образуют полосы шириной в 3 октаэдра, объединенные в слои парами Mn-тетраэдров [Mn₂O₆] (Mn-тетраэдры в парах связаны через общее ребро тетраэдров). Анализ межатомных связей показывает, что Mn и в октаэдрах и в тетраэдрах находится в двухвалентном состоянии.

Средние межатомные расстояния (в Å) [2]: Mn(1)-O = 2,199; Mn(2)-O = 2,192; Mn(3)-O = 2,209; Mn(4)-O = 2,222; Mn(5)-O = 2,057; Al-O = 1,917; Si(1)-O = 1,635; Si(2)-O = 1,618; Si(3)-O = 1,624; Si(4)-O = 1,622.

Кристаллы призматические, удлиненные вдоль оси *a*, со штриховкой параллельно *a*. Простые формы: (010), (011), (043), (031), (111), (133); преобладают грани в зоне (0*kl*).

Двойники с плоскостью двойникования ($0\overline{2}1$) и двойниковой осью \perp ($0\overline{2}1$) [1].

Физ. св. [1]. Сп. по (010) совершенная, по (012) несовершенная. Тв. 6. Уд.в. 3,48 (вычисл. 3,47). Цв. желто-оранжевый, оранжево-бурый. Бл. стеклянный.

Микр. [1]. Плеохроизм: по Ng – светло-канареечно-желтый, по Nm – светложелтый, по Np – бесцветный. Двуосный (+). Np: (010) = 58°, Nm: (010) = 30°, Ng: (010) = 13°. n_g = 1,720, n_m = 1,704, n_p = 1,698; n_g - n_p = 0,022; 2V = 65,5°.

Хим. Теор. состав: MnO – 49,39; Al₂O₃ –7,89; SiO₂ – 37,15; H₂O = 5,57.

Анализ (микрозонд.): MgO – 0,3; CaO – 0,2; MnO – 47,7; FeO^{*} – 1,0; Al₂O₃ – 8,3; SiO₂ – 36,4; TiO₂ – 0,03; H₂O^{**} – 6,21; сумма 100,14.

Железо определялось как FeO.

**Определено элементным анализатором "Перкин-Эльмер" на С, Н, N после плавления образца при 900°.

Эмпирическая формула (по параметрам элементарной ячейки и уд. весу): $(Mn_{8,61}Fe_{0,19}Mg_{0,09}Ca_{0,05})Al_{2,09}Si_{7,75}O_{23,17}(OH)_{8,83}.$

Нахожд. Найден в марганцевом рудопроявлении в 3 км к югу от горы Акаторе-Крик на о-ве Южный, Новая Зеландия [1]. В марганцовистом метароговике и карбонатных линзах вместе с родохрозитом образует тонкозернистые светло-бурые участки (до 2 см). В крупнокристаллическом родохрозите и пироксмангите встречается в виде радиально-лучистых скоплений оранжево-бурых призматических кристаллов длиной до 1 см; сопровождается небольшим количеством родонита, спессартина, кварца, гюбнерита и алабандина, а также вторичными минералами – вадом, псиломеланом, пиролюзитом и тодорокитом.

Образовался во время сложных деформаций на низкой ступени регионального метаморфизма пумпеллиит-актинолитовых фаций.

Фиг. 50. Структура акатореита в проекции вдоль оси а (по Барнсу и Хоуторну)

hkl	1	d(Å)	hkl	1	d(Å)	hkl	I	d(Å)
010	60	9,681	113; 103	5	2,253	501	5	1,5270
011	20	6,792	130	20	2,237	242	20	1,5019
III	30	5,027	141	80	2,214	341	5	1,4806
21	100	4,665	232	10	2,184	433	20	1,4558
<u>002</u>	20	3,662	241	10	2,135	521; 352	10	1,4424
021	40	3,603	332; 341	10	2,089	ī 70	10	1,4260
112	50	3,466	233	30	2,030	145; 115	30	1,4105
211	40	3,363	400	20	2,008	252; 364	10	1,3276
130	90	3,310	023; 421; 203	10	1,9728	173; 255	10	1,3139
.30	30	3,224	050	5	1,9324	552	10	1,3008
012	10	3,143	313	10	1,8854	074; 282	10	1,2846
ī 22	50	3,063	402; 142	10	1,8664	026	20	1,2679
230	10	2,917	332	10	1,8296	524	20	1,2568
231	50	2,866	3 23; 213	5	1,8108	216; 226	5	1,2333
1 31	50	2,844	214	20	1,7728	454; 623	5	1,1747
1 <u>3 1</u>	30	2,791	421	5	1,7365	474	10	1,1669
212	50	2,704	044	5	1,7015	435: 24 5	5	1.1504
122	20	2,660	333	20	1,6776	163	5	1,1455

Межплоскостные расстояния акаторента из Новой Зеландии [1] Fe-излучение. Мп-фильтр, D = 114,59 мм

-*

hkl	1	d (Å)	hkl	I	d(Å)	hkl	1	d(Å)
301	20	2,626	160; 142	40	1,6683	256;	10	1,1291
022	20	2,599	234; 251	20	1,6449	47 3	10	1,0797
141	20	2,573	114	20	1,6205	634	20	1,0676
202	5	2,543	133	20	1,6139	291; 217	20	1,0633
023; 113	30	2,468	500	5	1,6046	176; 446	10	1,0493
113	10	2,373	252	20	1,5904	625	10	1,0378
240; 131	10	2,366	531	20	1,5819	194	30	1,0283
312	5	2,278	243	30	1,5570	29 2	20	0,9993

Литература

1. Read P.B., Reay A. // Amer. Miner. 1971. Vol. 56, N 3/4. P. 416.

2. Burns P.C., Hawthorne F.C. // Canad. Miner. 1993. Vol. 31, pt 2, P. 321.

СТРУКТУРА ТИПА РУИЦИТА

	. Сингония	a_0	b_0	<i>c</i> ₀	β	Уд.в.
Рунцит	Монокл.	9,064	6.171	11,976	91,38°	2,9
$Ca_2Mn_2^{3+}[Si_4O_{11}(OH)_2](OH)_2 \cdot 2H_2O_{11}(OH)_2$)					

Руицит Ruizite $Ca_2Mn_2^{3+}[Si_4O_{11}(OH)_2](OH)_2 \cdot 2H_2O$

Назван в честь первооткрывательницы минерала Джо-Аны Руиц – коллекционера из Маммота, шт Аризона (США) [1].

Характ. выдел. Кристаллы (длиной до 0,2 мм), сферолиты (диаметром до 0,5 мм).

Структ. и морф. крист. Монокл. с. C2/m. $a_0 = 9,064$, $b_0 = 6,171$, $c_0 = 11,976$ Å: $\beta = 91,38^\circ$; $a_0 : b_0 : c_0 = 1,469 : 1 : 1,941$; Z = 2 [2].

Структура [2] характеризуется наличием кремнекислородных групп [Si₄O₁₁(OH)₂], состоящих из четырех [SiO₄]-тетраэдров (фиг. 51,*a*). Группы через общие вершины соединены с вытянутыми в направлении оси *b* цепочками MnO₄(OH)₂-октаэдров, связанных друг с другом общими ребрами (см. фиг. 51,*б*). Кремнекислородные группы и цепочки октаэдров образуют слои, между которыми имеются изолированные Са-полиэдры с катионами, находящимися в семерной координации.

Средние межатомные расстояния (в Å) [2]: Mn-O = 2,02; Ca-O = 2,46: Si(1)-O = 1,630; Si(2)-O = 1,612.

Кристаллы призматические (до игольчатых) по [010], иногда уплощенные по (100). Простые формы: a(100), d(011), q(102), $s(10\overline{2})$, p(111). Двойникование по (100) [1].

Физ. св. Тв. около 5. Уд.в. 2,9 (вычисл. 2,997). Цв. оранжевый до бурого. Черта светло-абрикосовая.

Микр. Плеохроизм в красных и желтых тонах. $Nm > Ng \gg Np$. Nmllb, $cNg = 44^{\circ}$ (в тупом углу β). Двуосный (-). $n_g = 1,734$, $n_m = 1,715$, $n_p = 1,663$; $n_g - n_p = 0,071$. $2V = 60,2^{\circ}$ (вычисл. 60,7°). Дисперсия r > v, сильная [1].

Хим. Теор. состав: CaO – 18,68; Mn₂O₃ – 26,29; SiO₂ – 40,03; H₂O – 15,00.

эиг. 51. Структура руицита (по Муру и др.)

а - расположение тетраэдров вдоль [100]; б - общий вид структуры в проекцин вдоль [010]

Анализ (микрохимический) [1]: CaO – 20,57; Mn₂O₃ – 23,42; SiO₂ – 39,14; H₂O – 6,0; сумма 99,13.

Эмпирическая формула $Ca_{1,06}Mn_{0,86}^{3+}Si_{1,89}O_{5,64}(OH)_{1,03} \cdot 2,06 H_2O.$

Диагн. исп. Быстро растворяется при нагревании в 1 : 1 HCl, 1 : 1 HNO₃ и 40%юй КОН.

Нахожд. Встречен в прожилках и на поверхности трещинок в известково-ситикатных породах, образовавшихся за счет известняков в процессе контактового зетаморфизма, на месторождении Кристмас, округ Гила, шт. Аризона (США). Накодится вместе с киноитом, апофиллитом, смектитом, джунитоитом. Продукт ретгоградного метаморфизма в условиях высокого кислородного потенциала.

			CI-излучение, D	- 114 M	M		
hkl	1	d(Å)	hkl	1	d (Å)	I	d (Å)
100	10	11,951	013	1	2,704	1	2,092
200	1	5,974	113	3	2,649	1	2,027
011	5	5,092	113	2	2,624	3	1,982
111	1	4,704	411	4	2,591	0,5	1,928
002	3	4,513	022	3111	2,547	0.5	1,911
102	7	4,189	402	4	2,519	1	1,891
300	3	3,982	122; 213	2	2,486	0,5ш	1,868
211	1	3,851	213	1	2,445	1	1,823
012; 202	4	3,644	500	0,5	2,392	2	1,782
202	1	3,563	222; 412	3	2,331	2	1,755
311	6	3,116	104	0.5	2.08	2	1,735
020; 212	1	3,084	511	0,5	2,175	2	1,708
120; 400	1	2,986	0,23; 511; 322	0,5	2,154	2	1,674
302	4	2,951		4	2,132	5	1,646
2 20	3	2,740					

Межплоскостные расстояния руицита из месторождения Кристмас (США) [1] Ст-изпучение D = 114 мм

Литература

1. Williams S A., Duggan M. // Miner. Mag. 1977. Vol. 41, N 320. P. 429.

2. Moore P.B., Shen J., Araki T. // Amer. Miner. 1985. Vol. 70, N 1/2. P. 171.

СИЛИКАТЫ С ПЯТИЧЛЕННЫМИ ГРУППАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА МЕДАИТА

	Сингония	<i>a</i> 0	b_0	<i>c</i> ₀	β	Уд.в.
Медаит	Монокл.	6,712	28,948	7,578	95,4°	3,70
MIGV[SIGUIS(UH)]U3						

Медант Medaite Mn₆V[Si₅O₁₅(OH)]O₃

Назван в память о любителе-минералоге из Турина (Италия) докторе Ф. Меда [1].

Характ. выдел. [1]. Зерна до 1,5, обычно 0,2-0,4 мм или их агрегаты до 7-10 мм в диаметре. Иногда пластинки.

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1/n$. $a_0 = 6,712$, $b_0 = 28,948$, $c_0 = 27,578$ Å; $\beta = 95,4^\circ$; $a_0: b_0: c_0 = 0,232: 1: 0,262$; V = 1465,9 Å³; Z = 4 [1-3].

Основу структуры представляют пятичленные группы [Si₅O₁₆]; к крайним тетраэдрам [SiO₄] присоединены тетраэдрические ионы VO₄ (фиг. 52). По [2], все шестичленные цепочки из пяти SiO₄- и одного VO₄-тетраэдра рассматриваются как ванадосиликатный анион [Si₅VO₁₈OH]. Между соседними анионными группировками размещены катионы Mn (к.ч. = 6 и 7). Дополнительное взаимодействие между ними осуществляется за счет H-связи между атомом O группы VO₄ и атомом H гидроксильной группы, локализованной на одной из свободных вершин [SiO₄]-тетраэдра. Согласно [2], общий мотив упаковки структурных единиц в медаите сходен с

Фиг. 52. Структура медаита (по Грамацциоли	И
др.). Упаковка фрагментов ванадоснликатной цег	и
вдоль оси а	

таковым в тирагаллоите (несмотря на различие в составе кремнекислородного радикала), что находит отражение в симметрии и размерах элементарных ячеек этих минералов.

Межатомные расстояния (в Å): Si-O = 1,625-1,636; V-O = 1,702; Mn (к.ч. = 6)-O = 2,191-2,222; Mn (к.ч. = = 7)-O = 2,340 и 2,399; O-H = 0,98.

Физ. св. Сп. совершенная по (100). Отдельность отчетливая ⊥ удлинению кристаллов. Уд.в. 3,70 (вычисл. 3,750 [1], 3.727 [2]). Цв. коричневато-красный [1], оранжево-желтый [2]. Бл. полуалмазный. В тонких сколах прозрачен, просвечивает в мелких зернах.

Микр. [1]. Плеохроизм слабый от темно- до светло-оранжевого. Двуосчый (+). $Np \simeq a$. Nm = b. $Ng \simeq c$. Угол ∇p с полюсом сп. 3°. Удлинение (+). $n_g =$ = 1,80, $n_m = 1,78$, $n_p = 1,77$; $n_g - n_p = 0,03$;

2V = 71° (вычисл.). Отмечено двойникование с двойниковой плоскостью, совпадаюцей со спайностью.

Хим. Теор. состав: MnO - 51,54; $SiO_2 - 36,36$; $V_2O_5 - 11,01$; $H_2O - 1,09$. Анализы (микрозонд., несколько зерен) [1]:

	Пределы колебаний	Среднее
MnO	49,13-51,13	49,94
FeO	0,05-0,64	0,31
CaO	1,13-1,46	1,30
SiO ₂	37,25-39,01	38,09
As ₂ O ₅	2,01-2,32	2,11
V ₂ O ₅	7,09-7,90	7,44
Сумма		99,19

Эмпирическая формула (на сумму катионов = 12): $(Mn_{5,77}Ca_{0,19}Fe_{0,03})_{5,99} \times \langle [(V_{0,67}As_{0,15})_{0,82}Si_{5,19}O_{18}(OH)_{0,82}].$

Диагн. исп. [1]. Нерастворим в воде, HCl и HNO₃.

Нахожд. Встречен как редкий спутник тирагаллоита в марганцевом месторожнии Молинелло (Лигурия, Италия) в прожилках (несколько мм толщиной), се-

• ущих черную руду, состоящих из кварца, браунита и следов серпентина [1, 4]. • Юычно включен в кварц. Ассоциирует с Мп-содержащим кальцитом. Часто обра-• ет одинаково ориентированные пластинки в тирагаллонте.

hkl	I	d (Å)	hkl	I	d (Å)	hkl	1	d(Å)
110	23	6,510	113; 092; 271	11	2,423	2.10.3; 224	22	1,703
120	8	6,070	182; 281; 043	10	2,381	410; 2.15.0;	15	1,667
041	12	5,221	290; 232	27	2,317	42 0		
101; 111	39	4,778	0.10.2; 290	18	2,298	420; 1.12.3;	29	1,660
061	7	4,064	063; 30 1	7	2,227	0.17.1		
210; 12 2 ; 042	27	3,321	301; 2.10.0;	43	2,192	3.11.1	9	1,634
081; 220	100	3,259	311			1.17.1;0.18.0;	11	1,605
052; 230	83	3,159	330; 301;	11	2,173	450		
221	70	3,097	0.11.2			333; 383;	25	1,575
231; 132	47	3,009	1.10.2; 340;	13	2,133	3.12.1		
211; 091	68	2,941	2 .10. T			3.10.3; 264	7	1,499
142; 211	34	2,902	2.11.1;1.13.1;	26	2,066	3,11.3;3.15.0;	8	1,458
231; 072	11	2,822	1.11.2			432		
072; 251	47	2,785	173; 31 2 ; 361	15	1,999	165; 2.18.1;	8	1,434
191; 072	27	2,747	034; 362;	16	1,851	452		
0.10.1	13	2,703	2.10.2			135; 2.17.2;	8	1,427
082; 202; 212	69	2,613	372; 381;	7	1,804	393		
1.10.1; 261;	29	2,533	1.15.1			462; 145;	17	1,413
232			154; 2.11.2;	7	1,770	2.18.1		
013; 271; 261	32	2,509	2.12. <u>2</u>			4.10.1; 155	8	1,401
023; 182;	15	2,485	0.16.1; 352;	15	1,759	2.18.2;4.11.1;	7	1,372
0.11.1			124			2.16.3		
092	21	2,447	144; 362; 333	8	1,720			

Межплоскостные расстояния меданта из Лигурии (Италия) [1]

МоК_α-излучение. Дифрактометр

Литература

1. Gramaccioli C.M., Griffin W.L., Mottana A. // Amer. Miner. 1982. Vol. 67, N 1/2. P. 85.

2. Gramaccioli C.M., Liborio G., Pilati T. // Acta crystallogr. B. 1981. Vol. 37, pt 11. P. 1972.

3. Gramaccioli C.M., Griffin W.L., Liborio G., Mottana A. // Rend. Soc. ital. Miner. e petrol. 1980. Vol. 36 fasc. 1. P. 159.

4. Cortesogno L., Lucchetti G., Penco A.M. // Ibid. 1979. Vol. 35, fasc. 1. P. 151.

СИЛИКАТЫ С ДЕФЕКТНЫМИ МОТИВАМИ ИЗ ДВУХ СВЯЗАННЫХ ПО РЕБРУ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Ранее дефектный мотив из сдвоенных по ребру тетраэдров был обнаружен лишь в лейкофениците, описанном в т. III, вып. 1, с. 324.

Появление новых примеров их структур (риббеит и вюнцпахкит) дает основание выделить эти минералы в отдельный отряд, завершающий подкласс олигосиликатов.

СТРУКТУРА ТИПА РИББЕИТА

Риббеит Ribbeite Mn₅[(Si, □)O₄(OH)₂][SiO₄]

Назван в честь американского минералога Пола Х. Риббе [1].

Характ. выдел. Зерна размером до 0,5 мм в диаметре, тонкозернистые агрегаты.

Структ. и морф. крист. Ромб. с. D_{2h}^{16} -Рпта. $a_0 = 10,732$, $b_0 = 15,672$, $c_0 = 4,811$ Å; V = 809,2 Å³; Z = 4 [2]. По данным [1] в иной установке: $a_0 = 4,799$, $b_0 = 10,742$, $c_0 = 15,70$ Å; Z = 4.

В структуре [2] имеются два типа Si-O-анионов (фиг. 53,*a*): 1) атомы Si(1) заполняют изолированные тетраэдры [SiO₄]; 2) атомы Si(2) статистически располагаются в сдвоенных по ребру тетраэдрах – один тетраэдр занят, другой пустой. Для сбалансирования зарядов 2 атома О в паре тетраэдров замещены ОНгруппами. Формула аниона [Si $\Box O_4(OH)_2$]. Катионы Mn²⁺ находятся на двух уровнях (z = 1,0 и 0,5) в центрах октаэдров MnO₆. Объединенные по ребрам октаэдры 'MnO₆] образуют зубчатые цепи, аналогичные тем, которые составляют основу структуры лейкофёницита [3].

Межатомные расстояния в изолированном Si(1)-тетраэдре и MnO₆-октаэдре (в \mathring{A}); Si(1)-O = 1,603-1,649 (среднее 1,625); Mn-O = 2,157-2,321 (среднее 2,231).

Геометрия сдвоенных тетраэдров и положения атомов H в них показаны на фиг. 53,6 (цифры под обозначением атомов указывают их *z*-координаты). Два тетраэдра в каждой паре связаны центром инверсии, расположенным в середине общего ребра O(1)...O(1)'. В случае, когда Si(2) (z = 0,58) отсутствует, позиции O(5) и O(6) заняты атомами кислорода OH-групп, атомы водорода которых образуют H-связи с O(1): H(1)-O(1) = 2,19; H(2)-O(1) = 2,04.

Межатомные расстояния Si(2)-O(1) и Si(2)-O(1)' вследствие статистической неупорядоченности атомов Si неравноценны: первое резко укорочено (1,522 Å), второе увеличено до 1,761 Å.

Диморфен с моноклинным аллеганитом. Неупорядоченность сдвоенных по ребру тетраэдров риббеита – следствие статистических операций скольжения ячейки аллеганита [4].

Физ. св. Сп. нет. Тв. около 5. Уд.в. 3,90 (вычисл. 3,84). Цв. розовый. Прозрачный. Черта светло-розовая. Бл. стеклянный.

Микр. Плеохроизм слабый: по Np и Nm – бесцветный, по Ng – светло-розовый; Ng > Np = Nm. Двуосный (+). Np = b, Nm = a, Ng = c. $n_g = 1,808$, $n_m = 1,792$; $n_p = 1,780$; $n_g - n_p = 0,028$; $2V = 80,1^{\circ}$ при 486 нм, 81,3° при 589 нм, 81,8° при 656 нм вычисл. 82,5°). Дисперсия средняя, r > v.

Хим. Теор. состав: MnO – 71,90; SiO₂ – 24,45; H₂O – 3,65. Анализ (микрозонд.): MgO – 5,2; CaO – 0,2; MnO – 65,1; FeO – 0,3; SiO₂ – 24,3; H₂O (по разности) – 4,9; сумма 100,00.

Эмпирическая формула: $(Mn_{4,30}Mg_{0,60}Fe_{0,02}Ca_{0,02})_{4,94}Si_{1,90}H_{2,54}O_{10}$. Идеальная формула $Mn_5(SiO_4)_2(OH)_2$ аналогична формуле аллеганита.

Нахожд. Встречен на месторождении Комбат (49 км южнее Цумеба, Намибия), залегающем в богатой Mn силикатно-карбонатной толще. Скопления риббеита приурочены к линзам (до 5×20 см) марганцевых оксидных руд. Тесно ассоциирует с аллеганитом, пирохроитом, шпинелями (якобситом и галакситом), хлоритом, макгозернитоподобным минералом и кальцитом.

Фнг. 53. Структура риббеита (по Фриду и др.)

а – проекция вдоль оси *с;* б – фрагмент структуры вдоль оси *с*; показаны позиции атомов Н групп ОН; цифры – высота атомов (×100)

Отл. От сходного аллеганита отличается отсутствием двойникования в шлифах.

костные расстояния	а риббента из К	омбат (Намі	нбня) [1]						
FeK $_{\alpha}$ -нзлучение, Mn-фильтр, $D = 114,6$ мм									
1	d (Å)	I	d (Å)						
5	5,08	2	1,587						
30	4,41	5	1,569						
2	4,23	30	1,554						
1	3,93	10	1,490						
30	3,83	20	1,460						
5	3,53	1	1,441						
5	3,49	5	1,415						
10	3,362	20	1,378						
5	3,256	20	1,304						
70	2,925	1	1,277						
80	2,873	2	1,2262						
70	2,821	5	1,2034						
	костные расстояния FeK _α -излучение, N 5 30 2 1 30 5 5 5 10 5 70 80 70	костные расстояния риббента из К FeK $_{\alpha}$ -излучение, Mn-фильтр, $D =$ I d(Å) 5 5,08 30 4,41 2 4,23 1 3,93 30 3,83 5 3,53 5 3,49 10 3,362 5 3,256 70 2,925 80 2,873 70 2,821	костные расстояния риббента из Комбат (Намя FeK $_{\alpha}$ -излучение, Mn-фильтр, $D = 114,6$ мм I d (Å) $I5 5,08 230 4,41 52 4,23 301 3,93 1030 3,83 205 3,53 15 3,49 510 3,362 205 3,256 2070 2,925 180 2,873 270 2,821 5$						

hki	1	d(Å)	I	d (Å)
132	60	2,695	5	1,1894
115	80	2,552	10	1,1810
133	40	2,515	10	1,1728
200	2	2,398	1	1,1599
125; 026	40	2,356	1	1,1529
141; 134; 211	5	2,315	2	1,1437
116; 142; 212	10	2,246	2	1,1210
044	2	2,216	5	1,0996
135	5	2,117	20	1,0861
214; 117; 230	1	1,996	10	1,0695
153	1	1,834		
225; 118; 060; 240	100	1,796		
	10	1,769		
	20	1,744		
	10	1,720		
	10	1,695		
	20	1.661		
	5	1,618		

Литература

1. Peacor D.R., Dunn P.J., Su Shu-Chun, Innes J. // Amer. Miner. 1987. Vol. 72, N 1/2. P. 213.

2. Freed R.L., Rouse R.C., Peacor D.R. // Ibid. 1993. Vol. 78, N 1/2. P. 190.

3. Moore P.B. // Ibid. 1970. Vol. 55, N 7/8. P. 1146.

4. Rentzepcris P.J. // Ztschr. Kristallogr. 1970. Bd. 132, H. 1/2. S. 1.

СТРУКТУРА ТИПА ВЮНЦПАХКИТА

Вюнцпахкнт-(Y) Vyuntspakhkite-(Y) (Y, TR)₈($Al_5\Box_3$)[Si₁₀ $Al\Box_5O_{34}$ (OH)₁₄]

Назван по названию горы Вюнцпахк на Кольском п-ове [1].

Характ. выдел. Кристаллы (0,5-0,7)×(0,05-0,2) мм.

Структ. и морф. крист. Монокл. с. $C_{2h}^5 \cdot a_0 = 5,830$, $b_0 = 14,763$, $c_0 = 6,221$ Å; $\beta = 123,05^\circ$; Z = 1 [2]; $c = 2c_0 = 12,442$ Å; Z = 2 [3].

Основу структуры [2] составляют слои из Y(TR)-восьмивершинников и ортоанионов [SiO₄], параллельные плоскости *ac* (фиг. 54,*a*,*b*), сходные со слоями в структурном типе гипса. В слое Y(TR)-полиэдры объединены через общие ребра в цепочки, связанные посредством [SiO₄]-групп в направлении оси *c*. Связь между соседними слоями вдоль оси *b* осуществляется за счет цепочек, построенных из чередующихся полиэдров Al и Si, сочлененных по общему ребру тетраэдров [(Al, Si)O₄], и аналогичным образом спаренных Al-тригональных призм. В полиэдрах цепочек из-за чрезмерного сближения катионов возникают дефекты, что влечет за собой частичную замену атомов кислорода на OH-группы. Катионы распределены статистически: пятивершинники заняты на 62,5%, тетраэдры – на 37,5%.

Кристаллохимическая формула: $(Y, TR)_4 (Al_{2,5} \Box_{1,5})[(Al_{0.33}Si_{0,67})\Box_{2,5}][SiO_4]_4 \times [O_{0,5}(OH)_{3,5}]_2$; идеализированная: $(Y, TR)_4 Al_2(Al, Si)_5 O_{18}(OH)_5$ (Z = 1). Тетраэдры [SiO_4] и [(Al, Si)O_4] объединены в четверки (см. фиг. 54,6).

Межатомные расстояния (в Å): Si-O = 1,604–1,640; в пятивершинниках Al-O = = 1,755–2,07, Y-O = 2,208–2,519.

Фиг. 54. Структура вюнцпахкита-(Ү-(по Якубович и др.)

a – проекция ab; 6 – проекция bc; e – группировка из четырех тетраэдров [SiO₄] и [AlSiO₄]

Фиг. 55. Фрагменты структуры вюнцпахкита-(Ү) (по Бокию)

а – цепочка из групп [T₄X₁₂];
б – кремнекислородный мотив со сдвоенными тетраэдрами; *в* – спаренные пятивершинники алюминия

По другой трактовке [3] результатов [2], вюнцпахкит не является ортосиликатом: основной кремнекислородный мотив – изолированная группировка из четырех тетраэдров [T₄X₁₂]O, где два внутренних [(Al, Si)O₄]-тетраэдра объединены по ребру и к каждому из них присоединено по одному внешнему [SiO₄] через общую вершину (фиг. 55). В [2] наружные тетраэдры рассматриваются в отрыве от всей группировки как ортоанионы, что неправомерно. Найденный Si–O-мотив является предельным в ряду радикалов подкласса некольцевых островных силикатов. При этой интерпретации кристаллохимическая формула: (Y,TR)₈(Al₅ \Box_3)[Si₁₀Al \Box_5O_{34} (OH)₁₄]. Учитывая период повторяемости [T₄X₁₂] вдоль оси *с*, соответствующий параметр следует удвоить: *c* = 2*c*₀ = 12,442 Å и *Z* = 2.

Кристаллы тонкопризматические, зональные, двух генераций, различающихся соотношением содержаний Y и TR [1].

Физ. св. Сп. отсутствует. Уд.в. 4,02 (вычисл. 4,4). Тв. 6–7. Бесцветный, прозрачный. Бл. алмазный. Хрупкий. Не люминесцирует в ультрафиолетовых лучах. В катодных лучах слабое желто-зеленое свечение.

В ИК-спектре выделяются шесть близких по природе совокупностей полос поглощения, пределы которых составляют: 1) 3530–3375 (валентные колебания групп ОН, связанных с катионами Y³⁺ и Al³⁺); 2) 1030–910 (валентные колебания Si–O₄); 3) 800–750 (валентные колебания тетраэдров Si–O₄); 4) 800–750 (валентные колебания связей Al–O₄); 5) 700–580 (валентные колебания связей Al–O₅); 6) 540– 490 (деформационные колебания связей Al–O₄). Предполагается, что полоса поглощения 1430 см⁻¹ обусловлена деформационными колебаниями ОН-групп, находящихся в вершине кремнекислородного и алюминиево-кислородного тетраэдра [1].

Микр. Двуосный (+). Пл. опт. осей 010. $cNp = 40^{\circ}$, $aNg = 68^{\circ}$. $n_g = 1,720$, $n_m = 1,692$, $n_p = 1,680$; $n_g - n_p = 0,040$; $2V = 68^{\circ}$ [1].

Хим. Анализы (микрозонд.):

	1	2	3	4
Y ₂ O ₃	17,76	21,18	23,13	34,66
Yb ₂ O ₃	22,80	17,65	15,35	7,03
Er ₂ O ₃	6,86	6,31	6,58	3,22
Dy ₂ O ₃	2,67	3,93	3,84	1,65
Lu ₂ O3	3,40	2,10	2,49	0,89
Tm ₂ O ₃	2,05	1,92	1,61	0,70
Gd ₂ O ₃	0,28	0,61	0,32	0,24
Ho ₂ O ₃	0,22	0,23	0,67	0,32
Tb ₂ O ₃	0,37	0,31	0,27	0,00
Al ₂ O ₃	13,64	13,69	12,85	14,39
SiO ₂	26,15	27,84	29,14	31,64
H ₂ O [*]	3,90	4,23	3,75	5,26
Сумма	100,00	100,00	100,00	100,00

* По разности.

Эмпирические формулы (на 20,5 атомов О):

 $1-(Y_{1,78}Yb_{1,31}Er_{0,41}Dy_{0,16}Lu_{0,22}Tm_{0,14}Gd_{0,02}Ho_{0,01}Tb_{0,02})_{4,07}Al_{3,03}Si_{4,94}O_{20,5}(OH)_{4,96};$

 $2-(Y_{2\ 05}Yb_{0,98}Er_{0,36}Dy_{0,23}Lu_{0,13}Tm_{0,12}Gd_{0,04}Ho_{0,01}Tb_{0,02})_{3,94}Al_{2,94}Si_{5,07}O_{20,5}(OH)_{5,18};$

 $3-(Y_{2,24}Yb_{0,85}Er_{0,38}Dy_{0,23}Lu_{0,14}Tm_{0,09}Gd_{0,02}Ho_{0,04}Tb_{0,01})_{4,00}Al_{2,76}Si_{5,30}O_{20,5}(OH)_{4,52};$

 $4-(Y_{3,08}Yb_{0,36}Er_{0,17}Dy_{0,09}Lu_{0,04}Tm_{0,04}Gd_{0,01}Ho_{0,01})_{3,807}Al_{2,83}Si_{5,28}O_{20,5}(OH)_{5,18}.$

Согласно [1], идеальная формула: $Y_4Al_3Si_5O_{18}(OH)_5$; с учетом анализов ИКспектров, $Y_4Al_2[AlSi_5O_{18}(OH)_5](OH)_4$. Сумма редких земель цериевой группы минерала не превышает 0,1%. По данным количественного микроанализа, фтор и углерод отсутствуют.

Диаг. исп. В HCl не растворяется.

Повед. при иагр. Все характеристические полосы на ИК-спектрах у вюнцпахкита не изменяются с температурой.

Нахожд. Обнаружен в амазонитовых пегматитах Кольского п-ова в ассоциации с флюоритом, ксенотимом и бастнезитом, а также с селективно иттербиевыми (кейвиит-(Yb), хинганит-(Yb)) и новыми иттербиевыми силикатами [1].

Межплоскостные расстояния вюнцпахкита, Кольский и-ов [1]

FeK $_{\alpha}$ -излучение, D = 114,6 мм

hkl	Ι	d(Å)	hkl	I	d(Å)
020	6	0,740	033	1	0,1543
100	1	0,519	422; 263	1	0,1521
111	6	0,498	163; 043	3	0,1493
110	6	0,492	291; 204	4	0,1452
011	2	0,465	202	3	0,1435
121	3	0,429	172; 292; 234	1	0,1394
021	4	0,409	441	4	0,1370
040	1	0,370	283; 123: 344	3	0,1336
131	3	0,360	451; 404	3	0,1320
031	10	0,347	1.10.1	3	0,1313
140	1	0,302	1.11.0; 424	4	0,1300
041	5	0,295	383; 391; 351	1	0,1274
22 1	6	0,287	29 3	4	0,1252
122	1	0,2707	004; 083	1	0,1222
200; 21 <mark>2</mark>	8	0,2604	473; 1.11.1	1	0,1216
150; 210	2	0,2570	47 <u>1</u>	1	0,1209
051	2	0,2535	374; 272; 034	1	0,1186
060	1	0,2468	543	1	0,1172
002	1	0,2437	464	2	0,1163
012	3	0,2413	511; 481; 460	1	0,1153
241	4	0,2382	521; 173	1	0,1142
232	2	0,2330	335	2	0,1135
141	5	0,2267	3.10.3; 1.12.1	1	0,1131
240	2	0,2128	2.12.2	1	0,1115
302	3	0,2033	470	1	0,1110
311	4	0,2003	541; 421; 435	3	0,1104
252	4	0,1969	491	1	0,1096
171; 170; 250	5	0,1957	355; 445	3	0,1084
261	1	0,1932	243	2	0,1082
213	1	0,1912	484	1	0,1074
052	4	0,1885	480	1	0,1064
22 3 ; 331	5	0,1871	455	1	0,1059
112	2	0,1844	564	1	0,1054
262	3	0,1800	451; 525	1	0,1045
342; 231	5	0,1781	362; 500; 4.10.1	1	0,1043
262	1	0,1734	1.12.1	1	0,1034

hki	I	d (Å)	hkl	1	d(Å)
243	4	0,1716	145	1	0,1031
320	1	0,1691	574	1	0,1022
013; 253	1	0,1619	614; 633; 545	4	0,1015
251	4	0,1602	602	1	0,1012
343; 023; 023	4	0,1590	372	1	0,1010
362	3	0,1569	643; 475	2	0,0998
182; 091; 402	1	0,1557			

Литература

- 1. Волошин А.В., Пахомовский Я.А., Меньшиков Ю П., Поваренных А.С., Рогачев Д.Л. // Минерал. журн. 1983. Т. 5, № 4. С. 89.
- 2. Якубович О.В., Симонов МА., Волошин А.В., Пахомовский Я.А. // Кристаллография. 1984. Т. 29, № 2. С. 238.
- 3. Бокий Г.Б. // Там же. 1995. Т. 40, N 4. С. 763.

СИЛИКАТЫ С КОЛЬЦАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СИЛИКАТЫ С ЧЕТЫРЕХЧЛЕННЫМИ КОЛЬЦАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа тарамеллита Группа тарамеллита Тарамеллит Ba₄(Fe³⁺, Fe²⁺, Ti)₄[Si₄O₁₂]₂B₂O₅Cl_r Титантарамеллит Ba₄(Ti, Fe³⁺Fe²⁺Mg)₄[Si₄O₁₂]₂B₂O₅Cl₂ Нагасималит Ва₄(V³⁺, Ti)₄[Si₄O₁₂]₂B₂O₃(O, OH)₂Cl Структура типа страховита Страховит NaBa₃Mn²⁺₂Mn³⁺₁₇[Si₄O₁₀(OH)₂][Si₂O₇]O₂(OH) · H₂O Структура типа фосинаита Фосинаит Na11(Na, Ca)2Ce0.67[Si4O12](PO4)4 Клинофосинаит Na₁₂Ca₄[Si₄O₁₂](PO₄)₄ Структура типа джоакинита Группа джоакинита Стронциоджоакинит $Sr_2Ba_2(Na, Fe^{2+})_2Ti_2[Si_4O_{12}]_2(O, OH)_2 \cdot H_2O$ Бариоортоджоакинит (Ba, Sr)₄Fe²⁺Ti₂[Si₄O₁₂]₂O₂(OH, F) · H₂O Белоруссит-(Ce) NaMnBa₂Ce₂Ti₂[Si₄O₁₂]₂O₂(F, OH) \cdot H₂O Структура типа гиалотекита Гиалотекит Ca2Ba2Pb2[(Si15Be05)2Si8O28]B2F Структура типа стисиита Стисиит Th(Na, Ca)₂(K_{1-z} \Box_z)[Si₈O₂₀]; z = 0,20-0,40

СИЛИКАТЫ С ШЕСТИЧЛЕННЫМИ КОЛЬЦАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа миларита
Группа миларита
Эйфелит KNa ₃ Mg ₄ [Si ₁₂ O ₃₀]
Пудреттит KNa ₂ [Si ₁₂ O ₃₀]B ₃
Чейесит К(Mg, Fe ²⁺) ₄ Fe ³⁺ [Si ₁₂ O ₃₀]
Структура типа турмалина
Группа турмалинов
ФОЙТИТ [][Fe ²⁺ (Al, Fe ³⁺)]Al ₆ [Si ₆ O ₁₈](BO ₃) ₃ (OH) ₄
Хромдравит Na(Cr, Fe ³⁺ , Mg) ₃ (Cr, Mg, Al) ₆ [Si ₆ O ₁₈](BO ₃) ₃ (OH) ₄
Повондраит (Na, K) (Fe ³⁺ , Fe ²⁺ , Mg) ₃ (Fe ³⁺ , Mg, Al) ₆ [Si ₆ O ₁₈](BO ₃) ₃ (O, OH) ₄
Оленит NaAl ₃ Al ₆ [Si ₆ O ₁₈](BO ₃) ₃ (O, OH) ₄

Ферувит CaFe²⁺₃ (Al, Mg)₆[Si₆O₁₈](BO₃)₃(OH)₄ Структура типа ловозерита Группа ловозерита Имандрит^{*} Na₁₂Ca₃Fe₂[Si₆O₁₈]₂ Петарасит Na₅Zr₂[Si₆O₁₈](Cl, OH) · 2H₂O Структура типа костылевита Костылевит K₄Zr₂[Si₆O₁₈] · 2H₂O Структура типа баратовита Группа баратовита Баратовит KLi₃Ca₇Ti₂[Si₆O₁₈]₂F₂ Катаямалит KLi₃Ca₇Ti₂[Si₆O₁₈]₂(OH, F)₂

СИЛИКАТЫ С ДЕВЯТИЧЛЕННЫМИ КОЛЬЦАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа эвдиалита

Группа эвдиалита

Аллуайвит Na₁₉(Ca, Mn)₆(Ti, Nb)₃[Si₁₀O₂₈]₂[Si₃O₉]₂Cl · 2H₂O

СИЛИКАТЫ С ДВЕНАДЦАТИЧЛЕННЫМИ КОЛЬЦАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа траскита Траскит Ba₂₄(Ca, Sr) (Ti, Fe, Mn)₁₆[Si₁₂O₃₆][Si₂O₇]₆(O, OH)₃₀Cl₆ · 14 H₂O

СИЛИКАТЫ С ВОСЕМНАДЦАТИЧЛЕННЫМИ КОЛЬЦАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа мегациклита Мегациклит Na₁₆K₂[Si₁₈O₃₆(OH)₁₈] · 38 H₂O

СИЛИКАТЫ С ЧЕТЫРЕХЧЛЕННЫМИ КОЛЬЦАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА ТАРАМЕЛЛИТА

ГРУППА ТАРАМЕЛЛИТА

Первоначальное описание структуры и соответствующая ей формула тарамеллита, Ba₂(Fe³⁺, Ti, Fe²⁺, Mg)₂[(Si₄O₁₂)O] · H₂O (т. III, вып. 2, с. 52), основывались на анализах, не включавших В и Cl [1]. Позже, после открытия нагасималита – Ba-V-боросиликата, содержащего Cl и имеющего структуру, близкую к тарамелтитовой [2], в составе тарамеллита также обнаружены В и Cl.

	Сингония	a_0	b 0	<i>c</i> 0	Уд.в.
Тарамеллит Ba ₄ (Fe ³⁺ , Fe ²⁺ , Ti) ₄ [Si ₄ O ₁₂] ₂ B ₂ O ₅ Cl _x	Ромб.	12,150	1 3,94 6	7,129	3,92
Титантарамеллит Ва ₄ (Ті, Fe ³⁺ , Fe ²⁺ , Mg) ₄ ×		12,200	13,952	7,128	4,05
× [Si ₄ O ₁₂] ₂ B ₂ O ₅ Cl _x Нагасималит Ва ₄ (V^{3+} , Ti) ₄ [Si ₄ O ₁₂] ₂ B ₂ O ₃ × × (O, OH) ₂ Cl [*]	*	13,937	12,122	7,116	4,04

^{*} Для нагасималита в оригинале [2] принята иная установка: в нагасималите *а* и *b* = *b* и *a* в тарамеллите.

Фиг. 56. Структура тарамеллита (по Мацци и Росси) *а* – проекция вдоль [001]; *б* – проекция вдоль [100]

Минералы объединены в группу на основании их изоструктурности [3]. Титантарамеллит образует изоморфный ряд с тарамеллитом (taramellite^{*}) [4].

Главная особенность структуры – боросиликатный радикал [B₂Si₈O₂₇]¹⁶⁻, образованный двумя четверными кольцами Si-тетраэдров, соединенными B₂O₇-группами посредством 2 общих атомов О с каждым из колец. Анионные группы располагаются вдоль оси *a*, плоскость колец II (100). Колонки (цепочки) (фиг. 56), образованные M(Fe, Ti, V)-октаэдрами, соединенными между собой парами атомов О протягиваются также вдоль оси *a* и соединяют Si-кольца. Атомы Ba и Cl размещаются в полостях структуры. Согласно [4], Cl не является существенным компонентом и входит для компенсации валентности. Один атом О не участвует в координации B-Si-радикала и, возможно, замещается на OH.

С учетом баланса валентностей наиболее вероятная общая формула: Ba₄(Fe³⁺, Ti, Fe²⁺, Mg, V³⁺)₄[B₂Si₈O₂₇]O₂Cl_x, где $0 \le x \le 1$; Z = 2. Основное различие минералов – в составе октаэдрической группы Me: при Fe³⁺ > Ti – тарамеллит (Кандоглиа, Италия), при преобладании Ti – титантарамеллит (Калифорния, США) и V³⁺ – нагасималит (Япония).

Литература

1. Mazzi F., Rossi G. // Ztschr. Kristallogr. 1965. Bd. 121, H. 2/4. S. 243.

2. Matsubara S., Kato A. // Miner. J. Jap. 1980. Vol. 10, N 3. P. 131.

3. Mazzi F., Rossi G. // Amer. Miner. 1980. Vol. 65, N 1/2. P. 123.

4. Alfors J.T., Pabst A. // Ibid. 1984. Vol. 69, N 3/4. P. 358.

Титантарамеллит Titantaramellite

Ba₄(Ti, Fe³⁺, Fe²⁺, Mg)₄[Si₄O₁₂]₂B₂O₅Cl_x

Назван по химическому составу и сходству с тарамеллитом [1]. Синон. Титантарамелит (Семенов, 1991).

Характ. выдел. [1]. Кристаллы длиной до 7 мм и их скопления, зерна (0,1-0,3 мм).

Структ. и морф. крист. Ромб. с. D_{2h}^{13} -Рттп. Z = 2.

№ ан.	a_0	b_0	c_0	$a_0: b_0: c_0$	Ссылка
1	12,053	13,93	7,138	0,865:1:0,512	[1]
2	12,199	13,962	7,140	0,874:1:0,511	[1]
3	12,149	13,904	7,12	0,874:1:0,512	[1]
4	12,184	13,938	7,127	0,874:1:0,511	[1]
	12,200	13,952	7,128	0,874:1:0,511	[2]
5	12,220	14,005	7,141	0,873:1:0,510	[1]
6	12,202	13,962	7,140	0,874:1:0,511	[1]

Структура аналогична тарамеллитовой и нагасималитовой с тем отличием, что октаэдрические позиции М в значительной степени заполнены Ті [2].

Средние межатомные расстояния (в Å): Si-O = 1,62 и 1,63; B-O = 1,48 и 1,49; M-O = 2,02; Ba-O = 2,82-2,84; Ba-Cl = 3,14-3,74.

Кристаллы неровные, шероховатые [1], таблитчатые II (100), до изометричных. Наблюдались формы: (100), (001), реже (010), (110), (011); менее обычны (101), (310), (012) и (021).

Физ. св. [1]. Цв. коричневый. Тв. 6. Уд.в. 4,00-4,05.

Микр. [1]. Плеохроизм сильный: по Ng – темный непрозрачный, по Nm = Np – желто-коричневый. Двуосный (+). $Ng \parallel a$, $Nm \parallel b$, $Np \parallel c$. $n_g = 1,770-1,782$, $n_m = 1,757-1,761$, $n_p = 1,747-1,753$; $2V = 45-59^\circ$.

Хим. Отношение Ti/Fe > 1.

Анализы (1-6 - микрозонд.) [1]:

	1	2	3	4	5	6	7	8
FeO	7,58	3,04	3,59	6,47	5,97	3,38	4,0	3,60
MgO	0,14	2,19	1,50	1,27	1,43	3,34	1,7	0,55
MnO	-	1,20	-	0,30	0,06	0,08	0,21	0,09
BaO	39,21	40,36	40,48	40,73	40,43	40,84	40,8	40,45
Al ₂ O3	0,14	0,25	0,46	0,26	0,24	0,17		-
V_2O_3	0,09	0,81	3,24	0,37	0,32	0,49	1,0	-

	1	2	3	4	5	6	7	8
Cr ₂ O ₃	-	_	0,08	0,02	0.12	0.12		_
Fe ₂ O ₃	-	-	-	_	_	_	1,2	6,79
B ₂ O ₃	-	-	-	-	-	-	4,3	3.64
TiO ₂	12,53	11,22	11,10	10,76	10,49	10,36	10,4	10,63
SiO ₂	32,75	33,64	33,86	32,80	33,38	34,57	34,1	33,03
Cl	0,04	2,11	2,17	2,10	2,08	1,77	1,9	1,83
Сумма	92,48	94,82	96,48	95,08	94,51	95,12	100,16*	100,61
-O=(Cl,F)2	0,01	0,47	0,49	0,47	0,47	0,40	0,48	0,41
Сумма	92,47	94,35	95,99	94,61	94,04	94,72	99,68	100,20

* В том числе CaO - 0,23, F - 0,12, H₂O - 0,2.

1-8 - Калифориия (Северная Америка): 8 - анал. Хердсман; повторно определено Fe₂O₃ - 2.03, FeO - 4,73%, анал. Кармихаэль.

	1	2	3	4		5	6	7	8	
Si	15,92	15,86	15,75	15,85	Si	15,87	15,91	16,00	16,00	
Al	0,08	0,14	0,25	0,15	A]	0,13	0,09	-	· _	
Ti	4,58	3,98	3,88	3,91	Ti	3,75	3,58	3,67	3,88	
Fc	3.08]	1.20]	1.40]	2,61)	Fe	2,37]	1.30)	2 02)	2 66]	
Mg	0,10	1, 54	1,04	0.91	Mg	1.00	2.29	1.19	0.40	
Mn	– {Σ3,21	0,48 Σ 3,53	- }Σ3,68	0.12 S3.79	Mn	0.02 S3.56	0.03 E3.84	0,09 E3,30	0,04 \S	
v	0,03	0.31	1,21	0,14	v	0,12	0.18	- 1	- 1	
Cr	-]	- J	0.03]	0,01	Cr	0.05	0.04]	- J	- J	
Ba	7,47	7,45	7,37	7,71	Ba	7,52	7,36	7 5 0	7.72	
a	0,03	1,68	1,71	1,72	a	1,68	1,38	1.51	1.50	
Τί+Σ	7,79	7,51	7,56	7,70	Ti+Σ	7,31	7.42	6.97	6.98	
Ti/Σ	1,43	1,13	1,05	1,03	Τί/Σ	1,05	0,93	1,11	1,25	

Спектральным анализом отмечались следы Sn, Cu, Ag, Pb, Zn, Na. По Е.И. Семенову (1991), формула титантарамеллита: $Ba_4Ti_4B_2Si_8O_{30}Cl_2$ или $Ba_4Fe_2^{2*}Ti_{2^{\times}} \times B_2Si_8O_{28}Cl_2$.

Повед. при нагр. [1]. При нагревании на воздухе до 920° не теряет в весе. После 765° грани кристаллов тускнеют и первоначально прозрачные кристаллы темнеют, что, вероятно, объясняется началом образования фресноита. При 960° фресноит образуется в изобилии как в неизмененном минерале, так и в образовавшемся при плавлении стекле (n = 1,694). Начало плавления 920°, но полностью не расплавляется даже после 27 ч нагревания при 965°.

Нахожд. [1]. Обнаружен в Калифорнии (Северная Америка), в нескольких местах, обычно на контактах крупных гранитных плутонов с метаморфическими породами (анализы 2, 4-6). Приурочен к линзам (протяженностью до нескольких метров при толщине около 1 м), сложенным санборнитом, джиллеспитом, иногда гранулированным цельзианом и кварцем и имеющим резкие контакты с вмещающими кварцитами. Часто встречается в виде мелких кристаллов, включенных в кварц или санборнит. С ним ассоциируют цельзиан, пеллит, фресноит; могут присутствовать макдональдит, верпланкит, мюирит, траскит, барит, иногда хлорит, лепидолит, витерит и др.

Реже отмечался в метаморфизованных известняках (анализ 1) и сложных жилах внутри больших ультрамафических тел (анализ 3) с редкими Ва-силикатами: бенитоитом, джоакинитом-(Се), джонеситом; отмечены цельзиан и витерит, а также станнин, франкеит, касситерит и пабстит.

Литература

1. Alfors J., Pabst A. // Amer. Miner. 1984. Vol. 69, N 3/4. P. 358.

^{2.} Mazzi F., Rossi G. // Ibid. 1980. Vol. 65, N 1/2. P. 123.

Нагасималит Nagashimalite $Ba_4(V^{3+}, Ti)_4[Si_4O_{12}]_2B_2O_3(O, OH)_2Cl$

Назван в память об О. Нагасиме, первом минералоге-любителе в Японии [1].

Характ. выдел. Призматические кристаллы до 15 мм длиной, образующие субпараллельные агрегаты [1].

Структ. и морф. крист. Ромб. с. D_{2h}^{13} -*Pmmn*. $a_0 = 13,937$, $b_0 = 12,222$, $c_0 = 2,116$ Å; $a_0: b_0: c_0 = 1,150:1:0,587; Z = 2$ [1, 2].

Четырехчленные Si-O-кольца образованы двумя неэквивалентными Si₂O₇группами и расположены почти параллельно (010). Колонки VO₆-октаэдров сходны с (Ti, Fe)O₆-колонками в тарамеллите и титантарамеллите; вытянуты вдоль оси b, что согласуется с призматическим габитусом кристаллов. Из расчета баланса валентностей предполагается, что OH занимает одну из позиций O в координации V. Атомные координаты Ва почти эквивалентны таковым в тарамеллите. Ba(1) координирован 13 атомами O, OH, Ba(2) и Ba(3) – 10 атомами O, OH и одним Cl. Атомы Cl размещаются в каналах Si₄O₁₂-колец вдоль оси b.

Средние межатомные расстояния (в Å): Si–O = 1,631 и 1,617; B–O = 1,479; V–(O,OH) = 2,012; Ba–(O, OH) = 3,094; Ba–(O, OH), Cl = 3,121 и 2,925.

Кристаллы таблитчатые по (001), удлиненные вдоль оси *b*. На (001) полосчатость, параллельная оси *b* [1].

Физ. св. [1]. Сп. отсутствует. Микротвердость 606–681 кгс/мм² (при нагрузке 100 г). Уд.в. 4,08 (вычисл. 4,14). Цв. зеленовато-черный. Черта зеленая. Бл. полуметаллический до стеклянного.

Микр. [1]. Плеохроизм сильный: по Ng – зеленовато-бурый, по Nm – зеленый, по Np – зеленовато-желтый. Двуосный (+). a = Np, b = Ng, c = Nm. Np < Nm < Ng. $n_g = 1,780$, $n_m = 1,753$, $n_p = 1,750$; $2V = 30^\circ$. Дисперсия сильная, r > v.

Хим. [1]. Анализ (микрозонд.): BaO – 41,36; MnO – 0,48; V₂O₃ – 16,65; B₂O₃ – 4,00; SiO₂ – 32,37; TiO₂ – 2,75; Cl – 1,73; H₂O – 0,77 (вычисл.); сумма 100,11; –O=Cl₂ – 0,39–99,72.

Спектральным анализом обнаружены следы Mg, Al, Pb, Fe, Sb и Cu.

Эмпирическая формула (при Si = 8): $Ba_{4,00}(V_{3,30}^{3+}Ti_{0,51}Mn_{0,10})_{3,91}B_{1,71}Si_8O_{27,64} \times (Cl_{0,72}OH_{1,28})_2$. По Е.И. Семенову (1991) формула: $Ba_2V_2BSi_4O_{14}Cl$; по М. Флейшеру (1990): $Ba_4(V^{3+}, Ti)_4Si_8B_2O_{27}Cl(O, OH)_2$.

Нахожд. [1]. Обнаружен в массивной тонкозернистой родонитовой руде из пластовых марганцевых отложений месторождения Могуразава (преф. Гумма, Япония). Собственно рудные минералы: родохрозит, родонит, тефроит, гаусманнит и манганозит. Сопровождается малыми количествами пирохроита, якобсита, аллегонита, спессартина и гельвина, а также баритом, кварцем, Ва-роскоэлитом, алабандином, дигенитом, борнитом и тетраэдритом. Все названные минералы встречены вдоль трещин, рассекающих родонитовую породу, и рассматриваются как гидротермальные минералы более позднего, чем родонит, формирования.

Межплоскостные расстояния нагасималита из Японян [1]

 CuK_{α} -излучение. Дифрактометр

hkl	I	d(Å)	hkl	1	d(Å)	hkl	I	d(Å)
110	3	9,22	332	5	2,318	071	2	1,682
200	10	6,98	530	6	2,294	603	2	1,659
101	2	6,32	440	8	2,288	253	5	1,647
020	12	6,09	6 01	6	2,209	271	3	1,636

hki	I	d (Å)	hkl	I	d (Å)	hkl	1	d (Å)
111	2	5,63	441	12	2,178	651	3	1.633
021	3	4,61	512	8	2,159	034	2	1.628
121	4	4,384	223	2	2,107	623	2	1,601
310	5	4,345	313	2	2,080	063	2	1,538
221	25	3,854	621	6	2,074	424	8	1,533
311	8	3,708	351	8	2,059	144	3	1,525
002	2	3,559	060	3	2,022	080	10	1,516
400	10	3,487	152	5	1,984	751	3	1,504
112	15	3,319	710	2	1,963	841;372	8	1,477
321	6	3,273	061	5	1,943	344	2	1,457
202	15	3,173	161	10	1,925	912	5	1,410
231	6	3,136	711	5	1,893	842	8	1,390
022	8	3,066	333	8	1,873	823	8	1,368
040;411	60	3,030	640	5	1,845	305;10.1.1	8	1,360
420	100	3,020	550	2	1,830	941	5	1,355
041	20	2,791	503;243	8	1,805	190	8	1,340
510	8	2,717	641	15	1,785	390	8	1,294
132	6	2,621	460	12	1,748	425	15	1,287
501;241	28	2,592	800	10	1,743	771	12	1,285
511	3	2,538	731	8	1,732	10.4.0	12	1,266
402	10	2,490	214;262	5	1,705	491	5	1,237
341	12	2,393	461	2	1,698			

Литература

1. Matsubara S., Kato A. // Miner. J. Jap. 1980. Vol. 10, N 3. P. 122.

2. Matsubara S. // Ibid. P. 131.

СТРУКТУРА ТИПА СТРАХОВИТА

Сингония a_0 b_0 c_0 Уд.в. Страховит NaBa₃Mn $_{2,3}^{2+}$ Mn $_{1,7}^{3+}$ [Si₄O₁₀(OH)₂][Si₂O₇] × Ромб. 23,42 12,266 7,181 3,86 ×O₂(OH) · H₂O

$\label{eq:constraint} \begin{array}{c} C \\ rpaxobur Strakhovite \\ NaBa_3Mn_{2,3}^{2*}Mn_{1,7}^{3*}[Si_4O_{10}(OH)_2][Si_2O_7]O_2(OH) \cdot H_2O \end{array}$

Назван в память об академике Н.М. Страхове (1900–1978), внесшем большой вклад в разработку теории марганцевого рудообразования [1].

Характ. выдел. Зерна изометричной или слабоудлиненной формы (0,2–0,4 мм, изредка 0,7 мм).

Структ. и морф. крист. Ромб. с. D_{2h}^7 -Рпта. $a_0 = 23,42, b_0 = 12,266, c_0 = 27,181$ Å; $a_0:b_0:c_0 = 1,9093:1:0,5854; V = 2062,88$ Å³ [1, 2].

Структура характеризуется присутствием двух разнородных кремнекислородных комплексов – четверных колец [Si₄O₁₀(OH)₂] и диортогрупп [Si₂O₇]. Вместе с Мп-полиэдрами (октаэдрами и полуоктаэдрами) они формнруют смешанный псевдокаркас (фиг. 57). Баланс валентностей у концевых О-вершин достигается их одновременным участием в Ва- и Na-полиэдрах. ОН-группы расположены в концевых вершинах SiO₄-тетраэдра, участвующего в четверном кольце. Несмотря Фиг. 57. Структура страховита (по Ямновой и др.)

Фрагмент смешанного Mn–Si–O каркаса; цнфры – координаты атомов по оси у (×100); 1/4 и 3/4 – высота над плоскостью чертежа

на то что F не обнаружен химическим анализом (из-за малого количества материала), структурные исследования позволили предположить его участие в кристаллической решетке.

Средние межатомные расстояния (в Å): Ba(1)-O = 2,86; Ba(2)-O = 2,85; Na-O = 2,39; Mп(1)-O = 2,07; Mn(2)-O = 2,01; Si(1)-O = 1,67; Si(2)-O = 1,65; Si(3)-O = 1,66; Si(4)-O = 1,66; углы Si(2)-O(1)-Si(3) = 116; Si(1)-O(3)-Si(4) = 139; Si(1)-O(8)-Si(4) = 137° [2].

Физ. св. [1]. Сп. несовершенная. Изл. раковистый. Хрупок. Микротвердость 683 кгс/мм² (нагрузка 100 г). Уд.в. 3,86 (вычисл. 3,84). Цв. черный со слабо-зеленоватым оттенком, в тонких сколах – темный, оливково-зеленый, черта зеленая. Бл. стеклянный до жирного [1].

На КР-спектре максимумы 3599 и 3521 см⁻¹ связаны с присутствием H_2O и (OH)⁻-групп: максимум 1018 см⁻¹ отв

(OH)⁻-групп; максимум 1018 см⁻¹ отвечает кольцевым силикатам; полоса при 898 см⁻¹ соответствует диортогруппам [Si₂O₇] [2].

Микр. [1]. Плеохроизм сильный: по Ng – темный оливково-зеленый до коричневого, по Nm – зеленый, по Np – светло-зеленый. Двуосный (+). Np = a, Nm = b, Ng = c. $n_g = 1,871$, n_m (расч.) = 1,793, $n_p = 1,767$; $n_g - n_p = 0,104$; $2V = 60-65^\circ$. Дисперсия сильная, r > v.

Хим. Анализ (микрозонд., среднее из 4 зерен, анал. Борисовский): Na₂O – 2,85; CaO – 0,03; MnO^{*} – 14,16; BaO – 39,20; Al₂O₃ –0,23; Mn₂O^{*}₃ – 11,65; Fe₂O₃ – 0,03; SiO₂ – 30,03; H₂O⁺ – 2,40; H₂O⁻ – 0,30; сумма 100,88.

* Метод рентгеновской фотоэлектронной спектроскопии.

Спектральным анализом установлены: B, Sr – десятые, V, Ti – сотые, Be – первые тысячные доли %.

Эмпирическая формула (на 6 атомов Si): $Na_{1,09}Ba_{3,04}Mn_{2,37}^{2+}Mn_{1,75}^{3+}[Si_{5,95}Al_{0,05}] \times \times O_{19}(OH)_{3,11}$.

Нахожд. Установлен в прожилках со щелочноземельной минерализацией в браунитовых рудах вблизи контактов с интрузивными дайками и в зонах тектонических нарушений на марганцевом месторождении Ир-Ними (Дальний Восток) в тесной ассоциации с браунитом, тайканитом, намансилитом, пектолитом, марганцовистыми амфиболами.

hk/	1	d(Å)	hkl	I	d(Å)	hk!	1	d (Å)		
101	3	7,000	921	1	2,271	080	1	1,533		
011	1	6,20 0	123	3	2,218	13.3.2	1	1,495		
211	2	5,480	741	4	2,156	225	2	1,412		
121	5	4,580	822	1	2,115	425	1	1,357		
420	1	4,180	613	2	2,011	11.7.1	2	1,329		
002	1	3,601	703	1	1,943	045	1	1,311		
202	1	3,431	751	1	1,909	16.5.0	2	1,257		
521	9	3,303	803	3	1,854	973	2	1,243		
022	1	3,093	343	3	1,833	193	1	1,182		
222	10	2,999	652	1	1,800	084	1	1,161		
141	1	2,805	262	1	1,753	855	I	1,143		
440	5	2,715	253	1	1,693	12.6.4	3	1,108		
341	10	2,655	14.0.0	1	1,668	4.10.3	3	1.073		
731	1	2,439	10.4.2	5	1,648					

Межплоскостные расстояиия страховита из месторождения Ир-Ними, Дальний Восток [1] FeK₀-излучение, D = 57,3 мм

Литература

1. Калинин В.В., Пущаровский Д.Ю., Ямнова Н.А., Диков Ю.П., Борисовский С.Е. // Зап. ВМО. 1994. Ч. 123, вып. 4. С. 94.

2. Ямнова Н.А., Пущаровский Д.Ю., Мернаф Т., Калинин В.В., Калачева Л.В. // Кристаллография. 1992. Т. 37, № 2. С. 345.

СТРУКТУРА ТИПА ФОСИНАИТА

ГРУППА ФОСИНАИТА

	Сингония	<i>a</i> 0	b_0	<i>c</i> 0	β	Уд.в.
Фосинант	Ромб.	7,234	14.670	12,231	_	3,62
Na ₁₁ (Na, Ca) ₂ Ce _{0,67} [Si ₄ O ₁₂](PO ₄) ₄ Клинофосинаит	Монокл.	7,303	12,201	14,715	91,93°	2,88
$Na_{12}Ca_{4}[Si_{4}O_{12}](PO_{4})_{4}$						

Фосинаит и его моноклинный аналог – клинофосинаит – имеют сходный принцип строения кристаллической структуры. Ее основу составляют четырехчленные кольца [Si₄O₁₂], которые в сочетании с тетраэдрическими анионами PO₄ и частью Na-полиэдров образуют ажурный каркас из трубчатых колонок, вытянутых вдоль оси у. Катионы Ca, Na и Ce сосредоточены в геометрически подобных стенках, перпендикулярных (100). Стенки этажей на уровнях x = 0 и x = 0,5 образованы волнистыми цепочками смешанного состава из Ca-, Na- и Ce-полиэдров, которые "стягиваются" двумя различными по геометрии парами Na-полиэдров.

Фосинант Phosinaite Na₁₁(Na, Ca)₂Ce_{0.67}[Si₄O₁₂](PO₄)₄

Назван по главным химическим компонентам минерала [1].

Характ. выдел. Шестоватые кристаллы размером до 5×1 мм, лучистые сростки и удлиненные зерна, скопления неправильной формы (до 5 мм) [1].

Структ. и морф. крист. Ромб. с. $D_2^3 - P 2_1 2_1 2$. $a_0 = 7,234$, $b_0 = 14,670$, $c_0 = 12,231$ Å; $a_0: b_0: c_0 = 0,493:1:0,834$ (ан. 3); Z = 2 [2]. $P 22_1 2$ или $P 22_1 2_1$. $a_0 = 12,23$ и

Фнг. 58. Структура фосинанта в проекции уг (по Крутику и др.)

12,24, $b_0 = 14,62$ и 14,59, $c_0 = 7,21$ и 7,20 Å; V = 1290 и 1286 Å³ (соответственно для ан. 1 и 5) [1].

Общий мотив структуры – см. во Введении к группе [3]. Катионные стенки образованы волнистыми цепочками Се-семивершинников, между которыми находятся Са-октаэдры и (Са, Nа)-семивершинники. Цепочки скреплены двумя различными парами полиэдров Na разной конфигурации: октаэдрами (правильными и искаженными), пяти- и восьмивершинниками. Состав полиэдров на этажах x = 0 и x = 0,5 одинаков (фиг. 58). Имеется некоторый дефицит атомов Се – коэффициент заполнения соответствующий позиции 0,33 вместо идеального 0,5.

Средние межатомные расстояния (в Å): Si-O = 1,627 и 1,601; O-O = 2,654 и 2,612; P-O = 1,542 и 1,514; O-O = 1,518 и 2,468; Ce-O = 2,468; в Са-октаэдре Ca-O = 2,397; в (Ca, Na)-полиэдре (Ca, Na)-O = 2,565; в Na-полиэдрах Na-O = 2,546.

Наблюдались формы: грани призмы (110) преобладают, (100), (001), (001) [1].

Физ. св. Сп. совершенная по (100) и несовершенная по (010) и (110). Хрупок. Тв. около 3,5. Микротвердость 207–340 кгс/мм². Уд.в. 2,62 и 3,00. Цв. коричневаторозовый, бесцветный, белый, в скоплениях светло-розоватый. Прозрачный. Бл. стеклянный. ИК-спектр поглощения индивидуален [1].

Микр. Двуосный (–). a = Ng, b = Np, c = Nm. У шестоватых кристаллов погасание прямое. $n_g = 1,570$ и 1,573, $n_m = 1,569$ и 1,572, $n_p = 1,567$ и 1,570; 2V = 68 и 70° соответственно для анализов 1 и 5 [1].

Хим. Анализы отвечают эмпирической формуле Na₃(Ca, Ce)SiPO₇ · H₂O [1]. С учетом более поздних данных Флейшером указана Na₃(Ca, Ce)SiPO₇(?), с дефицитом группы Ca–(Ca, Ce)_{1-x} – Хомяковым [4].

Анализы:

	1	2	3	4	5
к ₂ О	0,74	0,70	0,50	-	0,47
Na ₂ O	28,10	28,00	29,76	27,0-28,5	28,78
CaO	12,20	12,00	8,90	9,6–9,9	5,39
MnO	Сл.	Не обн.	0,16	-	1,90
ΣTR	13,44	13,00	11,67	_	13,80
Fe ₇ O ₃	Не обн.	Не обн.	0,45	_	0,49
SiO	18,30	18,81	20,00	20,6-21,3	23,78

	1	2	3	4	5			
P ₂ O ₅	21,30	21,60	25,50	24,2-25,0	20,50			
H ₂ O	6,07	5,67	2,38		4,41			
Сумма	100,15	99,78	99,90*		99,76**			
* В том числе MgO – 0.28 и SrO – 0.30.								

** В том числе Li₂O - 0,24.

1-4 – Хибнны (1,2 – белый, анал. Быкова [1], 3 – бесцветный, прозрачный, анал. Казакова, 4 – микрозонд., анал. Ронсбо [2]); 5 – Ловозеро, розовый [1].

Состав редких земель (в % к сумме оксидов) [1]:

	1	2	3		1	2	3
La ₂ O3	30,7	29	16,8	Tb ₂ O ₃	-	-	0.3
CeO ₂	50,5	50	53,9	Dy ₂ O ₃	-	0,2	_
Pr ₆ O ₁₁	4,1	4	4,4	Ho ₂ O ₃	-	0,1	_
Nd ₂ O ₃	12,2	13	19,5	Er ₂ O ₃	_	0,2	0,3
Sm ₂ O ₃	1,4	1	3,0	Yb ₂ O ₃	-	0,1	_
Eu ₂ O3	-	0.1	0,5	Y ₂ O ₃		0,6	0,6
Gd ₂ O3	1,1	0,8	0,7				

1, 2 – Хнбннский массив, 3 – Ловозерский массив (1 – хроматографический, анал. Любомилова, 2, 3 – спектральный, анал. Логинова).

Спектральным анализом установлены Pb, Sn, Al и Cu. Содержание TR довольно постоянно, что дает основание предполагать их упорядоченное распределение. Состав их существенно цериевый, хибинский фосинаит в сравнении с ловозерским обогащен La за счет Nd. Авторы структурного исследования [2] считают фосинаит безводным минералом, наличие H₂O в анализах объясняют гидратацией.

Диагн. исп. Медленно растворяется в конц. кислотах [1].

Повед. при иагр. На кривой нагревания отмечается эндотермическая остановка около 250°, сопровождающаяся потерей веса (6% для хибинского и 1,9% для ловозерского образцов) [1]. По данным термогравиметрического анализа нерастертых зерен хибинского фосинаита, потеря веса при прокаливании до 1000° составляет 1,23% [2]. На термических кривых ловозерского минерала, полученных в атмосфере азота, обнаруживают эндотермический эффект при 600°. Минерал плавится около 860° [1].

Нахожд. Обнаружен в Хибинском массиве на горе Коашва в пегматитовых жилах мощностью до 40 см, секущих рисчорриты и сложенных крупнозернистым агрегатом зеленого анортоклаза, нефелина, эгирина, ломоносовита и Ва-лампрофиллита. Фосинаит, пронизанный игольчатым эгирином, выполняет промежутки между кристаллами анортоклаза. Измененный фосинаит встречен в пустотах внутренних частей жил с друзами поздних минералов: катаплеита, ловозерита, щербаковита, цеолита, виллиомита и натрофосфата [1]. Установлен также в крутопадающей пегматитовой жиле в грубозернистых уртитах Апатитового цирка [5].

В Ловозерском массиве, на горе Карнасурт, найден в уссингитовых прожилках мощностью до 3 см, секущих малиньиты и фойяиты. Кристаллы фосинаита располагаются перпендикулярно стенкам прожилков и сопровождаются нордитом, беловитом, нептунитом и вуоннемитом.

Ассоциации фосинаита характеризуются исключительно высоким содержанием щелочей (Na), летучих и редких элементов.

Изм. Измененный фосинаит розовый, замутнен, обладает отдельностью, по которой развиты тонкочешуйчатые вторичные продукты с высоким двупреломлением. Конечный продукт изменения – розовое непрозрачное рентгеноаморфное, оптически изотропное вещество с n = 1,510-1,514. Спектральным анализом в нем обнаружены Са, р.з.э., Si,P (> 1 мас.%) и Na (значительно меньше, чем в первичном фосинаите) [1].

Межилоскостные	расстояния фос	инанта из	Хибинского	массива [1]
Cu-	излучение, Ni-d	рильтр, D	= 114 мм	

hkl	I	d (Å)	hkl	I	d(Å)
120:011	11	6,41	462;443;353	8	1,686
210:111	11	5,78	163;561	4	1,669
201;121	11	4,73	552;632	4	1,652
	8	4,48	533	4	1,634
031;300	9	4,14	642	19	1,60 0
221	29	3,95		6	1,565
311	8	3,47		6	1,541
231	15	3,38		14	1,518
141;202	14	3,14	382	14	1,507
212;410	22	3,05	572;742;083	6	1,443
032	14	2,907		6	1,424
420;401	14	3,819		3	1,405
340	100	2,716	680;590	9	1,354
	9	2,638	770;1.10.2;920;681	8	1,320
042	76	2,571	3.10.2	6	1,288
	6	2,446		5	1,276
	6	2,400		3	1 254
	5	2,338		3	1,240
412	8	2,307		3	1,231
	5	2,268		3	1,210
	11	2,225		3	1,192
530;342;261	26	2,176	5.11.0;791;6.10.1;593;773	6	1,172
	8	2,133	3.12.0;881;10.1.2	8	1,158
600;170;451;313;233	32	2,040		5	1,147
143;323	9	1,988	693;882;7.10.0	6	1,118
	9	1,958		5	1,090
243;333;460	11	1,914		5	1,067
	6	1,873		5	1,049
080;423;153	19	1,830		3	1,017
004;343	19	1,807		3	0,9826
	5	1,795			
	5	1,770			
	5	1,739			
	8	1,704			

Литература

- 1. Капустин Ю.Л., Хомяков А.П., Семенов Е.И., Еськова Е.М., Быкова А.В., Пудовкина З.В. // Зап. ВМО. 1974. Ч. 103, вып. 5. С. 567.
- 2. Крутик В.М., Пущаровский Д.Ю., Хомяков А.П., Победимская Е А., Белов Н.В. // Крнсталлография. 1981. Т. 26, № 6. С. 1197.
- 3. Победимская Е.А., Белов Н.В. // Там же. 1980. Т. 25, № 2. С. 240.
- 4. Хомяков А.П., Пущаровский Д.Ю., Ронсбо Дж.Г. // Зап. ВМО. 1981. Ч. 110, вып. 3. С. 351.
- 5. Соколова М.Н. Типоморфизм минералов ультраагпантовых ассоциаций. М.: Наука, 1986. 118 с.

Клинофосииаит Klinophosinaite $Na_{12}Ca_4[Si_4O_{12}](PO_4)_4$

Назван по моноклннной сингонии безредкоземельного фосинаита [1, 2]. Синон. Моноклинный фосинаит [3].

Характ. выдел. Зерна неправильной формы (1-2 мм).

Структ. и морф. крист. Монокл. с. $C_{2h}^4 - P2/c$. $a_0 = 7,303$, $b_0 = 12,201$, $c_0 = 14,715$ Å; $\beta = 91,93^\circ$; $a_0:b_0:c_0 = 0,599:1:1,206$, Z = 2 (анализ 1) [1–3]; $a_0 = 7,30$, $b_0 = 12,21$, $c_0 = 14,81$ Å; $\beta \approx 92^\circ$ (анализ 2) [2]. В отличие от структуры фосинаита, клинофосинаит [3] не содержит атомов р.з.э. и соответственно имеет иное заполнение катионных стенок. На этаже $x \approx 0$ волнистые цепочки, составляющие стенки, образованы полиэдрами Са трех типов и стянуты парами разных Na-полиэдров (фиг. 59, a); этаж на уровне $x \approx 0,5$ образован только Na-полиэдрами с неодинаковой конфигурацией (см. фиг. 59, 6). Стенки соседних этажей объединены в ажурный каркас из трубчатых колонок, вытянутых вдоль оси y (см. фиг. 59, e). Колонки образованы четверными кольцами двух типов: из кремнекислородных тетраэдров [Si₄O₁₂] и смешанными кольцами, состоящими из PO₄-тетраэдров и Na-полиэдров (к.ч. Na = 5 и 6).

Средние межатомные расстояния (в Å): Si-O = 1,624 и 1,620; P-O =1,533, 1,510 и 1,549; Ca-O = 2,323, 2,523 и 2,503; Na-O = 2,354-2,725.

Физ. св. Изл. раковистый. Тв. 4. Уд.в. 2,88 (ан. 1) и 2,85 (ан. 2). Цв. бледносиреневый. Прозрачный. Бл. стеклянный [1, 2].

Микр. Двуосный (+). $n_g = 1,567$ и 1,563, $n_m = 1,561$ и 1,559, $n_p = 1,557$ и 1,556; 2V = 80 и 75° (анализы 1 и 2 [2]).

Хим. Теор. состав: Na₂O - 33,19; CaO - 20,02; P₂O₅ - 25,34; SiO₂ - 21,45.

Анализы (микрозонд., каждый - среднее из анализов 2 зерен, анал. Ренсбо):

	1	2		1	2	
к ₂ О	0,09	0,05	MnO	0,60	0,54	
Na ₂ O	32,55	32,7	SiO ₂	20,1	20,1	
SrO	3,08	1,91	P ₂ O ₅	25,35	25,5	
CaO	15,65	16,45	Сумма	97,6 0	97,69	
Ce ₂ O ₃	0.18	0,44				

1 - гора Коашва; 2 - гора Юкспор.

Лазерным спектральным анализом отмечены незначительные примеси Fe, Mg, Al, Zr, Ti и Ba. Возможно присутствие небольшого количества H₂O [2].

Диагн. исп. Легко разлагается на холоду 10%-ной HCl.

Повед при нагр. При нагревании зерен до 1000° потеря весы образца с горы Коашва 1,08, с горы Юкспор – 2,55%.

Нахожд. Встречен в пегматитах Хибинского массива [2] в отвалах штольни Материальная на горе Юкспор и в керне буровой скважины в районе горы Коашва в замещенных пегматитах, сложенных калиевым полевым шпатом, энигматитом, пектолитом, лампирофиллитом, эвдиалитом и высокощелочными минералами (дельхайелитом, щербаковитом, ломоносовитом, фосинаитом, цирсиналитом и др.). Находится в тесных срастаниях с цирсиналитом – продуктом изменения эвдиалита под влиянием ультращелочных расплавов–растворов.

Отл. От фосинанта отличается понижением симметрии кристаллов и отсутствием р.з.э.

тог. 59. Структура клинофосинаита в проекцин уг (по Крутику и др)

а – стенки из Са-, Na- полиэдров на уровие $x \approx 0$; б – стенки из Na-полиэдров на уровие $x \approx 0.5$; в – то бчатые колонки из четверных колец [Si₄O₁₂]

h ki	1	d(Å)	hkl	1	d (Å)
122	12	3,97	234	12	2,156
122	9	3,90	206	4	2,070
200	6	3,66	304	3	2,063
032;130	10	3,56	060	50	2,031
123	5	3,37	008	35	1,838
202	10	3,24	400	47	1,823
221	6	3,02	264	12	1,608
042;140	5	2,819	264	11	1,588
034;230	100	2,724	247	3	1,582
204	57	2,639	434	12	1,533
2 04	50	2,550	238	10	1,504
241	6	2,320	149;076	5	1,418
241	.3	2,303	522,281	3	1,404
234	10	2,215	2.0.10;357	3	1,349

Межплоскостные расстояиия клинофосинанта из Хибинского массива [2] Fe-излучение, D = 114,6 мм

Литература

- 1. Хомяков А.П. // Геохимия. Минералогия: XXVI Междунар. геол. конгр.: Докл. сов. геологов. М Наука, 1980. С. 164.
- 2. Хомяков А.П., Пущаровский Д.Ю., Ронсбо Дж.Г. // Зап. ВМО. 1981. Ч. 110, вып. З. С. 351.
- 3. Крутик В.М., Пущаровский Д.Ю., Хомяков А.П., Победимская Е.А., Белов Н.В. // Кристаллография. 1980. Т. 25, № 2. С. 240.

СТРУКТУРА ТИПА ДЖОАКИНИТА

ГРУППА ДЖОАКИНИТА

Ранее со структурой такого типа был известен лишь джоакинит (т. Ш., вып. с. 59), который в соответствии с правилами КНМ ММА для редкоземельных минералов теперь имеет название джоакинит-(Се). Джоакинит остается групповым названием (Fleischer, Mandarino, 1995).

Группа объединяет ромбические или моноклинные титаносиликаты с общек формулой A₆(Ti, Nb)₂Si₈(O, OH)₂₆ · H₂O, где A – Ba, Ce, Fe²⁺, Na, Sr.

	Сингония	a_0	b 0	<i>c</i> ₀	β	Уд.в
Джоакинит-(Ce)Ba ₂ NaCe ₂ Fe ²⁺ (Ti,Nb) ₂ [Si ₄ ×	Монокл.	10,516	9,686	11,833	109,67°	3,89-4
Ортоджоакинит-(Се)Ва2NaCe2Fe ²⁺ (Ti,Nb)2×	Ромб.	10,48	9,66	22,26	_	_
[Si ₄ O ₁₂] ₂ O ₂ (OH, F) · H ₂ O Стронциоджоакинит Sr ₂ Ba ₂ х	Монокл.	10.516	9.764	11 871	109 17	3 68
×(Na, Fe ²⁺) ₂ Ti ₂ [Si ₄ O ₁₂] ₂ (O, OH) ₂ · H ₂ O		10,010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11,071	107.17	5,00
Бариоортоджоакинит (Ba Style $^{2+}$ TielSi OyaleOa(OH E), HaO	Ромб.	10,477	9,599	22,591	-	3,959
Са, S1/4Fe ₂ H2[340]2]202(Сн, F) - H2O Белоруссит-(Се) NaMnBa ₂ Ce ₂ Ti ₂ [Si ₄ O ₁₂] ₂ × ×О ₂ (F, OH) - H ₂ O	Ромб.	10,609	9,618	22,39	~	3,92

Стронциоортоджоакинит, указанный в группе в качестве самостоятельного вида (Флейшер, 1990-Clark, 1993), очевидно, выделен Вайсом [1] ошибочно, поскольку в анализе при первом описания минерала [2] в позиции X существенно преобладает Ва. Основой структуры джоакинита-(Се) являются четырехчленные кольца $[Si_4O_{12}]$, соединенные атомами Ті в слои, параллельные (001). Два таких слоя связаны атомами Ва и молекулами H₂O. Двойные слои, в свою очередь, связаны атомами TR, Na и Fe²⁺ [3, 4].

Ромбическая форма – ортоджоакинит-(Ce) (ortojoaquinite-(Ce)*) обнаружена в процессе структурных исследований [4], но недостаточно изучена. Предполагается [4], что она является результатом двойникования моноклинных индивидуумов (на уровне ячеек) по псевдозеркальной плоскости (001).

Литература

1. Wise W.S. // Amer. Miner. 1982. Vol. 67, N 7/8. P. 809.

2. Chihara K., Komatsu M., Mizota T. // Miner. J. Jap. 1974. Vol. 7, N 4. P. 395.

3. Canillo E., Mazzi F., Rossi G. // Tschermaks miner. und petrogr. Mitt. 1972. Bd. 17, H. 3. S. 233.

4. Dowty E. // Amer. Miner. 1975. Vol. 60, N 9/10. P. 872.

Стронциоджоакинит Strontiojoaquinite

 $Sr_2Ba_2(Na, Fe^{2+})_2Ti_2[Si_4O_{12}]_2(O, OH)_2 \cdot H_2O$

Назван по составу и близости к джоакиниту [1].

Характ. выдел. Мелкие кристаллы (до 0,5 мм).

Структ. и морф. крист. Монокл. с. Псевдоромбический. C_s^1 -*Pm*, C_2^1 -*P*2 или C_{2h}^1 -*P*2/*m*. $a_0 = 10,516$, $b_0 = 9,764$, $c_0 = 11,871$ Å; $\beta = 109^{\circ}17'$; $a_0:b_0:c_0 = 1,077:1:1,216$; Z = 2.

Основу структуры, как и в структуре джоакинита-(Се) [2], составляют кольца [Si₄O₁₂]. Позиции TR заняты атомами Sr. Имеется также различие в положении атомов Na и Fe и в распределении водорода [1].

Кристаллы псевдотетрагональные, бипирамидальные; формы: (001), (110) и (111). На пирамидальных гранях штриховка. Кристаллы зональные, центральная их часть (ядро) имеет состав джоакинита (см. хим. анализы). Наблюдалось субмикроскопическое двойникование [1].

Физ. св. Сп. хорошая по (001). Тв. 5,5. Уд.в. 3,68 (вычисл.). Цв. зеленый, желтовато-зеленый, реже желтовато-бурый. Джоакинитовое ядро кристаллов обычно темно-бурое [1].

Микр. Плеохроизм слабый: по Np = Nm – бесцветный, по Ng – желтый. Пл. опт. осей II (010). c = Ng, b = Nm, $aNp = 19^{\circ}$. Двуосный (+). $n_g = 1,780$, $n_m = 1,78$, $n_p = 1,710$. $2V = 35-45^{\circ}$. Дисперсия сильная, r > v [1].

Хим. Стронциевый аналог джоакинита-(Се).

Анализы (микрозонд.) [1]:

	1	2	3	4
Li ₂ O	0,03	0,12	He onp.	Не опр.
Na ₂ O	2,76	2,01	2,60	1,99
CaO	Не опр.	Не опр.	Не опр.	Не опр.
SrO	16,23	8,37	12,45	4,07
BaO	24,52	23,22	26,39	22,51
MnO	Не опр.	0,14	Не обн.	0,09
FeO	4,03	3,91	5,04	3,96
Al ₂ O ₃	He onp.	Не опр.	Не опр.	Не опр.
Y_2O_3				
La2O3	0,14	1,43		4,89
Ce ₂ O ₃	0,003	4,56	0,27	7,99

	I	2	3	4
Pr ₂ O ₃	0,003	0,82	Не опр.	1,03
Nd ₂ O ₃	0,05	2,88		1,91
Sm ₂ O ₃	Не опр.	Не опр.		0,29
Gd_2O_3	"	0,65	*	1,14
Dy ₂ O ₃	•	0,45		0,39
SiO ₂	37,54	35,87	37,57	34,99
TiO ₂	12,48	12,86	12,45	12,01
H ₂ O	2,10	Не опр.	Не опр.	Не опр.
Сумма	99,863 [*]	97,29	96,76 ^{2*}	97,26
Сумма	99,886 ^{2*}	97,29	96,77 ^{3*}	97,26

* Определялись на ионном микроанализаторе.

^{2*} В оригинале сумма 99,85.

^{3*} В оригинале сумма 98,05.

1-4 – кристаллы (1, 2- из метабазальта, 3, 4 – из жилы, секущей метаграувакки), Сан-Бенито, шт. Калифорния (США): 1, 3 – стронциоджоакиннт (наружная часть кристаллов), 2, 4 – джоакинит-(Се) (ядро кристаллов).

Эмпирическая формула [1]: (Na_{2,28}Li_{0,11}Fe²⁺_{1,44} $\Box_{0,17}$) \Box_2 Ba_{4,09}Ti_{4,00}[O_{1,27}(OH)_{2,73}; ×Sr_{4,01}TR_{0,01}[Si₄O₁₂]₄ · 1,62H₂O при Z = 1.

Нахожд. В виде мелких кристаллов найден в небольших пустотах метабаза. тового блока и в жилах, пересекающих тектонический блок граувакков в окрест ностях гор Сан-Бенито, шт. Калифорния (США). В первом случае находится в асс циации с бенитоитом, нептунитом, альбитом, кросситом, во втором – с альбитом актинолитом, бенитоитом, нептунитом, анальцимом и натролитом [1].

Межилоскостные расстояния строициоджоакинита из Сан-Бенито (США) [1]

			Ci	ıК _α −излу	чение			
hkl	1	d(Å)	hki	1	d(Å)	hki	1	d (Å)
001	15	11,3	311	33	3,301	320	20	2,736
002	20	5,61	122	35	3,232	401;402	42	2,611
020	4	4,87	202	35	3,220	314	5	2,518
021	40	4,47	123	24	3,079	224;403	12	2,475
121	35	4,30	113	48	3,011	312	40	2,432
201	7	4,06	023	72	2,967	041	15	2,386
022	10	3,68	301	45	2,923	401	28	2,268
221	7	3,55	004;311	100	2,801	042	25	2,238

Литература

1. Wise W.S. // Amer. Miner. 1982. Vol. 67, N 7/8. P. 809.

2. Canillo E., Mazzi F., Rossi G. // Tschermaks miner. und petrogr. Mitt. 1972. Bd. 17, H. 3. S. 233.

Бариоортоджоакинит Bario-ortojoaquinite $(Ba, Sr)_4Fe_2^{2+}Ti_2[Si_4O_{12}]_2O_2(OH, F) \cdot H_2O$

Назван по составу и орторомбической сингонии [1].

Синон. Джоакинитоподобный минерал – joaquinite-like mineral [2]; нанекевент – nanekeveite [3, 4].

Характ. выдел. Кристаллы (2-8 мм).

Структ. и морф. крист. Ромб. с. D_{2h}^{17} -Сстт, $C_{2\nu}^{12}$ -Сст 2_1 или $C_{2\nu}^{16}$ -Сс2m. $a_0 = 10,477, b_0 = 9,599, c_0 = 22,591$ Å; $a_0:b_0:c_0 = 1,091:1:2,353; Z = 2$ [1].

В отличие от изоструктурного джоакинита-(Се) в структуре бариоортожоакинита атомы TR полностью замещены атомами Ва и Sr.

Кристаллы дипирамидальные, с формами (001) и (111). Пирамидальные грани исштрихованы и изогнуты.

Физ. св. Сп. хорошая по (001). Тв. 5,5. Уд.в. 3,959 (вычисл. 3,962). Цв. желтовато-бурый. Бл. стеклянный. Черта светло-желтая.

Микр. Плеохроизм отчетливый: по Ng – желтый, по Nm – светло-желтый, по Np – очень светло-желтый. $Np < Nm \ll Ng$. Пл. опт. осей II (010). c = Ng, a = Np. Двуосный (+). $n_g = 1,801$, $n_m = 1,737$, $n_p = 1,735$; $2V = 10-15^\circ$. Дисперсия сильная, r > v.

Хим. Анализ (микрозонд.)[1]: Li₂O – не обн.; Na₂O – 0,12; CaO – 0,17; SrO – 3,34; BaO – 38,56; MnO – 0,62; FeO – 9,47; Al₂O₃ – 0,57; TR₂O₃ – не обн.; SiO₂ – 35,15; TiO₂ – 11,33; H₂O – 1,30; сумма 100,63 (см. также анализ джоакинитоподобного минерала – т. III, вып. 2, с. 63).

Эмпирическая формула (Na_{0,10}Fe_{3,61}Mn_{0,24} $\Box_{0,05}$) \Box_2 Ba₄(Ti_{3,88}Al_{0,12})(Ba_{2,88}Sr_{0,88}× ×Ca_{0.08}Al_{0,19})O₄[Si₄O₁₂]₄ · 2 H₂O (Z = 1).

Характерно почти полное отсутствие Na.

Нахожд. Найден [1] в виде кристаллов в одном из блоков метабазальта на месторождении драгоценных камней Бенитоит, округ Сан-Бенито, шт. Калифорния (США), в секущих натролитовых прожилках в ассоциации с бенитоитом, частично замещенным баотитом и фресноитом. В Оми, преф. Ниигата (Япония) [2], минерал образует агрегаты и линзочки (до 3 см) в амфибол-кварц-альбитовой дайке, секущей серпентиниты; находится в ассоциации с бенитоитом и лейкосфеном.

Межплоскостные расстояния барноортоджоакинита из Сан-Бенито (США) [1]

СиК_α-излучение

hki	I	d(Å)	hki	1	d(Å)	hkl	1	d(Å)
110	5	7,14	312	12	3,153	333	9	2.311
111	11	6,76	130	28	3,063	405	32	2,264
112	5	6,02	131	45	3,028	422	26	2,254
004	70	5,64	224	100	2,997	044	ig	2,211
201	12	5,11	132	95	2,953	423	15	2,201
202	14	4,74	117	70	2,935	242	18	2,144
022	38	4,418	008	90	2,824	0.2.10	22	2,045
203	62	4,303	225	23	2,78	1.1.11;245	16	1,969
204	17	3,834	207	38	2,750	2.0.11	25	1,913
024	8	3,66	400	15	2,62	151	17	1,882
220	11	3,56	401	50	2,602	427	15	1,870
221	14	3,52	402	12	2,551	048	9	1,828
205	12	3,424	316	14	2,48	409	18	1,812
310	37	3,286		18	2,455	Кроме того	, 9 лини	ий до 1,54
311	23	3,25	028	15	2,424	-		
223	50	3,203	136	15	2,373			

Литература

- 1. Wise W.S. // Amer. Miner. 1982. Vol. 67, N 7/8. P. 809.
- 2. Chihara K., Komatsu M., Mizota T. // Miner J. Jap. 1974. Vol. 7, N 4. P. 395.
- 3. Чихара К., Коматсу М., Мизота Т. // Тез. докл. XI съезда ММА. Новосибирск: ИГиГ, 1978. Т. 1. С. 62.
- 4. Dunn P.J., Ferraiolo A., Fleischer M., Gobel F., Grice J.D., Langley R.H., Shugley J.E., Vanko D.A., Zilczer J.A. // Amer. Miner. 1985. Vol. 70, N 11/12. P. 1329.
- 8 Минералы т. IV, вып. 3

Белоруссит-(Ce) Belorussite-(Ce) NaMnBa₂Ce₂Ti₂[Si₄O₁₂]₂O₂(F, OH) \cdot H₂O

Назван по месту находки в Белоруссии [1].

Характ. выдел. Кристаллы до 20×20×4 мм.

Структ. и морф. крист. Ромб. с. $D_2^4 - P 2_1 2_1 2_1$. $a_0 = 10,609$, $b_0 = 9,618$, $c_0 = 22,39$ Å; $a_0:b_0:c_0 = 1,1030:1:2,327$; Z = 4. Установлены сверхструктурные отражения, отвечающие a' = 3a и c' = 2c, что предположительно связано с упорядоченным распределением катионов.

Кристаллы таблитчатого и уплощенно-таблитчатого габитуса. Отчетливо проявлены только грани (001).

Физ. св. Сп. по (001) совершенная, по (100) несовершенная и по (010) весьм. несовершенная. Тв. 5,5–6,0. Очень хрупкий. Уд.в. 3,92 (вычисл. 4,09). Цв. от светло-желтого до светло-коричневого. Черта бесцветная. Бл. стеклянный. Удельная магнитная восприимчивость (χ) 0,628 · 10⁻⁹ м³/кг. В ультрафиолетовом свете не люминесцирует. В ИК-спектре обнаружены полосы поглощения: 3510, 3480, 1610 1450, 1200, 1085, 1040, 1015, 985, 920, 900, 800, 785, 720, 690, 655, 590, 545, 495 470, 445 и 410 см⁻¹.

Микр. Плеохроизм отсутствует или очень слабый в желтоватых тонах. $Ng > Nm \approx Np$. Пл. опт. осей (010). Np = a, Nm = b, Ng = c. Удлинение (-). Двуосный (+). $n_g = 1,820$, $n_m = 1,760$, $n_p = 1,743$; $n_g - n_p = 0,077$; $2V = 58-62^{\circ}$.

Хим. Анализ (микрозонд., среднее для 4 зерен): $Na_2O - 2,08$; $K_2O - 0,40$; MgO - 0,15; ZnO - 1,58; SrO - 0,43; BaO - 20,58; MnO - 2,58; FeO - 0,82; $Ce_2O_3 - 12,13$: $La_2O_3 - 8,33$; $Pr_2O_3 - 0,58$; $Nd_2O_3 - 2,2$; $Sm_2O_3 - 0,1$; $Gd_2O_3 - 0,15$; ($\Sigma TR_2O_3 - 23,59$), $SiO_2 - 33,98$; $TiO_2 - 11,35$; F - 0,98; H_2O (вычисл.) - 1,45; $-O=F_2 - 0,41$; сумма 99,56. Спектральным анализом обнаружены: Nb - 0,06; Ta - 0,03; Be - 0,1; Pb - 0,03; Cd - 0,001; Sn - 0,001; Ge - 0,0006; Y - 0,07; Yb - 0,0009.

Эмпирическая формула (на 8 атомов Si): $(Na_{0,95}K_{0,12})_{1,07}(Mn_{0,51}Zn_{0,27}Fe_{0,16^{\times}} \times Mg_{0,05})_{0,99}$ (Ba_{1,89}Sr_{0,06})_{1,95} (Ce_{1,04}La_{0,72}Nd_{0,19}Pr_{0,05}Gd_{0,01}Sm_{0,01}Y_{0,01})_{2,03} Ti_{2,0}Nb_{0,01}Si_{7,97}× ×O_{26,0}[F_{0,73}OH_{0,27}]_{1,00} · H₂O.

Нахожд. Найден в пределах Житковичского горста (Гомельская обл., Беларусь в зальбандовой части кварцевой жилы, пересекающей микроклинизированные альбитизированные и окварцованные граносиениты нижнего протерозоя. Кроме кварца, ассоциирует с магнезиорибекитом, эгирином, микроклин-пертитом, альбитом, лейкофаном и титанитом.

Изм. Отдельные кристаллы почти целиком замещаются тонкодисперснои смесью брукита, бастнезита и монтмориллонита.

Отл. От джоакинита-(Ce) отличается малым содержанием FeO и по ИК-спектру – меньшей интенсивностью полос 3510–3480 см⁻¹ (колебания OH) и 1610 см⁻ (колебания молекул H₂O); разным разрешением полос в области 1040–985 см⁻¹; небольшим смещением некоторых полос, а также изменением интенсивности ряда полос.

Межплоскостные расстояния белоруссита-(Се) из Белоруссии [1]

СиКа-излучение d(Å) hkl L hkl L d(Å) hkl d (Å) L 002 3,56 6 11,22 220 15 035 52 2,606 9 316;208 110 7.13 221 12 3.51 22 2,462 111 12 6,77 310;116 45ш 3,30 040;028;041 26 2,414

hLl	1	d (Å)	hkl	1	d(Å)	hkl	1	d(Å)
112;013	6	5,97	223	27	3,20	330;136	15	2,370
	10	5,72	312	19	3,16	420	8	2,316
004	50	5,58	308	12	3,08	333	27	2,263
020;014	12	4,83	206;131	21ш	3,04	423	32	2,210
202	35	4,76	313	68	3,00	334;241	16ш	2,186
022;114	59ш	4,42	224;026	63	2,95	242	17	2,151
121;203	37ш	4,29	117	52	2,91	318;045	15	2,127
115	23	3,77	133;314	21	2,84	510;2.0.10;425; 244	13ш	2,051
006	7	3,71	008;225	100	2,783	Кроме того, 25 до 1,435	слабы	х линий
024	8	3,64	207;134	17 ш	2,724			

Литература

1. Шпанов Е.П., Нечелюстов Г.Н., Батурин С.В., Солнцева Л.С. // Зап. ВМО. 1989. Ч. 118, вып. 5. C. 100.

СТ	РУКТУР	A T	ИПА	ГИА.	лоте	КИТА		
	Сингония	a_0	b_0	с ₀	α	β	γ	Уд.в.
Гиалотекит Ca2Ba2Pb2[(Si1,5Be _{0,5})2× ×Si8O28]B2F	Трикл.	11,310	10.955	10,317	90,43°	90,02°	90,16°	3,82

Гиалотекит Hyalotekite

 $Ca_2Ba_2Pb_2[(Si_1 SBe_{0.5})_2Si_8O_{28}]B_2F$

Назван Норденшельдом в 1877 г. от греч. χιαλος (хиалос) – стекло и τηκομαι (тектос) – плавиться, но до 1982 г. [1] не были известны структурные данные, включая пространственную группу и параметры элементарной ячейки.

Характ. выдел. Ксеноморфные, иногда идиоморфные зерна (до 2 см), грубозернистые агрегаты [1, 2].

Стј	Структ. и морф. крист. Трикл. с. $C_1^i - P1$. $V = 1267 \text{Å}^3$; $Z = 2$ [1].											
<i>a</i> ₀ (Å)	b_0	<i>c</i> ₀	α	β	γ	$a_0: b_0: c_0$	Местонахож- деиие	Ссыл- ка				
11,310	10,955	10,317	90,43°	90,02°	90,16°	1,0324:1:0,9417	Лонгбан (Швеция)	[2]				
11,284	10,930	10,272	90,35	90,11	89,98	1,0322:1:0,9397	Дараи-Пиез (Талжикис-	[1]				

Основой структуры [2] являются сложные группировки состава [T₁₀O₂₈], представляющие собой два четырехчленных кольца [Si₄O₁₂], соединенные двумя тетраэдрами состава [(Si15Be05)O4]. Поскольку каждый тетраэдр в общий мотив добавляет только по 2 атома O, вся группировка имеет состав [$(Si_1 SBe_0 S)_2 Si_8 O_{28}$]. Эти дополнительные тетраэдры [Si1,5Be0,5] образуют с тетраэдрами бора четырехчленные кольца (B₂Si_{1.5}Be_{0.5}O₁₂) (фиг. 60), все атомы кислорода которых были уже учтены в рассмотренной выше группировке.

Катионы Са, Ва и Рь имеют координационные многогранники с восемью вершинами, семь из которых заняты атомами кислорода из уже рассмотренных выше анионных мотивов, а восьмая вершина - атомами фтора.

тан)

Фиг. 60. Схема структуры гиалотекита в проекции вдоль [001] (по Муру и др.). Цифры – высота атомов

Межатомные расстояния (в Å): Ca-O = 2,344–2,557; Pb-O = 2,356–3,470: Pb-F = 2,553–2,585; Ba-O = 2,657–3,360; Ba-F = 2,971, 3,039.

Физ. св. Сп. в двух направлениях под углом 90°. Тв. 5–5,5. Уд.в. 3,82 (вычисл. 3,82 и 3,99 – на основе эмпирической и идеальной формул соответственно [2]). Цв. бесцветный, белый, светло-серый. Бл. стеклянный, слабо масляный. В тонких пластинках полупрозрачный. Флюоресцирует в ультрафиолетовых лучах ($\lambda = 254$ нм): коричнево-оранжевым и желтым – в образце из Лонгбана [1, 2], голубым – из Дараи-Пиеза [1]; в катодных лучах – только голубое свечение [1].

Микр. Бесцветный. Пл. опт. осей ⊥ спайности. Показатели преломления (λ = = 589 нм, метод вращающейся иглы) [1].

№ан.	ng	n _m	np	2V(+)	2V (вычисл.)	Местонахождение
3*	1,670	1,656	1,656	57 2°	55,4°	Лонгбан
2*	1,671	1,656	1,656	60,5	62,5	"
4	1,659	1,646	1,646	57,0	57,7	Дараи-Пиез
*,	цисперсия с	лабая, r < v.				-

Согласно [1] оптические константы для гиалотектита из Лонгбана ($n_g = 1,963$, $n_m = 1,960$, $n_p = 1,960$; 2V от малого до 26°; дисперсия сильная, r < v), вероятно, ошибочны.

Хим. Теор. состав: BeO – 0,81; CaO – 7,30; BaO – 19,95; PbO – 29,04; B₂O₃ – 4,53; SiO₂ – 37,13; F = 1,24.

	1	2	3	4	
Na ₂ O	0,17	0,04	0,02	0,77	
К ₂ О	0,89	0,78	0,73	0,74	
BeO	0,75	0,60	0,27	0,57	
MgO	0,09	0,01	0,01	0,01	
CaO	7,82	7,50	7,43	6,81	
MnO	0,29	0,22	0,23	0,00	
BaO	20,08	19,97	19,68	27,30	
РЬО	25,11	27,24	27,86	17,46	
B ₂ O ₃	3,73	4,13	6,06	4,46	
Fe ₂ O ₃	0,06	0,08	0,05	0,05	
SiO ₂	39,47	39,25	38,19	40,74	
F	0,99	0,69	0,23	0.77	
-O=F ₂	0,43	0,29	0,10	0,32	
Сумма	99,94*	100,22	100,66	99,42**	

Анализы (2-4 – ионный микрозонд) [1]:

* В том числе CuO – 0,09, Al_2O_3 – 0,18, Cl – 0,06, п.п. – 0,59.

** В том числе SrO - 0,07.

1-3 – Лонгбан (Швеция): 1 – анал. Линдстрем [1], 2 – оригинал структуриого исследования, среднее из 4 анализов, 3 – голотип, среднее из 2 аиализов; 4 – Дараи-Пиез (Таджикистан).

Образцы из Лонгбана неоднородны даже в пределах одного зерна [1]. Эмпирические формулы (на 18 катионов): (Ca_{2,08}Mn_{0,06}Cu_{0,02}Na_{0,08})× ··Ba_{1,95}K_{0,28}Pb_{1,68})(Si_{9,78}Be_{0,45}B_{1,60}Al_{0,05}Fe_{0,01}Mg_{0,03})O_{28,5}F_{0,776}Cl_{0,025} (Лонгбан); (Ca_{1,76}× ·Sr_{0,01}Na_{0,36})(Ba_{2,58}K_{0,23}Pb_{1,13})(Si_{9,81}Be_{0,33}B_{1,86}Fe_{0,01})O_{28,5}F_{0,584} (Дараи-Пиез).

Изоморфные замещения: Pb \rightleftharpoons Ba, K; B \rightleftharpoons Si и B \rightleftharpoons Be [1].

Диагн. исп. В кислотах не растворяется. П.п.тр. легко плавится в прозрачное стекло.

Нахожд. Долгое время был известен лишь в скарнах месторождения Лонгбан Швеция), где был установлен Норденшельдом в 1877 г. [2]. Ассоциирует с Мпциопсидом, родонитом, андрадитом, меланотекитом, стильпномеланом, барилитом, «ктолитом, кальцитом и гематитом. Относительно крупные выделения похожи на солевой шпат.

В небольших количествах обнаружен вместе с ладденитом, аламозитом, сланотекитом, церусситом и флюоритом в отвалах Ag-Pb-Zn рудопроявления лизи Артиллери-Пик (шт. Аризона, США) [3].

В ридмерджнерит-полевошпатовом пегматите в массиве Дараи-Пиез (Таджикис-*ан) [1] наблюдается в виде включений в микроклине, иногда вместе с полилитвонитом, а также в интерстициях крупных зерен полевого шпата. В пегматите становлены также цезийкуплетскит и тяньшанит.

Предполагают, что образование гиалотекита в Лонгбане и Дараи-Пиезе троисходило при $P \le 4$ кбар, $t \ge 500^{\circ}$ в условиях насыщенности Si, высокой зелочности, относительно высокой фугитивности O и низкой – S [1].

	Cu Cu	гα-излучен	ue, D = 114,0 M	4M	
1	d(Å)	1	d (Å)	I	d(Å)
60	7,692	15	3,289	65	2,299
10	5,587	40	3,115	15	2,203
15	5,435	80	2,941	65	2,141
25	5,181	25	2,882	30	2,033
15	4,444	10	2,817	10	2,000
50	4,329	50	2,618	10	1,961
70	3,817	50	2,584	30	1,842
50	3,745	15	2,538	10	1,821
80	3,534	15	2,506		
100	3,448	1.5	2,336		
*					

Межплоскостные расстояния гналотекита из Лонгбана (Швеция)*

* ASTM, 19-572.

Литература

1. Grew E.S., Yates M.G., Belakovskiy D.I., Rouse R.C., Su Shu-Chun, Marquez N. //Miner. Mag. 1994. Vol. 59 N 2. P. 285.

2. Moore P.B., Araki T., Chose S. // Amer. Miner. 1982. Vol. 67, N 9/10. P. 1012.

3. Williams S.A. // Miner. Mag. 1982. Vol. 46, N 340. P. 63.

СТРУКТУРА ТИПА СТИСИИТА

	Сингония	Пр. гр.	a_0	<i>c</i> 0	Уд.в.
Стисиит Th(Na,Ca) ₂ (K _{1-z} □ _z)[Si ₈ O ₂₀];	Тетраг.	P4/mcc	7,583	14,763	3,32
z = 0,20-0,40					

Ранее считался эканитом и описан под этим названием в группе эканит, включавшей также структурно не изученный иракит (т. Ш, вып. 2, с. 47).

Как самостоятельный минеральный вид утвержден в 1982 г. после изучення собственно эканита – ThCa₂[Si₈O₂₀], выявившего структурные и химические различия стисиита и эканита [1].

В структуре стисиита выделяются двойные кремнекислородные кольца, эканисодержит гофрированные кремнекислородные слои. В различии этих двух структу-[2] определяющая роль принадлежит атомам К, отсутствие которых в эканитделает невозможным "замкнуться" в кольца группам кремнекислородных тетра эдров [Si₈O₂₀] (см. с. 393).

Литература

1. Perrault G., Szymanski J.T. // Canad. Miner. 1982. Vol. 20, pt 1. P. 59. 2. Szymanski J.T., Owens D.R., Roberts A.C., Ansell H.G., Chao G.Y. // Ibid. P. 65.

Стисиит Steacyite

Th(Na,Ca)₂(K_{1-z} \Box_z)[Si₈O₂₀]; z = 0,20-0,40

Основные свойства и условия нахождения стисиита приведены в статье "Эк. нит" (т. III, вып. 2, с. 47), здесь приведены новые данные.

Назван в честь канадского минералога Х.П. Стиси [1].

Характ. выдел. Кристаллы, сферолиты, зернистые агрегаты.

Структ. и морф. крист. Тетраг. с. $D_{4h}^2 - P4/mcc. a_0 = 7,583, c_0 = 14,763$ Å; $a_0:c_0 = 1:1,946; Z = 2$ [2].

Фиг. 61. Структура стисиита в проекции на плоскость уг (по Ричарду и Перро). Цифры – высота атомов ×100)

Описание структуры и межатомные расстояния см. т. III, вып. 2, с. 47. Кремнекислородные радикалы [Si₈O₂₀] – в виде сдвоенных четырехчленных колец (фиг. 61) 3]. Сопоставление со структурой эканита см. Введение к группе.

Хим. Анализ стисиита (микрозонд.) из нефелинового сиенита, о-ва Лос, Гвинея 2]: Na₂O – 3,96; K₂O – 4,42; CaO – 4,38; TR₂O₃ – 1,81; SiO₂ – 52,12; UO₂ – 0,14; ThO₂ – 30,08; P₂O₅ – 0,02; As₂O₅ – 0,45; F – 0,23; –O = F₂ – 0,10; сумма 97,51.

* Состав редких земель [2]: Ce₂O₃ – 0,95; Sm₂O₃ – 0,09; Nd₂O₃ – 0,38; La₂O₃ – 0,37; Pr₂O₃ – 0,02.

Эмпирическая формула [2]: (Th_{1,04}U_{0,01}TR_{0,10})_{1,14}(Na_{1,17}Ca_{0,71})_{1,88}(K_{0,86} $\Box_{0,14}$)_{1,00} × (Si_{7,92}As_{0,03}P_{0,002})_{7,95}O_{19,89}.

Нахожд. Найден в миароловой пустоте в нефелиновом сиените в виде желтоватых сферолитов (диаметром до 0,3 мм) на о-ве Роума (о-ва Лос, Гвинея) [2].

Отл. От внешне сходного эканита отличим по химическому составу (наличие N_a и K) и рентгенограмме.

Межплоскостные расстояввя стисяита, о-ва Лос (Гвинея) [2]
СиК _о -излучение, Ni-фильтр

hki	I	d(Å)	hkl	I	d(Å)
100	Слаб.	7,57	214	Слаб.	2,50
002	Слаб.	7,38	310; 302	Слаб.	2,39
102	Оч. сильи.	5,29	224; 313	Оч. слаб.	2,16
112	Оч. слаб.	4,34	321	Оч. слаб.	2,08
210; 202	Оч. сильн.	3,37	206	Слаб.	2,067
104; 211	Среди.	3,32	314	Оч. слаб.	2,013
212	Оч. слаб.	3,08	216	Средн.	1,991
114	Оч. слаб.	3,04	412	Оч. слаб.	1,782
2 2 0	Оч. слаб.	2,67	306	Оч. слаб.	1,763
204	Сильи.	2,64	402	Оч. слаб.	1,644
300; 222	Слаб.	2,53	218	Оч. слаб.	1,622

Литература

1. Perrault G., Szymansky J.T. // Canad. Miner. 1982. Vol. 20, pt 1. P. 59.

2. Parodi G.C., Della Ventura G. // Neues Jb. Mineral Monatsh. 1987. H. 5. S. 233.

3. Szymansky J.T., Owens D.R., Roberts A.C., Ansell H.G., Chao G.Y. // Canad. Miner. 1982. Vol. 20, pt 1. P. 65.

СИЛИКАТЫ С ШЕСТИЧЛЕННЫМИ КОЛЬЦАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА МИЛАРИТА

ГРУППА МИЛАРИТА

В группе описаны: рёддерит, меррихьюит, миларит, осумилит, ягиит, арменит бреннокит, согдианит, сугилит и дарапиозит (т. Ш, вып. 2, с. 139).

Указанная ранее разновидность осумилита – осумилит-(K,Mg) – признана минеральным видом с названием осумилит-(Mg) (Флейшер, 1990; Clark, 1993).

По Флейшеру (1990), группа осумилита включает все указанные минералы (кроме чейесита) и дополнительно эмелеусит $Na_4Li_2Fe_2^{3+}Si_{12}O_{30}$. Последний описан в т. III, вып. 3, с. 373 с формулой LiNa₂Fe³⁺[Si₆O₁₅] в группе тухуалита, отнесенной к ленточным силикатам.

	Сингония	a_0	<i>c</i> 0	Уд.в.
Эйфелит KNa ₃ Mg ₄ [Si ₁₂ O ₃₀]	Гексаг.	10,15	14,22	2,67
Пудреттит KNa ₂ [Si ₁₂ O ₃₀]В ₃	"	10,239	13,485	2,51
Чейесит К(Mg,Fe ²⁺) ₄ Fe ³⁺ [Si ₁₂ O ₃₀]		10,153	14,388	2,68 (вычисл.)

Основа структур – сдвоенные шестичленные кольца [Si₁₂O₃₀] из Si-тетраэдров T(1), соединенные тетраэдрами T(2), заселенными Mg в эйфелите, B – в пуд-

Фиг. 62. Структурная модель минералов миларитовой группы (по Черни и др.) *а* – вдоль оси *b*; *б* – вдоль оси *c*; *А*–*D* – позиции катионов в кристаллических структурах мииералов данной группы

реттите. К, частично Na и Mg расположены соответственно в позициях О^{XII}, В^{IX, VI} и A^{VI} (фиг. 62) [1]. Минералы группы, возможно, распространены более широко, но из-за их сходства с кварцем и кордиеритом могут пропускаться исследователями.

Литература

1. Černý P., Hawthorne F.C., Jarosewich E. // Canad. Miner. 1980. Vol. 18, pt 1. P. 41.

Эйфелит Eifelite KNa₃Mg₄[Si₁₂O₃₀]

12 (03:1164[01]2030]

Назваи по району находки в восточной части Эйфеля (Германия) [1]. Название относится к членам изоморфного ряда эйфелит KNa₃Mg₄[Si₁₂O₃₀]-рёддерит KNaMg₅[Si₁₂O₃₀] с (Na,K) \geq 3, Na > K, Mg > Fe [1].

Характ. выдел. Кристаллы (около 1 мм в диаметре) [1].

Структ. и морф. крист. [1]. Гексаг. с. $D_{6h}^2 - P6/mcc. a_0 = 10,150$ и 10,137, $c_0 = 14,223$ и 14, 223 Å; $a_0:c_0 = 1:1,401$ и 1:1,403; V = 1268,98 и 1265,73 Å³ (хим. анатизы 1 и 2 соответственно); Z = 2.

Размещение атомов по позициям в эйфелите-реддерите [1]:

к	Na _{l+x}	$(R_{2-x}^{2+,3+}Na_x)$	Mg ₃	Si ₁₂
C ^[12]	B ^{16]}	A ^[6]	T(2) ^[4]	T(1) ^[4]

Na (как и в рёддерите) – в октаэдрическом положении B^{VI} , смещенном вдоль эси *с* (на –0, 0,28 Å) от идеальной позиции B^{IX} в структуре синтетической фазы $K_2Mg_5[Si_{12}O_{30}]$ [2]. Na занимает также положение A^{VI} , где он может замещаться на Mg (фиг. 63). T(2)^{IV} занято только Mg.

Средние межатомные расстояния (в Å): K–O = 3,035; Na–O = 2,493, 2,758 и 3,203; (Mg,Na)^{VI}–O = 2,077; Mg^{IV}–O = 1,989; Si–O = 1,620.

Габитус кристаллов от пластинчатого до призматического. Преобладающие грани (1010), (0001), второстепенная (1120), редкая (1012).

Фиг. 63. Структура эйфелита в проекции вдоль оси с (по Абрааму и др.)

Фиг. 64. Зависимость Na-K⁺ в серии рёддерит-эйфелит (по Абрааму и др.)

Физ. св. [1]. Сп. не наблюдалась. Уд.в. 2,67 (вычисл., хим. анализ 2). Бесцветный до очень светло-желтого или зеленого. Черта белая. Бл. стеклянный.

Микр. [1]. Плеохроизм не наблюдался. Одноосный (+). $n_e = 1,5458$ и 1,5443. $n_o = 1,5445$ и 1,5430; $n_e - n_o = 0,0014$ и 0,0013 (хим. анализы 1 и 2 соответственно).

Хим. Изоморфизм по схеме 2 Na \rightarrow Mg (точнее, 2 Na⁺ \rightarrow R²⁺) [1, 3]. Промежуточным членом может служить впервые найденный образец (без названия) [4' состава KNa₂Mg_{4,5}Si₁₂O₃₀ (фиг. 64).

Анализы (микрозонд., 2 кристалла) [1]:

1	2		1	2
4,18	4,16	FeO*	0,48	0,19
6,48	8,07	Cr ₂ O ₃	0,06	Не оби.
16,25	15,47	Al ₂ O ₃	0,79	0,57
0,34	0,4 3	TiO ₂	0,06	0,03
0,08	0,16	SiO ₂	71,06	69,06
0,46	0,53	Сумма	100,24	98,67
	1 4,18 6,48 16,25 0,34 0,08 0,46	1 2 4,18 4,16 6,48 8,07 16,25 15,47 0,34 0,43 0,08 0,16 0,46 0,53	1 2 4,18 4,16 FeO* 6,48 8,07 Cr_2O_3 16,25 15,47 Al_2O_3 0,34 0,43 TiO ₂ 0,08 0,16 SiO ₂ 0,46 0,53 Сумма	1 2 1 4,18 4,16 FeO* 0,48 6,48 8,07 Cr_2O_3 0,06 16,25 15,47 Al_2O_3 0,79 0,34 0,43 TiO ₂ 0,06 0,08 0,16 SiO ₂ 71,06 0,46 0,53 Сумма 100,24

* Общее.

Эмпирические формулы (на 30 атомов О):

 $1 - (K_{0.90}Na_{2,12})_{3,02}(Mg_{4,08}Zn_{0,04}Cu_{0,01}Mn_{0,07}^{2+}Fe_{0,07}^{2+}Cr_{0,01}Al_{0,14}Ti_{0,01})_{4,43} \times$

 \times (Si_{11,98}Al_{0,02})_{12,00}O₃₀;

 $\begin{array}{l} 2-(K_{0,92}Na_{2,70})_{3,62}(Mg_{3,98}Zn_{0,05}Cu_{0,02}Mn_{0,08}^{2+}Fe_{0,03}^{2+}Al_{0,04})_{4,20}\times\\ \times(Si_{11,92}Al_{0,08})_{12,00}O_{30}. \end{array}$

Микрохимическим анализом найдено 0,1% Li₂O [1].

Диагн. исп. [1]. Нерастворим в HCl и H₂SO₄.

Нахожд. Найден в пустотах контактово-метаморфизованного гнейсового ксенотита, включенного в лейцитовый тефроит четвертичного вулкана Беллерберг в восточной части Эйфеля (Германия) [1, 4]. Ксенолит состоит в основном из кварца и санидина, наряду с эйфелитом в пустотах встречаются пироксен, амфибол, тридимит, гематит, псевдобрукит и рёддерит [1].

Как и рёддерит, предположительно рассматривается как результат кристаллизации из высокощелочной газовой фазы, богатой Mg и Si, но бедной Al, пропитывающей ксенолит [1, 3]. Это согласуется с обычным присутствием акмитовых пироксенов в ксенолитах.

Отл. От рёддерита отличается более высоким двупреломлением и хим. составом.

Межплоскостные расстояния эйфелита из Эйфеля* (Германия) [1]

	МоК _а -излученне											
h kl	1	d (Å)	hkl	1	d (Å)	hkl	1	d(Å)				
002	5	7,07	211	10	3,26	320	4	2,03				
110	5	6,11	114	5	2,91	411	3	1,914				
200	6	4,43	204	5	2,76	323; 412	5	1,864				
112	5	4,14	213; 302	4	2,73	008; 324	5	1,76				
202	9	3,75	220	3	2,56							
004	4	3,54	400	3	2,21							

Наиболее интеисивные линии.

Литература

- 1. Abraham K., Gebert W., Medenbach O., Schreyer W., Hentschel G. // Contrib. Miner. and Petrol. 1983. Vol. 82, N 2/3. P. 252.
- 2. Forbes W.C., Baur W.H., Khan A.A. // Amer. Miner. 1972. Vol. 57, N 3/4. P. 463.
- 3. Hentschel G., Abraham K., Schreyer W. // Contrib. Miner. and Petrol. 1980. Vol. 73, N 2. P. 127.
- Abraham K., Gebert W., Medenbach O., Schreyer W., Hentschel G. // Fortschr. Miner. 1980. Bd. 58, H. 1. S. 3.

$Пудреттит Poudretteite KNa_{2}[Si_{12}O_{30}]B_{3}$

Назван в честь семейства Р. Пудретта, управляющего карьером, где впервые был найден минерал [1].

Характ. выдел. Кристаллы до 5 мм.

Структ. и морф. крист. Гексаг. с. D_{6h}^2 -Рб/*mcc.* $a_0 = 10,239$, $c_0 = 13,485$ Å; $a_0:c_0 = 1:0,759$; V = 1224,3 Å³; Z = 2.

В структуре тетраэдрические положения T(1) занимает Si, T(2) – В. Na размещается в октаэдрах, примыкающих к ВО₄-тетраэдрам, искажая последние, К – в полиэдре с к.ч. = 12.

Средние межатомные расстояния (в Å): K–O = 3,000; Na–O = 2,378; B–O = = 1,473; Si–O = 1,610.

Кристаллы призматические, бочковидной формы.

Физ. св. Сп. отсутствует. Изл. занозистый. Хрупок. Тв. ≈ 5. Уд.в. 2,51 (вычисл 2,53). Цв. бесцветный до бледно-розового. Бл. стеклянный. Прозрачный. Не флюоресцирует в ультрафиолетовых лучах.

Микр. Отчетливое погасание. Одноосный (+). $n_e = 1,532$, $n_o = 1,516$ (в Na-свете); $n_e - n_o = 0,016$.

Хим. Теор. состав: K₂O – 5,04; Na₂O – 6,63; B₂O₃ – 11,18; SiO₂ – 77,15.

Анализ (микрозонд.): K₂O – 5,2; Na₂O – 6,2; B₂O₃ – 11,4; SiO₂ – 77,7; BeO **н** LiO – не обн.; сумма 100,5.

Эмпирическая формула (на 30 атомов О): K_{1,00}(Na_{1,87}K_{0,04})_{1,91}B_{3,05}Si_{12,14}O₃₀.

Нахожд. Встречен в мраморном ксенолите, включенном в нефелин-сиенитовую брекчию, на горе Сент-Илер в Квебеке (Канада). Ассоциирует с пектолитом, апофиллитом, кварцем и эгирином.

Отл. От сходных кварца и кордиерита отличается химическим составом **и** дебаеграммой, от миларита – четкой одноосной фигурой интерференции.

Межплоскостные расстояния пудреттита из Квебека (Канада) [1]

hki	I	d(Å)	hkl	1	d(Å)	hkl	1	d(Å)
100	2	8,9 0	304	<1	2,223	326; 218	<1	1,506
002	3	6,74	313	1	2,157	308	2	1.465
102	<1	5,38	116	<1	2,059	425	3	1,423
110	10	5,13	321	3	2,013	228	<1	1.407
200	<1	4,43	314	2	1,988	522	<1	1,389
112	3	4.07	410	<1	1.936	515	2	1.371
202	3	3,70	411;216	<1	1,912	523; 604	<1	1,353
004	3	3,369	412; 323	3	1,858	611	2	1.345
211	10	3,253	315	4	1,818	524; 11.10	1	1.306
104	2	3.154	306	<1	1.790	613	1	1.295
300	4	2,956	500	2	1,773	440	2	1,280
114	6	2.815	324	<1	1.740	530; 700	1	1.266
213; 204	5	2,686	008; 414	3	1,682	614	<1	1.255
220	1	2.557	421: 316	3	1.662	621	<1	1.225
310	2	2,462	422	<1	1,627	622	2	1.210
311	<1	2.421	118	1	1.600	338: 444	1	1.198
222; 214	2	2,389	415	3	1,572	428; 623	1	1.187
312	<1	2 310	334	<1	1.522			

 CuK_{α} -излучение. D = 114,6 мм

Литература

I. Grice J.D., Ericit T.S., Van Velthuizen J., Dunn P.J. // Canad. Miner. 1987. Vol. 25, pt 4. P. 763.

Чейесит Chayesite $K(Mg,Fe^{2+})_4Fe^{3+}[Si_{12}O_{30}]$

Назван в честь доктора Ф. Чейеса, американского петрографа, в прошлом президента Американского минералогического общества [1].

Характ. выдел. [1]. Плохо ограненные кристаллы (обычно менее 50, редко более 100 мкм).

Структ. и морф. крист. Гексаг. с. Вероятно, D_{6h}^2 -*P6/mcc* (по аналогии с другими минералами группы миларита). $a_0 = 10,153$, $c_0 = 14,388$; $a_0:c_0 = 1:1,417$; $V = 1284.4 \text{ Å}^3$; Z = 2.

Кристаллы таблитчатые, с преобладающими гранями (0001), (1010), (1120) и (1012).

Физ. св. Сп. не обнаружена. Хрупок. Уд.в. 2,68 (вычисл.). Цв. темно-синий (возможно, вызван переносом заряда Fe²⁺ → Fe³⁺, что доказано для осумилита [2]). Черта белая. Бл. стеклянный. Прозрачен [1].

Микр. [1]. Плеохроизм: по No – небесно-голубой, по Ne – бесцветный. Одноосный (+). $n_e = 1,578$, $n_o = 1,575$ (в Na-свете); $n_e - n_o = 0,003$ (для некоторых кристаллов больше).

Хим. [1]. Близок к осумилиту (K,Na)(Fe,Mg)₂(Al,Fe)₃[(Si,Al)₁₂O₃₀]. С рёддеритом (Na,K)₂(Mg,Fe)₅[Si₁₂O₃₀] образует серию твердых растворов (фиг. 65) по изоморфной схеме (K,Na) + Fe²⁺ $\Rightarrow \Box$ + Fe³⁺.

Анализы (1-5 - микрозонд.; 6 - микроанализ):

	1	2	3	4	5	6
K ₂ O	5,24	5,14	5,18	5,28	5,31	4,48
Na ₂ O	0,45	0,25	0,29	0,43	0,33	0,04
MnO	0,23	0,21	0,23	0,35	0.39	0,23
MgO	13,64	1 3,9 0	13,39	11,61	12,30	11,44
FeO	5,40	4,27	5,25	9,32	7,68	12,60 ^{2*}
Fe ₂ O ₁	5,28	6,17	5,62	3,30	4,51	-
Al ₂ O ₃	0,24	0,17	0,34	0,21	0,16	Не обн.
T ₁ O ₂	0,21	0,21	0,36	0,23	0,17	0,02
SiO ₂	69,95	69, 86	69,47	69,35	69, 68	70,29
Сумма	100,64	100,18 ^{3*}	100,13	100,08	100,53	99. 10

^{*} Отношения Fe³⁺/Fe²⁺ выводились из расчета суммы октаэдрических и тетраэдрических катионов = 17, с учетом балаиса валентностей.

^{2*} Общее.

^{3*} В оригинале 100,19.

1-5 - Мун-Каньон (шт. Юта, США) [1]; 6 - Канкарикс (Испания) [1].

Эмпирические	фо	рмулы	(на	30	атомов	O)):
--------------	----	-------	-----	----	--------	----	----

	1	2	3	4	5	6
к	1.14	1,12	1,14	1,17	1,17	0,99
Na	0,15	0,08	0,10	0,15	0,11	0,01
Сумма	1,29	1,20	1,24	1,32	1,28	1,00
Mg	3,48	3,54	3,43	3,02	3,16	2,96
Mn	0,03	0,03	0,03	0,05	0,06	0,03
Fe ²⁺	0,77	0,61	0,75	1,36	1,11	1,20
Fe ³⁺	0,68	0,80	0,73	0,43	0,59	0,63

Фвг. 65. Диаграмма зависимости содержания щелочиых элементов (в атомах иа форм. ед.) от Fe³⁺ в чейесите и рёддерите (по Вельде и др.)

I – чейесит, Мун-Каньон; 2 – чейесит,
 Канкарикс; 3 – рёддерит, Эйфель

	1	2	3	4	5	6
Al	0,01	0,00	0,01	0,04	0,03	0,00
Ti	0,03	0,03	0,05	0,03	0,02	0,00
Сумма	5,00	5,01	5,00	4,93	4,97	4,82
AI	0,04	0,03	0,06	0,00	0,00	0,00
Si	11,96	11,96	11,94	12,07	12,03	12,18
Сумма	12,00	11,99	12,00	12,07	12,03	12,18

Идеализированная формула: К(Mg,Fe²⁺)₄Fe³⁺[Si₁₂O₃₀].

Нахожд. Впервые был отмечен как новая фаза в Канкариксе (Испания) [3] в виде очень редкого акцессорного минерала с К-рихтеритом в лампроите Как породообразующий встречен в изверженных породах Мун-Каньона, шт. Юта (США) [1]. Кристаллизовался, по-видимому, из лампроитовых расплавов, температура кристаллизации наиболее поздних этапов которых ниже 965° [1, 3]. Ассоциирует с позднекристаллическим К-полевым шпатом, мелкими кристаллами диопсида и неидентифицированным Ті-минералом. Является несколько более поздним, чем К-рихтерит.

Отл. [1]. От сходных по цвету и оптическим свойствам осумилита, а также по порошкограмме меррихьюита, ягиита, пудреттита отличим только по химическому составу.

Межплоскостные расстояния чен	йесита из Мун-Каньои (США) [1]
Cult management	a D = 1146 m

		· ·	α anony ten	nc, <i>D</i> -	· 11+,0 mm			
hkl	I	d(Å)	hkl	1	d(Å)	hkl	1	<i>d</i> (Å)
002	8	7,14	122	3	3.01	314	3	2,019
102	3	5,56	114	6	2,933	411	3	1,903
110	Оч. сильн.	5,08	204	8	2,782	315	3	1,859
200	2	4,38	213	3	2,736	008	3	1,799

Фойтит												
hkl	I	d(Å)	hkl	ı	d (Å)	hkl	1	d (Å)				
112	6	4,14	220	6	2,542	226	6	1,742				
202	Оч. сильн.	3,75	006	2	2,398	118	3	1,695				
004	3	3,61	215	3	2,176	423	3	1,570				
104	6	3,35	402	3	2,103	425	3	1,439				
121	Оч. сильн.	3,24	224	2	2,071							

Литература

1. Velde D., Medenbach O., Wagner C., Schreyer W. // Amer. Miner. 1989. Vol. 74, N 11/12. P. 1368.

2. Goldman D.S., Rossman G.R. // Ibid. 1978. Vol. 63, N 5/6. P. 490.

3. Wagner C., Velde D. // Ibid. 1986. Vol. 71, N 1/2. P. 17.

СТРУКТУРА ТИПА ТУРМАЛИНА

ГРУППА ТУРМАЛИНОВ

Ранее (т. III, вып. 2, с. 160) группа турмалинов не выделялась. Известные минеральные виды (шерл, дравит, бюргерит, эльбаит, лиддикоатит, увит), составляющие группу турмалинов (Флейшер, 1990), описаны как разновидности турмалина по составу.

	Сингония	<i>a</i> ₀	c_0	Уд.в.
Фойтит [[Fe ²⁺ ₂ (Al,Fe ³⁺)]Al ₆ [Si ₆ O ₁₈]×	Триг.	1 5,9 67	7,126	3,14
× (BO ₃) ₃ (OH) ₄				
Хромдравит Na(Cr,Fe ³⁺ ,Mg) ₃ (Cr,Mg,Al) ₆ ×		16,130	7,403	3,40
×[Si ₆ O ₁₈](BO ₃) ₃ (OH) ₄				
Повондраит* (Na,K)(Fe ³⁺ ,Fe ²⁺ ,Mg) ₃ ×		16,186	7,444	3.26
\times (Fe ³⁺ ,Mg,Al) ₆ [Si ₆ O ₁₈](BO ₃) ₃ (O,OH) ₄				
Оленит NaAl ₄ Al ₆ [Si ₆ O ₁₈](BO ₃) ₃ (O,OH) ₄	**	15,803	7,086	3,01
Ферувит CaFe ²⁺ ₄ (AI,Mg) ₆ [Si ₆ O ₁₈](BO ₃) ₃ (OH) ₄	"	16,00	7,248	3,207

* Указан в группе турмалинов как ферридравит (Флейшер, 1990).

Фойтит Foitite

$$\Box$$
[Fe₂²⁺(Al,Fe³⁺)]Al₆[Si₆O₁₈](BO₃)₃(OH)₄

Назван в честь Франклина Фойта (младшего) в знак признания его работ по структуре и химизму турмалинов [1].

Синои. Шерл с дефицитом щелочей – alkali-deficient schorl [2].

Характ. выдел. Кристаллы (-20 × 4 мм) [1].

Структ. и морф. крист. Триг. с. C_{3v}^5 -R3m. $a_0 = 15,967, c_0 = 7,126$ Å; $a_0:c_0 = 1:0.4462; V = 1573.3$ Å³; Z = 3 [1].

Структура типа шерла, но с большим дефицитом щелочей в позиции Х.

Распределение катионов по позициям [1]: X – 0,25 Na, 0,75 \Box ; Y – 1,00 Al, 1,49 Fe²⁺, 0,05 Mg, 0,24 Mn²⁺, 0,22 Li; Z – 5,89 Al, 0,11 Fe.

Средние межатомные расстояния (в Å): X-O = 2,717; Y-O = 2,044; Z-O = 1,910; Si-O = 1,619; B-O = 1,376; углы: O-X-O = 94,97; O-Y-O = 90; O-Z-O = 90,1; O-Si-O = 109,4; O-B-O = 120,0° [1].

Расстояния Y–O и Z–O характерны для шерла, что указывает на преобладание Fe²⁺ в позиции Y и Al в позиции Z.

Кристаллы – исштрихованные призмы с треугольным сечением.

Физ. св. [1]. Сп. отсутствует. Тв. ~7. Уд.в. 3,17 (вычисл. 3,14). Цв. темно-голубой. Черта серовато-белая. Бл. стеклянный. В тонких осколках прозрачный. Не флюоресцирует в ультрафиолетовом свете.

Микр. [1]. Сильный плеохроизм: по No – светло-лавандовый, по Ne – темноголубой. Одноосный (-). n_o = 1,664, n_e = 1,642 (Na-свет).

Хим. Выше приведена теоретическая формула конечного члена бесщелочного шерла [1].

Анализ (микрозонд., среднее из 10) [1]: $Li_2O - 0,31$; $Na_2O - 0,75$; MgO - 0,21: CaO - 0,03; MnO - 1,71; FeO - 11,45; Al₂O₃ - 34,90; B₂O₃ - 10,37; SiO₂ - 35,90; H₂O - 3,56; сумма 99,19. Li₂O, B₂O₃ и H₂O рассчитаны из стехиометрии (Li₂O - дополнение к трем атомам в позиции Y).

Эмпирическая формула (на 31 анион, распределение катионов по позициям X,Y,Z): $(Na_{0.25}\Box_{0.75})_{1.00}(Fe_{1.60}^{2+}Mg_{0.05}Al_{0.89}Li_{0.22})_{3.00}Al_{6.00}Si_{6.01}O_{18}(BO_3)_3(OH)_4.$

Описанные ранее (без самостоятельного названия) шерлы с дефицитом щелочей из месторождений Джек-Крик (США) и Бен-Ломонд (Австралия) характернзуются значительным колебанием содержання щелочей в познции Х($\Box_{0.29-0.88}$) [2].

Нахожд. Обнаружен в минералогической коллекции Далхузийского университета в Новой Шотландии [1], в образцах из Южной Калифорнии (предположительно из гранитных пегматитов), которые представлены двумя кристаллами без матрицы. Шерлы с $\Box_{0,29-0,88}$ встречены в гидротермально-измененных туфах турмалин-дюмортьеритовых месторождений: Джек-Крик, шт. Монтана (США), и Бен-Ломонд, Северный Квинсленд (Австралия) [2].

Искусств. Не синтезирован, но при изучении системы MgO–Al₂O₃–SiO₂–B₂O₃– H₂O получен Mg-эквивалент (бесщелочной дравит) состава \Box (Mg₂Al)Al₆[Si₆O₁₈] × × (BO₃)₃(OH)₄ [3, 4].

	Межплоскостные расстояння фойтита из Южной Калифорнии [1] СиК _а -излучение											
hki	1	d (Å)	hkl	I	d(Å)	hkl	1	d (Å)				
101	84	6,338	212	71	2,944	413	8	1,867				
201	21	4,964	321	5	2,896	621	7	1,851				
300	6	4,607	501	100	2,573	603	15	1.655				
211	48	4,212	511	8	2,344	404	11	1,584				
220	38	3,989	502	11	2,185	443	5	1,527				
102	91	3,452	431	6	2,165	504	11	1,499				
311	6	3,375	303	17	2,112	650; 642; 514	18	1,449				
202	4	3,166	512	29	2,038	10.1.10	5	1,311				
410	7	3,014	620; 432	15	1,917	505	25	1,268				

Литература

1. MacDonald D.J., Hawthorne F.C., Grice J.D. // Amer. Miner. 1993. Vol. 78, N 11/12. P. 1299.

2. Foit F.F., Jr., Fuchs Y., Myers P.E. // Ibid. 1989. Vol. 74, N 11/12. P. 1317.

3. Rosenberg P.E., Foit F.F., Jr. // Ibid. 1979. Vol. 64, N 1/2. P. 180.

4. Werding G., Schreyer W. // Geochim. et cosmochim. acta. 1984. Vol. 48, N 6. P. 1331.

Хромдравит Chromdravite Na(Cr,Fe³⁺,Mg)₃(Cr,Mg,Al)₆[Si₆O₁₈](BO₃)₃(OH)₄

Назван по составу [1].

Характ. выдел. Мелкие (0,1 мм) кристаллы.

Структ. и морф. крист. Триг.с. $C_{3\nu}^5 - R3m$. $a_0 = 16,130$, $c_0 = 7,403$ Å [2]; $a_0:c_0 = 1:0,465$. Кристаллы пирамидального облика.

В структуре [2], как и у Сг-содержащего турмалина, сжатие октаэдров Y меньше, чем в других турмалинах, а вытянутость октаэдров Z, наоборот, максимальная. Наблюдаются значительная по сравнению с обычными дравитами гофрировка кремнекислородного кольца тетраэдров и сравнительно слабое дитригональное искажение.

Физ. св. Уд.в. 3,40 (вычисл.). Цв. темно-зеленый, почти черный. ИК-спектр в целом соответствует ИК-спектрам других турмалинов. Полосы поглощения: 475, 540, 650, 700, 760, 960, 1015, 1210 и 1345 см⁻¹.

Микр. Плеохроизм: по No – темно-зеленый, по Ne – желтовато-зеленый. Одноосный (-). n_o – 1,778, n_e = 1,722.

Хим. Хромовый аналог дравита. Сг и Mg входят как в Y-, так и в Z-позиции, а все Fe³⁺ находится в Y-позиции [2].

Анализ (анал. Гумбар) [1]: Na₂O – 2,66; MgO – 9,05; CaO – 0,16; MnO – 0,19; B₂O₃ – 9,00; Cr₂O₃ – 31,60 (теор. содер. 40,79); Al₂O₃ – 2,92; V₂O₃ – 1,46; Fe₂O₃ – 7,65; SiO₂ – 30,75; TiO₂ – 0,13; п.п. – 4,43; сумма 100,00.

Эмпирическая формула (на 15 катионов Y,Z,Si): $(Na_{0.97}Ca_{0.03})_{1,00}(Mg_{2,57}Mn_{0.03} \times V_{0.22}Al_{0.16}Ti_{0.02})_{3,00}(Cr_{4.71}Fe_{1.08}^{3+}Al_{0.21})_{6,00}(B_{2.91}Al_{0.09})_{3,00}(Si_{5,81}Al_{0.19})_{6,00}O_{27}(O_{0.23} \times OH_{3.77})_{4.00}$.

Нахожд. В слюдистых метасоматитах зон разрывных нарушений в нижнепротерозойских глинисто-карбонатных породах (Онежский прогиб, Центральная Карелия). Находится в ассоциации со слюдами (тайниолитом, хромовым фенгитом и ванадиевым мусковитом), кварцем и доломитом.

Отл. Наблюдается резкое увеличение параметров элементарной ячейки, показателей преломления и уд. веса по сравнению с другими турмалинами [3].

Межплоскостные расстояння хромдравита из Карелин [1]

СоК _а -излучение										
hk!	1	d (Å)	hkl	1	d (Å)	hkl	I	d(Å)		
101	50	6,57	042	15	2,47	701	15	1,922		
021	35	5,10	003	27	2,426	540	10	1,767		
300	20	4,67	232	15	2,380	214	25	1,70 0		
211	40	4,31	203	10	2,281	603	20	1,675		
220	50	4,05	502	20	2,233	271	25	1,665		
012	75	3.58	431	30	2,184	550	25	1,612		
401	15	3,17	422?	15	2,107	900	25	1,551		
122	75	3.04	223	50	2,079	820	15	1,521		
312	15	2,68	152	15	2,049					
051	100	2,62	342	35	1,953					

Литература

Румянцева Е.В. // Зап. ВМО. 1983. Ч. 112, вып. 2. С. 222.

- 2 Горская М.Г., Франк-Каменецкая О.В., Франк-Каменецкий В.А. // Тез. докл. XXVII МГК. М., 1984. Т. 5. С. 49.
- Кузьмин В.И., Добровольская Н.В., Солнцева Л.С. // Турмални и его использование при поисково-оценочных работах. М.: Недра, 1979. С. 269.

Повондраит Povondraite (Na,K)(Fe³⁺,Fe²⁺,Mg)₃(Fe³⁺,Mg,Al)₆[Si₆O₁₈](BO₃)₃(O,OH)₄

Назван в честь П. Повондры, чешского исследователя минералов группы турмалина [1].

Синои. Ферридравит – ferridravite, название было дано железистому аналогу дравита, где, как прел полагалось, Fe³⁺ замещает AI в позиции Z [2]. Последующие структурные исследования показали, чт Fe³⁺ замещает также Mg²⁺ и Fe²⁺ в познции Y [1, 3]. Таким образом, название "ферридравит" оказалось не отвечающим действительности.

Характ. выдел. Кристаллы (до нескольких мм), их субпараллельные сростки кристаллические агрегаты.

Структ. и морф. крист. Триг. с. $C_{3\nu}^5 - R3m$. $a_0 = 16,186$, $c_0 = 7,444$ Å; $a_0:c_0 = 1:0,4559$; V = 1689 Å³; Z = 3 [1].

Из минералов группы турмалинов повондраит обладает наибольшей ячейкой. Увеличение ее ра: меров вызывается главным образом замещением AI на Fe^{3+} в позиции Z н в меньшей степени – заме щением Na на K в позиции X [1].

Средние межатомные расстояния (в Å): Na–O = 2,74; Fe³⁺(1)–O = 2,037; Fe³⁺(2)– O = 2,007; B–O = 1,38; Si–O = 1,621; [1].

Наблюдаемые формы: *a* (1120), *r* (1011) и *o* (2021). Кристаллы часто искривлены [2].

Физ. св. Сп. отсутствует. Изл. неровный. Тв. 7. Уд.в. 3,26 (вычисл. 3,33). Цв черный. Черта коричневая. Бл. смоляной. Непрозрачен [2].

Микр. Плеохроизм сильный: по No – желтовато-коричневый, темно-коричневый или черный до непрозрачного, по Ne – светло-коричневый до темно-красновато-коричневого. Одноосный (–) [1, 2]. $n_o = 1,820$, $n_e = 1,751$ (Na-свет) [1]; $n_o = 1,800$ $n_e = 1,743$ [2].

Хим. Теоретический состав, соответствующий конечному члену, позиции которого заняты атомами Fe^{3+} , $NaFe_3^{3+}Fe_6^{3+}[Si_6O_{18}](BO_3)_3(O,OH)_4$: $Na_2O - 2,48$; $B_2O_3 - 8,35$. $Fe_2O_3 - 57,46$; $SiO_2 - 28,82$; $H_2O - 2,89$.

В анализированных образцах атомы Fe^{3+} не полностью замещают Al и Mg; в позиции X, кроме Na, находится K.

Анализы (микрозонд.):

	1	2	3	4		1	2	3	4	
NazO	2,18	2,1	2,2	1,1	SiO ₂	31,58	30,7	31,1	29,6	
K ₂ O	0,98	1,0	0,9	2,2	TiO ₂	Не опр.	Не обн.	0,1	0,1	
MgO	5,57	6,5	6,9	6,3	$H_2O^{3^*}$	3,5	2,4	2,5	2,3	
FeO [*]	7,25	1,7	0,7	0,9	Сумма	100,71	99,8	99,9 ^{4*}	97,05*	
$B_{2}O_{3}^{2*}$	8,98	9,0	9,1	8,7						
Al ₂ O ₃	2,30	1,4	4,2	0,8						
V ₂ O ₃	Не опр.	Сл.	0,1	Не обн.						
Fe ₂ O ₃ *	38,37	45,0	42,1	45,0						

Рассчитано: ${}^{*}Fe^{3+}/Fe^{2+}$ – по стехнометрии; ${}^{2^{*}}$ на 3 атома В в формуле; ${}^{3^{*}}$ в анализе I – по потере веса при нагревании, в анализах 2-4 – по сумме валентных связей H = 3,12; ${}^{4^{*}}$ в оригинале сумма 99,0; ${}^{5^{*}}$ в оригинале сумма 97,5.

1-4 – нз месторождения Сан-Франциско (Боливня): 1 – [2]; 2-4 – [1] (3 – ядро крнсталла, 4 – внешняя его часть).

Расчет (на 31 атом О) [1]:

	1	2	3	4
Na	0,81	0,80	0,80	0,42
К	0,24	0,26	0,21	0,56
Mg	1,58	1,89	1,95	1,87
Fe ²⁺	1,16	0,27	0,11	0,15
в	3	3	3	3
AI	0,52	0,32	0,95	0,20
v	-	0,01	0,02	0,00
Fe ³⁺	5,51	6,57	6,04	6.87
Si	6,02	5,96	5,92	5,91
Ti	_	0,00	0,01	0,00
н	3,5	3,12	3,12	3,12

Кристаллохимическая формула на основе структурных данных (анализ 2): $Na_{0.80}K_{0.26})_{1,06}$ (Fe³⁺_{2,28}Fe²⁺_{0.27}Mg_{0.53})_{3,08} (Fe³⁺_{4,29}Mg_{1,36}Al_{0,32})_{5,97}B₃Si_{5,96}O_{27,88} (OH)_{3,12} [1].

В зональном кристалле отмечено обогащение К внешней его части (анализ 4) по сравнению с ядром (ан. 3) [1]. Спектроскопически установлена примесь Cu, Pb и Sn [2].

Нахожд. Обнаружен на месторождении Сан-Франциско, пров. Аранибар, департамент Кочабамба (Боливия), где в небольшом объеме добывается крокидолит. Образует корочки на вмещающей породе (сланцы), состоящей из кварца, калиевого полевого шпата, щелочного амфибола, мусковита и подчиненных количеств шерла [2].

Межплоскостные расстояния повондранта из Боливии [1]

FeK _α -нзл	ученне, <i>D</i>	= 5'	7,3	мм
-----------------------	------------------	------	-----	----

hkl	1	d (Å)	hkl	1	d(Å)	1	d (Å)
1011	9	6,63	4371; 3033	3	2,20	3	1,447
0221	7	5,13	4262	0,5	2,15	1	1,382
3030	7	4,71	2243	0,5	2,11	1	1,370
2131	7	4,32	1562	7	2,09	1	1,355
2240	9	4,05	1671	0,5	2,06	2	1,335
0112	8	3,61	4480	0,5	2.02	2	1,320
1341	2	3,46	3472	5	1,961	1	1,299
2022	1	3,28	4153	2	1,929	lo.p	1,260
4041	0,5	3,18	6281	1	1,884	2	1,205
4130	9	3,05	0224	0,5	1,802	2	1,175
3231	1	2,96	5382	0,5	1,770	lp	1,161
3360	1	2,69	6063	4	1,702	lp	1,152
0531	10	2,63		3	1,670	lo.p	1,131
0441	0,5	2,56		4	1,620	lp	1,105
0003	2	2,49		4 ш	1,554	lo.p	1,093
2461	3	2,44		1	1,528	40.p	1,052
5161	2	2,39		2	1,502	lo.p	1,036
6070	1	2,34		2	1,479	20.p	1,018
5052	3	2,24		3	1,458	lp	1,004

Литература

Grice J.D., Ercit T.S. // Amer. Miner. 1993. Vol. 78, N 3/4. P. 433.

2 Walenta K., Dunn P.S. // Ibid. 1979. Vol. 64, N 9/10. P. 941.

Grice J.D., Ercit T.S. // Geol. Assoc. Canada Annu. Meet. Program. Abstr. 1990. Vol. 15. P. A51.

Олеинт Olenite NaAl₃Al₆[Si₆O₁₈](BO₃)₃(O, OH)₄

Назван по месту находкн [1]. Синон. Алюмобюргерит – alumo-burgerite [2], Аl-эльбант – Al-elbaite [3].

Характ. выдел. Краевые зоны в хорошо ограненных кристаллах (0,5 × 30 мм). центральные части которых сложены эльбаитом.

Структ. и морф. крист. Триг. с. $C_{3\nu}^5 - R3m$. $a_0 = 15,803$, $c_0 = 7,086$ Å; $a_0 : c_0 = 1 : 0,4483$. Аl полностью занимает октаэдрическую позицию Z и на 3/4 - Y тетраэдрические позиции заняты только Si. Дополнительное вхождение Al в октаэдры Y компенсируются образованием дефицита катионов в позиции X и уменьшением числа гидроксильных групп [1, 3]. По сравнению с другими турмалинами в октаэдре Y расстояние катион-кислород (1,969 Å) укорочено, а Al-октаэдр Z меньше по размеру (среднее 1,898 Å) и значительно деформирован [3].

Физ. св. Микротвердость (при нагрузке 100 г) меняется в зависимости от состава по формуле H = 1044–3,681x, где x – молярный процент оленитового компонента. Уд.в. 3,01 (вычисл. 3,12). Цв. бледно-розовый. Бл. стеклянный [1].

Микр. Плеохроизм слабый: по No - ярко-розовый, по Ne - розово-желтый.Одноосный (-). $n_0 = 1,654, n_e = 1,635$ [1].

Хим. Образует изоморфный ряд с эльбаитом – Na(Al, Li)₃Al₆[Si₆O₁₈](BO₃)₃(O, OH)₄. Общая формула этого ряда: Na_{1-y}(Al_{3-x}Li_x)₃Al₆Si₆O₂₇B₃(O_{3-2x-y}OH_{1+2x+y})₄. Значения y = 0-1, x = 0,7-0 отвечают составу оленита, y = 0-1, x = 1,5-0,75 - эльбаита.

Анализы (1, 2 – микрозонд., 3 – химический, из навески 1 г) [1]:

	1	2	3		I	2	3
L ₂ O	-	1,07*	0,82*	Fe ₂ O ₃	0,14	0,14	0,13
Na ₂ O	1,60	1,55	1,48	SiO ₂	36,86	37,92	37,95
K ₂ O	0,03	0,01	0,07	TiO ₂	0,03	0,02	0,03
MgO	Не обн.	Не оби.	0,02	H ₂ O	1,36*	2,78*	2,80*
CaO	0,26	0,41	0,45	<u> </u>	0,06	0,04	0,17
ZnO	0,03	0,02	Не обн.	Сумма**	(98,19)	(99,75)	(99,62)
MnO	0,49	1,54	1,67	$-O = F_2$	0,03	0,02	0,07
B ₂ O ₃	10,90*	11,00*	10,64*	Сумма	98,16	99,73	99,55
Al ₂ O3	46.43	43.25	43,39				

*Рассчитаны из кристаллохимических соотношений, характерных для турмалина.

** В оригинале суммы: 1 – 98,28, 2 – 99,89, 3 – 99,48.

Эмпирические формулы (1 – на 6 Si, 2,3 – на 15 катионов (Y, Z, Si)):

 $1 - (Na_{0.51}K_{0,01}Ca_{0,05})_{0.57}(Al_{2,91}Mn_{0,07}Fe_{0,02}^{3+}Ti_{0,01})_{3,01}Al_{6,00}B_{3,00}Si_{6,00}O_{27}(O_{2,53}OH_{1,44}F_{0,03})_{4,00};$

 $2-(Na_{0,48}Ca_{0,07})_{0,55}(Al_{2,09}Li_{0,68}Mn_{0,21}Fe_{0,02}^{3+})_{3,00}Al_{6,00}B_{3,00}Si_{6,00}O_{27}(O_{1.05}OH_{2,93}F_{0,02})_{4,00};$

 $3 - (Na_{0,46}K_{0,01}Ca_{0,08})_{0,55}(Al_{2,18}Li_{0,53}Mn_{0,22}Fe_{0,02}^{3+}Ti_{0,01})_{2,96}AI_{6,00}B_{2,96}Si_{6,04}O_{27}(O_{1,47}OH_{2,44}F_{0,09})_{4,00}.$

Нахожд. Вместе с эльбаитом установлен на Оленьем хребте (Северо-Запад России) в редкометальных пегматитовых жилах докембрийского поля, залегающего в метабазитах. Оленит-эльбаитовые кристаллы находятся в ассоциации с кварцем альбитом [1].

	Условия съемки не указаны											
hkl	I	d (Å)	hkl	1	d (Å)	hk!	I	d (Å)				
110	5	7,80	003	18	2,361	333; 014	14	1,758				
011	30	6,33	322	20	2,352	622	5	1,673				
201	20	4,91	151	15	2,322	603	5	1,641				
030	8	4,56	060	5	2,280	721	10	1,628				
121	40	4,18	052	7	2,166	550	6	1,581				
220	70	3,95	341	8	2,145	044	8	1,574				
102	80	3,43	303	15	2,097	542	6	1,569				
311	70	3,394	242	4	2,085	082	3	1,542				
041	8	3,081	512; 223	30	2,021	504	10	1,488				
140	10	2,986	611	4	2,000	424; 812	6	1,460				
212	30	2,924	432	20	1,899	173; 154; 462	15	1,437				
231	3	2,869	143	10	1,853	911; 561	7	1,406				
132	5	2,585	261	7	1,834	363; 344	10	1,392				
501	100	2,551	170	4	1,813	055	10	1,2587				

жилоскостные расстояния оленита с Северо-Запада Россия [1]

Литература

- 1. Соколов П.Б., Горская М.Г., Гордиенко В.В., Петрова М.Г., Крецер Ю.Л., Франк-Каменецкий В А. // Зап. ВМО. 1986. Ч. 115, вып. 1, С. 119.
- 2. Foit F.F., Rosenberg P.E. // Trans. Amer. Geophys. Union. 1975. N 56. P. 461.
- 3. Горская М.Г., Франк-Каменецкая О.В., Рождественская И.В., Франк-Каменецкий В.А. // Крнсталлография. 1982. Т. 27, № 1. С. 108.

Ферувит Feruvite

$CaFe_3^{2+}(Al, Mg)_6[Si_6O_{18}](BO_3)_3(OH)_4$

Назван по составу и близости к увиту (Fe-аналог увита) [1].

Характ. выдел. Изометричные зерна до 1 мм.

Структ. и морф. крист. Триг. с. $C_{3\nu}^5 - R3m$. $a_0 = 16,000$, $c_0 = 7,248$ Å; $a_0 : c_0 = 1:0,4530$; V = 1606,8 Å³; Z = 3.

Распределение атомов по позициям соответствует общему для турмалинов составу: $XY_3Z_6[Si_6O_{18}](BO_3)_3(O, OH)_4$, где X – Ca, Na, K; Y – Fe²⁺, Al, Fe³⁺, Ti, Mn; Z – Al, Mg, Fe³⁺, Fe²⁺.

Средние межатомные расстояния (в Å) и углы: Ca–O = 2,654; F–O = 2,055; Al–O = 1,944; B–O = 1,374; Si–O = 1,622; O–Fe–O = 90,0°; O–Al–O = 90,2°; O–B–O = 120,0°; O–Si–O = 109,4°. По сравнению с увитом отмечается заметное искажение структуры, обязанное водородным связям – H(3)–O(5) = 2,56, O(3)–O(5) = = 3,28: увеличена одна из связей в октаэдрах Y и Z: Fe–O(3) = 2,177 и Al–O(3) = = 1,99 и длина Si–O(5) = 1,649.

Физ. св. Тв. около 7. Уд. в. 3,207 (вычисл.). Цв. буровато-черный. Черта серая. Бл. стеклянный до тусклого. Хрупок. Изл. раковистый. Не флюоресцирует.

Некоторые кристаллы имеют зональное строение: внутренняя (основная) часть сложена ферувитом, внешняя – дравитом, образующим также игольчатые наросты на этих кристаллах.

Микр. Плеохроизм сильный: по No – светло-бурый, по Ne – темно-бурый. Одноосный (–). $n_o = 1,687, n_e = 1,669$ (Na-свет); $n_o - n_e = 0,018$.

Хим. Анализ (микрозонд., среднее из 5 анализов): Na₂O – 1,16; K₂O – 0,05; MgO – 7,80; CaO – 3,30; MnO – 0,07; FeO (общее) – 13,56; B₂O₃ – 11,25; Al₂O₃ – 23,38; SiO₂ – 33,33; TiO₂ – 2,19; H₂O (вычисл.) – 3,48; сумма 99,57.

Расчет валентностей на основе структурных данных показывает, что наряду с FeO должно присутствовать Fe_2O_3 . Кроме того, не должно быть такого высокого содержания B_2O_3 . Исходя из стехиометрического соотношения – 19 катионов и 31 анион (согласно общей формуле турмалинов) и с учетом уточнения структуры в данные анализа вводятся изменения: FeO – 11,26; $Fe_2O_3 - 2,56$; $B_2O_3 - 9,93$; $H_2O - 3,43$.

В результате эмпирическая формула имеет вид: $(Ca_{0,62}Na_{0,39}K_{0,01})_{1,02}(F_{1,53}^{2+} \times Mg_{1,21}Ti_{0,29}Mn_{0,01})_{3,04}(Al_{4,72}Mg_{0,82}Fe_{0,34}^{3+}Fe_{0,12}^{2+})_{6,00}(BO_3)_3(Si_{5,83}Al_{0,10})_{5,93}O_{18}(OH)_4$; упрощенная: $(Ca, Na)(Fe, Mg, Ti)_5(Al, Mg, Fe)_6(BO_3)_3Si_6O_{18}(OH)_4$.

Д. Грайс и Т. Эрикт [2] приводят эмпирические формулы без данных хим. анализа: 1 – $(Ca_{0,60}Na_{0,40})_{1,0}(Fe_{1,39}^2Fe_{0,15}^3)_{15}Mg_{0,63}Al_{0,83})_{3,00}(Al_{3,95}Mg_{1,51}Fe_{0,14}^{3+}Ti_{0,40})_{6,00};$ 2 – $(Ca_{0,60}Na_{0,39} \times K_{0,01})_{1,00}(Fe_{1,16}^{2+}Mg_{0,69}Al_{0,58}Fe_{0,56}^{3+}Mn_{0,01})_{3,00}(Al_{4,09}Mg_{1,35}Fe_{0,27}^{3+}Fe_{0,29}^{2+})_{6,00}.$

Нахожд. Найден на о-ве Кювье (Новая Зеландия) в турмалинизированной породе, образовавшейся при воздействии гидротерм на породообразующие алюмои железо-магнезиальные силикаты. Составляет примерно 30% этой породы. Находится в ассоциации с кварцем, микроклином, хлорапатитом и пиритом.

Межплоскостные расстояния ферувита из Новой Зеландин [1] FeK_α-излучение, Mn-фильтр, D = 114,6 мм

1	d (Å)	hkl	Ι	d(Å)	hkl	1	d (Å)
1	8,00	511	2	2,353	262	<1	1,698
4	6,43	600	<1	2,308	603	3	1,669
2	5,02	502	2	2,200	271	2	1,649
2	4,63	431	2	2,172	550	4	1,600
6	4,24	303	2	2,141	461	1	1,553
6	4,00	422	<l< td=""><td>2,124</td><td>722</td><td>1</td><td>1,537</td></l<>	2,124	722	1	1,537
6	3,50	223	1	2,068	054	3	1,517
<l< td=""><td>3,39</td><td>152</td><td>5</td><td>2,051</td><td>244</td><td><l< td=""><td>1,490</td></l<></td></l<>	3,39	152	5	2,051	244	<l< td=""><td>1,490</td></l<>	1,490
<1	3,028	161	<l< td=""><td>2,028</td><td>514</td><td>3</td><td>1,465</td></l<>	2,028	514	3	1,465
8	2,979	440	<l< td=""><td>2,000</td><td>740</td><td>4</td><td>1,439</td></l<>	2,000	740	4	1,439
1	2,909	342	4	1,928	205; 434; 633	2	1,417
1	2,636	701	<l< td=""><td>1,907</td><td>10.01</td><td>2</td><td>1,363</td></l<>	1,907	10.01	2	1,363
10	2,586	413	1	1,886	912	1	1,350
<1	2,503	621	2	1,857	704; 553	3	1,336
<1	2,462	333	1	1,791	10.10	2	1,317
1	2,416	024	<l< td=""><td>1,752</td><td>903</td><td><1</td><td>1,299</td></l<>	1,752	903	<1	1,299
1	2,388	072	<1	1,739	505	3	1,283
	/ 1 4 2 6 6 6 6 <1 <1 8 1 10 <1 1 1	I d (Å) 1 8,00 4 6,43 2 5,02 2 4,63 6 4,24 6 4,00 6 3,50 <1	I d (Å) hkl 18,0051146,4360025,0250224,6343164,2430364,0042263,50223<1	I d (Å) hkl I 1 $8,00$ 511 2 4 $6,43$ 600 <1 2 $5,02$ 502 2 2 $4,63$ 431 2 6 $4,24$ 303 2 6 $4,24$ 303 2 6 $4,00$ 422 <1 6 $3,50$ 223 1 <1 $3,39$ 152 5 <1 $3,028$ 161 <1 8 $2,979$ 440 <1 1 $2,636$ 701 <1 10 $2,586$ 413 1 <1 $2,503$ 621 2 <1 $2,462$ 333 1 1 $2,416$ 024 <1 1 $2,388$ 072 <1	I $d(Å)$ hkl I $d(Å)$ 18,0051122,35346,43600<1	I $d(Å)$ hkl I $d(Å)$ hkl 1 $8,00$ 511 2 $2,353$ 262 4 $6,43$ 600 <1 $2,308$ 603 2 $5,02$ 502 2 $2,200$ 271 2 $4,63$ 431 2 $2,172$ 550 6 $4,24$ 303 2 $2,141$ 461 6 $4,00$ 422 <1 $2,124$ 722 6 $3,50$ 223 1 $2,068$ 054 <1 $3,39$ 152 5 $2,051$ 244 <1 $3,028$ 161 <1 $2,028$ 514 8 $2,979$ 440 <1 $2,000$ 740 1 $2,909$ 342 4 $1,928$ $205; 434; 633$ 1 $2,636$ 701 <1 $1,907$ 10.01 10 $2,586$ 413 1 $1,886$ 912 <1 $2,503$ 621 2 $1,857$ $704; 553$ <1 $2,462$ 333 1 $1,791$ 10.10 1 $2,416$ 024 <1 $1,739$ 505	I $d(Å)$ hkl I $d(Å)$ hkl I1 $8,00$ 5111 2 $2,353$ 262 <1 4 $6,43$ 600 <1 $2,308$ 603 3 2 $5,02$ 502 2 $2,200$ 2711 2 2 $4,63$ 431 2 $2,172$ 550 4 6 $4,24$ 303 2 $2,141$ 461 1 6 $4,00$ 422 <1 $2,124$ 722 1 6 $3,50$ 223 1 $2,068$ 054 3 <1 $3,39$ 152 5 $2,051$ 244 <1 <1 $3,028$ 161 <1 $2,028$ 514 3 8 $2,979$ 440 <1 $2,000$ 740 4 1 $2,909$ 342 4 $1,928$ $205; 434; 633$ 2 1 $2,636$ 701 <1 $1,907$ 10.01 2 10 $2,586$ 413 1 $1,886$ 912 1 <1 $2,503$ 621 2 $1,857$ $704; 553$ 3 <1 $2,462$ 333 1 $1,791$ 10.10 2 1 $2,416$ 024 <1 $1,739$ 505 3

Литература

1. Grice J.D., Robinson G.W. // Canad. Miner. 1989. Vol. 27, pt 2. P. 199.

2. Grice J.D., Erict T.S. // Geol. Assoc. Canada Annu. Meet. Program Abstr. 1990. Vol. 15. P. A51.

СТРУКТУРА ТИПА ЛОВОЗЕРИТА

ГРУППА ЛОВОЗЕРИТА

Ранее в группе описаны (т. III, вып. 2, с. 198): ловозерит. цирсиналит, казаковит, коашвит, имандрит (без структурных данных), тисиналит в комбит (отнесен условно).

	Сингония	a_0	b_0	c_0	β	Уд.в.
Имандрит* Na ₁₂ Ca ₃ Fe ₂ [Si ₆ O ₁₈] ₂	Ромб.	10,331	10,546	7,426	-	2,93
Петарасит Na _c Zr ₂ [Si _c O ₁₀](Cl.OH) · 2H ₂ O	Монокл.	10,795	14,493	6,623	113,21°	2,88

Имаидрит* Imandrite

Описание свойств и условий нахождения см. т. III, вып. 2, с. 210. Ниже приводятся новые структурные данные [1].

Ромб. с. D_{2h}^{12} – *Pnnm.* $a_0 = 10,331$, $b_0 = 10,546$, $c_0 = 7,426$ Å; V = 809,07 Å³; $a_0: b_0: c_0 = 0,9796: 1: 0,7042; Z = 1$.

Главная особенность структуры – специфическое шестичленное "ловозеритовое" кольцо [Si₆O₁₈]. Изолированные кольца [Si₆O₁₈] объединены Fe³⁺-октаэдрами, каждый из которых связан с шестью кольцами, в результате чего формируется ажурная трехмерная вязь – бесконечный анионный радикал смешанного типа {M[Si₆O₁₈]}, конкретизирующийся в виде {Fe³⁺[Si₆O₁₈]}⁹⁻ (фиг. 66). В таком "псевдокаркасе" у каждого Si-тетраэдра остается свободной одна вершина, насыщаемая недостающими положительными валентностями только за счет одно- и двухвалентных катионов. Мотив размещения крупных катионов практически полностью совпадает с ловозеритовым: "штабельная" (Белов, 1976) укладка Na-колонок,

идущих вдоль трех взаимно перпендикулярных направлений. Отличается от ловозерита окружением кремнекислородного кольца Моктаэдрами: катионы Fe³⁺ и центры тяжести Si-O-колец располагаются по объемноцентрированному мотиву, а плоскости колец примерно параллельны пересекающимся плоскостям (011) и (011).

Межатомные расстояния (в Å): в кремнекислородных тетраэдрах Si(1)-O = 1,57-1,64, O-O = 2,56-2,73, Si(2)-O = 1,56-1,66, O-O = = 2,58-2,69; в Fe³⁺-октаэдрах Fe-O = = 2,11-2,15, O-O = 2,82-3,19, Ca-O = 2,28-2,48, O-O = 2,82-4,74; в Nа-полиэдрах Na(1)-O = 2,28-2,72, Na(2)-O = 2,49-2,82, Na(3)-O = 2,65-2,69; углы: Si-O-Si = 103-111; 111-116,9; 106,7-117,6; 105,8-109,7° при атомах O(6), O(5), O(3), O(2) соответственно.

Фит. 66. Структура имандрита (по Черницовой и др.) Fe-октаэдры и кольца [Si₆O₁₈] показаны в торцевой проекции

Изоструктурен с синтетическими соединениями Na₆CdSi₆O₁₈ [2] и Na₆Mn₃× ×Si₆O₁₈ [3].

Межплоскостные расстояния имандрита из Хябин [4]

			Си-излучение, Ni-	-фильтр.	. цифрактоме	тр		
hkl	1	d (Å)	hki	1	d (Å)	hkl	1	d (Å)
110	10	6,08	151	7	1,999	363; 532	10	1,324
020	10	5,26	313	7	1,971	336; 156	24	1,312
120	15	4,29	400	70	1,853	540; 180	13	1,296
121	30	3,97	234	10	1,812	174	7	1,281
200	50	3,73	035	17	1,784	543; 218	6	1,210
031	60	3,33	314	9	1,768	525; 365	13	1,177
122; 013	24	3,29	412;006	7	1,725	471	6	1,162
130	4	3,19	225	13	1,707	318; 446	6	1,138
202	10	3,02	062	9	1,661	176; 640	7	1.122
221	13	2,92	162	17	1,624	291	7	1,111
123	20	2,69	235	6	1,608	383; 366	6	1,101
040	100	2,63	315	7	1,568	642	6	1,094
004	24	2,59	325	50	1,520	563	6	1,077
231	9	2,48	441	20	1,501	293; 634	6	1,063
042; 311	13	2,35	433	4	1,485	186; 392	4	1,037
232	4	2,29	171;017	7	1,463	635; 730	3	1,016
142; 320	7	2,24	172; 361	10	1,419	723	10	0,9956
240	9	2,16	271	9	1,384	580	6	0,9856
204	20	2,16	255	10	1,373	0.10.4	5	0,9767
051	15	2,07	503; 354	7	1,364	287	6	0,9500

.... **

Литература

1. Черницова Н.М., Пудовкина З.В., Воронков А.А., Илюхин В.В., Пятенко Ю А. // ДАН СССР. 198 T. 252, № 3. C. 618.

2. Симонов М А., Егоров-Тисменко Ю.К., Белов Н.В. // Там же. 1967. Т. 175, № 1. С. 80.

3. Отрощенко Л.П., Симонов В.И., Белов Н.В. // Там же. 1973. Т. 208, № 4. С. 845.

4. Хомяков А.П., Черницова Н.М., Сандомирская С.М., Васильева Г.Л. // Минерал. журн. 1979. Т. 1 № 1. C. 89.

Петарасит Petarasite $Na_5Zr_2[Si_6O_{18}](Cl, OH) \cdot 2H_2O$

Назван в честь канадского минералога-любителя Петера Тарасова из Квебека [1]. Первоначальное название - "минерал UK-42" [2].

Характ. выдел. Кристаллы (до 6,5 см в длину), неправильные зерна (до 1 см псевдоморфозы (до 2 см) [1-6].

Структ. и морф. крист. Монокл. с. Пр. гр. $C_{2h}^2 - P2_1 / m$ [7], $C_{2h}^3 - C2 / m$ [4] Z = 2.

<i>a</i> ₀	<i>b</i> 0	с ₀	β	$a_0: b_0: c_0$	V	Место- нахож- дение	Ссылка
10,791	14,505	6,626	113,21°	0,7439 : 1 : 0,4568	953,2	Сент- Илер	[1]
10,7956 10,785	14,4928 14,492	6,6229 6,627	113,214 113,12	0,7448 : 1 : 0,4569 0,7442 : 1 : 0,4572	952,3 952,6	Там же Хибины	(7) [4]

Фиг. 67. Структура петарасита (по Гозу н др.) *а* – проекция вдоль оси *с*, *б* – проекция вдоль оси *b*

Основу структуры [4, 7] составляет трехмерная постройка из Zr-октаэдров и Si-тетраэдров. Кремнекислородный радикал представлен шестичленным кольцом [Si₆O₈] (по Ф. Либау, 1988), неразветвленным изолированным кольцом) (фиг. 67). Кольца почти плоские (в отличие от конфигурации "кресла" в структуре ловозерита), скрепляются Zr-октаэдрами, соединяющими четыре кольца. На два из них октаэдр опирается ребрами, замыкая "диортогруппу", благодаря чему образуются каналы (3,5 × 5,5 Å), параллельные осям *b* и *c*. В последних, ограниченных Si-тетраэдрами, располагаются ионы Na(3), Cl и группы OH (см. фиг. 67, *a*); в каналах, параллельных оси *b*, – Na(1), Na(2) и две молекулы H₂O (см. фиг. 67, *б*).

К.ч. Na = 7. Ионы Cl и группы OH частично неупорядочены. Структура имеет ярко выраженный цеолитоподобный характер.

Межатомные расстояния (в Å) [7]: в тетраэдрах Si(1)–O = 1,604–1,629; O–O = 2,590–2,667; Si(2)–O = 1,604–1,638; O–O = 2,596–2,669; Si(3)–O = 1,590–1,635; O–O = 2,586–2,675; в Zr-октаэдрах Zr–O = 2,082–2,103; O–O = 2,902–3,099; Na(1)–O = 2,468–3,097; Na(1)–H₂O = 2,375; Na(1)–Cl = 2,885; Na(2)–O = 2,402–2,914;

Na(2)-H₂O(1) = 2,337; Na(2)-Cl = 2,951; Na(3)-O = 2,308-3,276; Na-Cl(1) = 3,109: Na(3)-Cl(2) = 3,520; углы Si-O-Si при O(1) = 148,6, при O(4) = 135,1, при O(7) = 136,4, при O(9) = 154,5°.

Призм. кл. *C*_{2*h*}-2/*m*. *a* : *b* : *c* = 0,7448 : 1 : 0,4569 (рентгеновские данные). Формы [5]:

	hkl	φ	ρ		hkl	φ	ρ
с	001	90,0 0°	23,21°	l	120	36,21°	90,00°
b	010	0,00	90,0 0	t	210	90,0 0	42,21
а	100	90,00	90,00	r	111	-27,74	27,30
m	110	55,64	90,0 0				

Кристаллы призматические.

Физ. св. Сп. совершенная по (110), очень хорошая по (010) и хорошая по (001) [1, 3] и 121 [6]. Изл. полураковистый [1], ступенчатый [6]. Тв. около 5–5,5 [1]. Микротвердость 375–445 кгс/мм² [6]. Уд.в. 2,88 (вычисл. 2,85) [1] и 2,93 (вычисл. 2,88) [6]. Цв. оранжевый; от светло-желтого до темно-зеленовато-желтого; очень редко от розового до фиолетового – у минерала из Сент-Илер [1–3]; от интенсивножелтого до бледно-желтого – из Хибин [6]. Непрозрачный, полупрозрачный, прозрачный. Бл. стеклянный до жирного [1, 3, 6]. Черта белая. В ультрафиолетовых лучах не люминесцирует [1].

ИК-спектр характеризуется полосами (в см⁻¹) [1]: 3630 и 3520 (валентные колебания OH); широкой полосой с центром 3300 (валентные колебания H_2O); 1682 и 1600 (деформационные колебания H_2O); 1365, 1338, 1095, 1065, 1040, 995, 965, 950, 902, 770 (валентные, наличие в структуре кольцевых элементов), 720, 695. 665, 653, 535, 510, 485, 438, 396.

Микр. Плеохроирует в зеленовато-желтых тонах: по Np – бесцветный, по Nm = Ng – светло-зеленовато-желтый. Np < Nm = Ng. Двуосный (+). Np = b, $cNg = 41,5^{\circ}$ в минерале из Сент-Илера [1] и около 45° из Хибин [6].

ng	n _m	n _p	n _g -n _p	2V	Местонахождение	Ссылка
1,632	1,598	1,596	0,036	29°	Сент-Илер	[1]
1,632	1,599	1,597	0,035	33	Хибины	[6]

Дисперсия слабая, r < v [1].

Хим. Анализы (микрозонд.):

	1	2	3		1	2	3
Na ₂ O	17,3	17,4	17,88	ZrO ₂	29,5	30.0	22.28
K ₂ O	0,25	0,04	Не опр.	CI	2,04	2,5	4.05
CaO	0,88	0,49	**	H ₂ O	7,09*	5,91*	4.36**
SiO ₂	42,9	42,1	42,23	$-O = Cl_2$	0,46	0,56	0,91
TiO ₂	0,07	Не обн.	Не опр.	Сумма	99,57	97,88	97,90

Потеря веса на ТГА за вычетом Cl (до 1100°).

**Рассчитано по теоретической формуле.

1, 2 – из Сент-Илера: 1 – зеленовато-желтый (среднее из 5 анализов) [1], 2 – коричневый [5]; 3 – гора Рестиньюн (Хибинский массив) [6].

Эмпирические формулы (на 6 Si и 18 атомов О):

 $1 - (Na_{4,69}Ca_{0,13}K_{0,05})(Zr_{2,03}Ti_{0,01})Si_6O_{18}(OH)_{0,60}Cl_{0,98} \cdot 3,01H_2O;$

 $2 - (Na_{4,81}Ca_{0,08}K_{0,01})Zr_{2,09}Si_{6}O_{18}Cl_{0,61}(OH)_{0,02}O_{0,37} \cdot 2,8H_{2}O.$

Часть Na замещается на K и Ca; Zr – на Ti.

Кристаллоструктурным анализом [7] установлены только две молекулы H₂O.

Предполагается, что избыток воды в эмпирической формуле обусловлен присутствием абсорбционной воды, что согласуется с термическими и ИК-спектроскопическими исследованиями [1].

Повед. при нагр. На кривой ТГА фиксируется двухступенчатая потеря веса в интервалах 250–830° (6,24%) и 830–1100° (3,19%), связанная соответственно с удалением молекулярной воды и (Cl, OH).

Выше 750° происходит разложение минерала с образованием паракелдышита при 1100° [1].

Нахожд. Впервые в виде изометричных зерен в небольших количествах установлен в биотит-микроклиновом ксенолите среди нефелиновых сиенитов в Сент-Илер (Квебек, Канада) в ассоциации с биотитом, цирконом и апатитом [1, 2]. Там же описан в виде хорошо образованных кристаллов, нередко двухконечных, и коричневых псевдоморфоз октаэдрического облика по неустановленному протоминералу [3, 5]. Крупные кристаллы часто покрыты тонкопластинчатым бледно-серым непрозрачным катаплеитом. Изредка встречаются прозрачные розовато-фиолетовые клиновидные кристаллы в пустотах в содалитовом ксенолите вместе с эвдиалитом, содалитом и эгирином [3].

На горе Рестиньюн (Хибинский массив) обнаружен в незначительных количествах в псевдоморфозах по эвдиалиту совместно с эльпидитом и флюоритом в псгматоидных натролит-альбит-эгириновых породах с эвдиалитом [6].

Межплоскостные расстояния петарасита из Сент-Илера, Квебек (Канада) [1]

hkl	1	d(Å)	hkl	1	d (Å)	hkl	I	<i>d</i> (Å)
020	70	7.25	022	5	2,805	080	5	1,814
001	40	6,09	401	5	2,702	461	5	1,800
111	5	5,90	311; 400	10	2,481	602; 441	5	1,774
200	15	4,96	402	5	2,456	443	5	1,753
021	10	4,66	151	5	2,430	551	20	1,729
130	5	4,34	420	10	2,346	600	5	1,653
220	100	4,10	061; 351	5	2,242	404	10	1,611
131	10	3,868	203	5	2.206	422; 114	10	1,594
31Ĩ	10	3,451	260; 261	10	2,171	153; 082	5	1,559
310; 202	30	3,220	511	5	2,129	463; 553	5	1,542
002	30	3.041	223	5	2,110	481; 6 40	5	1,505
221	5	2,981	440; 35 2	10	2,045	643; 024	10	1,491
240; 241	100	2,924	442;003	5	2,030	551	5	1,467
33Ĩ	5	2,861	242	10	1,899	731; 192	5	1,447

СиК_α-излучение, D = 114,6 мм

Литература

1. Chao G.Y., Chen T.T., Baker J. // Canad. Miner. 1980. Vol. 18, pt 4. P. 497.

2. Chao G.Y., Baker J. // Miner. Rec. 1979. Vol. 10, N 2. P. 99.

3. Horvath L., Gault R.A. // Ibid. 1990. Vol. 21, N 4. P. 329.

4. Хомяков А.П., Курова Т.А., Шумяцкая Н.Г. // ДАН СССР. 1981. Т. 257, № 3. С. 622.

5. Perrault G., Chao G.Y., Chen T.T. // Canad. Miner. 1981. Vol. 19, pt 3. P. 411.

6. Хомяков А.П. Минералогия ультраагпантовых щелочных пород. М.: Наука 1990. 200 с.

7. Ghose S., Wan Cheng, Chao G.Y. // Canad. Miner. 1980. Vol. 18, pt 4. P. 503.

СТРУКТУРА ТИПА КОСТЫЛЕВИТА

	Сингония	a ₀	\boldsymbol{b}_0	<i>c</i> ₀	β	У <u>д.в</u> .
Костылевит K ₄ ZI ₂ [Si ₆ O ₁₈] 2H ₂ O	Монокл.	13,171	11,727	6,565	105,26°	2,74

Костылевит Kostylevite $K_4 Zr_2[Si_6O_{18}] \cdot 2H_2O$

Назван в память о выдающемся русском минералоге Е.Е. Костылевой (1894–1974). Диморфен с умбитом [1].

Характ. выдел. Короткопризматические кристаллы (от 0,1 до 1 мм) [2, 3].

Структ. и морф. крист. Монокл. с. $C_{2h}^5 - P2_1 / a$. $a_0 = 13,171$, $b_0 = 11,727$, $c_0 = 6,565 \text{ Å}$; $\beta = 105,26^\circ$; $a_0 : b_0 : c_0 = 1,1231 : 1 : 0,5598$; $V = 978,2 \text{ Å}^3$; Z = 2 [1, 2].

Характерный элемент структуры – кольца из шести кремнекислородных тетраэдров [Si₆O₁₈] (фиг. 68,*a*) в отличие от бесконечных цепей [Si₃O₉] в структуре умбита [2]. Каждое из двух колец, приходящихся на ячейку, опирается на шесть Zrоктаэдров, причем каждый Zr-октаэдр связан только с тремя кольцами, формируя каркас смешанного типа {Zr₂[Si₆O₁₂]}. Вдоль оси *с* в каркасе образуются широкие каналы, придающие структуре цеолитоподобный характер (см. фиг. 68,*6*). Половина атомов калия – K(1) и молекулы H₂O размещаются в каналах, а другая половина – K(2) заселяет крупные полости между трансляционно-идентичными вдоль оси *с* кольцами [Si₆O₁₈]. Независимая часть ячейки содержит один атом Zr, 3Si, 2K и 10 атомов O, один из которых принадлежит молекуле H₂O. Простейшая формула: K₂ZrSi₃O₉ · H₂O (Флейшер, 1990; Семенов, 1991). Координационный полиэдр для Zr – почти идеальный октаэдр. Крупные катионы K(1) и K(2) имеют к.ч. = 8 и 9 соответственно.

Межатомные расстояния (в Å): Si-O = 1,59–1,65; O-O = 2,63–2,65; Zr-O = 2,04–2,09; K(1)-O = 2,76–3,21; K(2)-O = 2,90–3,37.

Призм. кл. *С*_{2*h*}-2/*m*(*L*₂*PC*).

Формы (вычислены по рентгеновским данным) [1]:

		φ	ρ			φ	ρ
с	001	90°00 ′	15°26'	n	110	42°44'	90°00'
b	010	0 00	90 00	р	011	26 15	31 58
а	100	90.00	90.00	-			

Кристаллы призматического габитуса вытянуты по оси с. Грани (010) и (011) присутствуют не всегда. Характерны простые двойники по (100) [1].

Физ. св. Сп. совершенная по (110). Тв. около 5. Микротвердость 428– 535 кгс/мм². Уд.в. 2,74 (вычисл. 2,79). Бесцветный, водяно-прозрачный. Бл. стеклянный.

На ИК-спектре фиксируются сильные полосы поглощения молекул H_2O в области 1680 и 3340 см⁻¹ [1].

Микр. Двуосный (+). Np = b, $cNm \approx cNg \approx 45^{\circ}$. $n_g = 1,610$, $n_m = 1,598$, $n_p = 1,595$; $2V = 48^{\circ}$. Дисперсия слабая, r < v [1].

Хим. Теор. состав: K₂O – 22,66; ZrO₂ – 29,64; SiO₂ – 43,37; H₂O – 4,33.

Анализ (микрозонд., среднее из анализов 2 зерен, в пересчете на 100 мас.%): K₂O – 23,33; Fe₂O₃ – 0,02; SiO₂ – 44,27; ZrO₂ – 25,18; HfO₂ – 0,64; TiO₂ – 2,17; H₂O – 4,39 (вычислена для формулы K₂ZrSi₃O₉ · H₂O); сумма 100,00.

Эмпирическая формула: K₂(Zr_{0.87}Ti_{0.12}Hf_{0.01})Si₃O₉ · H₂O.

Диагн. исп. Разлагается в холодной 10%-ной НСІ.

Фиг. 68. Структура костылевита (по Илюшину и др.)

а - основной структурный элемент каркаса - группировка из шести Zr-октаэдров и кольца [Si₆O₁₈], проекция на плоскость (121); 6 – проекция на плоскость (110)

Нахожд. Обнаружен вместе с умбитом и вадеитом в керне одной из скважин, пробуренных в долине р. Вуоннемиок (Хибинский массив), в прожилке, секущем пойкилитовые нефелиновые сиениты. Прожилок сложен крупными кристаллами калиевого полевого шпата, в интерстициях когорого находятся агрегаты эгирина, а также пектолит, натролит, арктит, тенардит, расвумит, галенит, молибденит, галит и виллиомит. В тесных срастаниях вадеита, умбита и костылевита встречаются ретикты эвдиалита в виде зерен неправильной формы. Иногда призматические бесцветные кристаллы костылевита нарастают на пластинчатые выделения и кристаллы умбита. Минерал поздний, гидротермальный, кристаллизовался в специфических условиях ультравысокой щелочности [1, 4].

Отл. От умбита отличается по структуре, рентгеновским, оптическим и физическим свойствам.

	N	1ежплоскост	ные расстояния кост	ъглеви	га из Хибинс	кого массива [1]					
	CuK_{α} -излучение, $D = 114,6$ мм										
hkl	I	d (Å)	hkl	I	d (Å)	hkl	Ι	d (Å)			
200	47	6,42	600	5	2,118	603; 760	4	1,3301			
020	31	5,86	003; 313;	17	2,091	850; 923	7	1,3150			
210; 011	60	5,60	610			841	7	1,3025			
201	31	5,24	521; 351	13	2,031	672; 363	7	1,2906			
111	4	4,74	402	5	1,999	344; 951	5ш	1,2411			
121; 021	17	4,320	441; 242	7	1,936	681	5	1,2178			
310	17	4,008	423; 631	20	1,912	392	3	1,1904			
			333; 061; 601	11	1,865						

I	<i>d</i> (Å)	hki	I	d (Å)	hkl	1	d(Å)
15	3,745	352; 161; 152	8	1,829	871	7	1,1746
20	3,440	133; 432	15	1,780	10.5.1.	4	1,1468
53	3,336	641; 452	17	1,750	574	5	1,1327
12	3,195	550	7	1,726	683	3	1.1219
100	3,087	313; 731	7	1.697	5.10.1;	4	1,0318
16	2.940	623	13	1,671	ĪĪ,5.3		
27	2,862	730; 801	8ш	1,644	265	5	1,0127
53	2,802	004; 602	12	1,582	11.6.0	3	0,9949
12	2,666	371; 271	11	1,548	5.11.0	4	0,9831
23	2,606	742; 514;	5	1,527	5.10.4; 584	3	0,932~
11	2,557	622; 423			963; 1.12.3	3	0,9262
12	2,476	643	5	1,495	346; 12.3.5	2	0,9174
8	2,390	651; 180; 372	16	1,458	14.0.0	3	0,9076
8	2,350	811; 363; 214	5	1,441	14.4.2;	2	0,8952
8	2,207	181; 741	5	1,429	13.6.1		
7	2,154	544; 314; 234	8	1,361	2.13.1	2	0,8891
	/ 15 20 53 12 100 16 27 53 12 23 11 12 8 8 8 8 7	I d (Å) 15 3,745 20 3,440 53 3,336 12 3,195 100 3,087 16 2,940 27 2,862 53 2,606 21 2,666 23 2,606 11 2,557 12 2,476 8 2,390 8 2,350 8 2,207 7 2,154	I d (Å) hkl 15 3,745 352; 161; 152 20 3,440 133; 432 53 3,336 641; 452 12 3,195 550 100 3,087 313; 731 16 2,940 623 27 2,862 730; 801 53 2,802 004; 602 12 2,666 371; 271 23 2,606 742; 514; 11 2,557 622; 423 12 2,476 643 8 2,390 651; 180; 372 8 2,350 811; 363; 214 8 2,207 T81; 741 7 2,154 344; 314; 234	I d (Å) hkl I153,745 $\overline{3}52; 161; 152$ 8203,440 $133; 432$ 15533,336 $\overline{6}41; \overline{4}52$ 17123,195 550 71003,087 $313; 731$ 7162.940 623 13272,862 $730; \overline{8}01$ 8 $\mu\mu$ 532,802004; 60212122,666 $\overline{3}71; 271$ 11232,606 $\overline{7}42; \overline{5}14;$ 5112,557 $622; 423$ 12122,476 $\overline{6}43$ 582,390 $651; 180; \overline{3}72$ 1682,350 $811; \overline{3}63; 214$ 582,207 $\overline{181}; 741$ 572,154 $\overline{5}44; 314; 234$ 8	I d (Å) hkl I d (Å)153,745 $\overline{3}52; 161; 152$ 81,829203,440133; 432151,780533,336 $\overline{6}41; \overline{4}52$ 171,750123,19555071,7261003,087313; 73171.697162,940623131,671272,862730; $\overline{8}01$ $8uu$ 1,644532,802004; 602121,582122,666 $\overline{3}71; 271$ 111,548232,606 $\overline{7}42; \overline{5}14;$ 51,527112,557 $622; 423$ 121,49582,390 $651; 180; \overline{3}72$ 161,45882,350 $811; \overline{3}63; 214$ 51,44182,207 $\overline{18}; 741$ 51,42972,154 $\overline{5}44; 314; 234$ 81,361	I $d(Å)$ hklI $d(Å)$ hkl153,745 $352; 161; 152$ 8 $1,829$ 871 203,440 $133; 432$ 15 $1,780$ $\overline{10},5.1.$ 53 $3,336$ $\overline{641}; \overline{452}$ 17 $1,750$ $\overline{574}$ 12 $3,195$ 550 7 $1,726$ $\overline{683}$ 100 $3,087$ $313; 731$ 7 1.697 $5.10.1;$ 16 2.940 623 13 $1,671$ $\overline{11},5.3$ 27 $2,862$ $730; \overline{8}01$ $8u$ $1,644$ 265 53 2.802 $004; 602$ 12 $1,582$ 11.60 12 $2,666$ $\overline{3}71; 271$ 11 $1,548$ $5.11.0$ 23 $2,606$ $\overline{7}42; \overline{5}14;$ 5 $1,527$ $\overline{5}.10.4; 584$ 11 2.557 $622; 423$ $963; 1.12.3$ 12 $2,476$ $\overline{643}$ 5 $1,495$ $346; \overline{12}.3.5$ 8 $2,390$ $651; 180; \overline{3}72$ 16 $1,458$ 14.00 8 $2,350$ $811; \overline{3}63; 214$ 5 $1,429$ $\overline{13}.61$ 7 $2,154$ $\overline{5}44; 314; 234$ 8 $1,361$ $\overline{2}.13.1$	I $d(Å)$ hkl I $d(Å)$ hkl I15 $3,745$ $352; 161; 152$ 8 $1,829$ 871 720 $3,440$ $133; 432$ 15 1.780 $10.5.1.$ 453 $3,336$ $641; 452$ 17 $1,750$ 574 512 $3,195$ 550 7 $1,726$ 683 3100 $3,087$ $313; 731$ 7 1.697 $5.10.1;$ 416 2.940 623 13 $1,671$ $\overline{11},5.3$ 27 $2,862$ $730; \overline{8}01$ $8uu$ $1,644$ 265 553 2.802 $004; 602$ 12 $1,582$ $11.6.0$ 312 $2,666$ $\overline{3}71; 271$ 11 $1,548$ $5.11.0$ 423 $2,606$ $\overline{7}42; \overline{5}14;$ 5 $1,527$ $\overline{5}.10.4; 584$ 311 2.557 $622; 423$ 963; $1.12.3$ 312 $2,476$ $\overline{643}$ 5 $1,495$ $346; \overline{12}.3.5$ 28 $2,390$ $651; 180; \overline{3}72$ 16 $1,458$ 14.00 38 $2,350$ $811; \overline{3}63; 214$ 5 $1,429$ $\overline{13}.61$ 27 $2,154$ $\overline{5}44; 314; 234$ 8 $1,361$ $\overline{2}.13.1$ 2

Литература

- 1. Хомяков А.П., Воронков А.А., Полежаева Л.И., Смольянинова Н.Н. // Зап. ВМО. 1983. Ч. 11⁻⁷ вып. 4. С. 469.
- 2. Илюшин Г.Д., Хомяков А.П., Шумяцкая Н.Г., Воронков А.А., Невский Н.Н., Илюхин В.В Белов Н.В. // ДАН СССР. 1981. Т. 256, № 4. С. 860.
- 3. Хомяков А.П. Минералогия ультраагпаитовых щелочных пород. М.: Наука, 1990. 200 с.
- 4. Соколова М.Н. Типоморфизм минералов ультраагпантовых ассоциаций. М.: Наука, 1986. 118 с.

СТРУКТУРА ТИПА БАРАТОВИТА

ГРУППА БАРАТОВИТА

	Сингония	<i>a</i> ₀	b_0	<i>c</i> 0	α	β	γ	Уд.в
Баратовит KLi ₃ × × Ca ₇ Ti ₂ [Si ₆ O ₁₈] ₂ F ₂	Монокл.	16,941	9,746	20,907	-	112,5°	-	2,92
Катаямалит KLi ₃ × ×Ca ₇ Ti ₂ [Si ₆ O ₁₈] ₂ × ×(OH,F) ₂	Трикл. Монокл.	9.721 16,923	16,923 9,721	19,942 20,909	91,43° –	104,15 112,40	89,94 –	2,91 -

Минералы объединсны в группу по структурному сходству [1, 2]. При трансформации первоначально выбранной триклинной ячейки катаямалита [2] в моноклинную структуры становятся почти идентичными [3].

В связи со структурной и химической близостью предлагалось рассматривать катаямалит как ОН-баратовит (Семенов, 1991). На основе недостатка F в химическом анализе предполагалось, что баратовит содержит ОН, как и катаямалит, в связи с чем предлагалось один из минералов дискредитировать [3].

Литература

2. Kato T., Murakami N. // Miner. J. Jap. 1985. Vol. 12, N 5. P. 206.

^{1.} Menchetti S., Sabelli C. // Amer. Miner. 1979. Vol. 64, N 3/4, P. 383.

^{3.} Baur W.H., Kassner D. // Europ. J. Miner. 1992. Vol. 4, N 4. P. 839.

Баратовит Baratovite $KLi_3Ca_7Ti_2[Si_6O_{18}]_2F_2$

Назван по имени петрографа академика Таджикской АН Р.Б. Баратова [1].

Характ. выдел. Кристаллы размером $0.3 \times 0.3 \times 0.3$ мм, пластинчатые выделения $5 \times 2 \times 0.5$ см, мелкочешуйчатые изометричные скопления (около 1 см).

Структ. и морф. крист. Монокл. с. C_{2h}^6 -C2/c. $a_0 = 16,941, b_0 = 9,746, c_0 = 20,907$ Å; $\beta = 112,50^\circ$; V = 3189,1 Å³; Z = 4 [2]; $a_0 = 16,90, b_0 = 9,79, c_0 = 20,91$ Å; $\beta = 112,5^\circ$; $a_0 : b_0 : c_0 = 1,737 : 1 : 2,149$; V = 3179 Å³ [3]; в другой установке: $a_0 = 16,953, b_0 = 20,916, c_0 = 9,752$ Å; $\gamma = 112,46^\circ$; V = 3195,8 Å³. Псевдогексагональная ячейка: $a_0 = 9,774, b_0 = 9,752, c_0 = 2 \times 19,336$ Å; $\alpha = 89,98, \beta = 89,97, \gamma = 119,85^\circ$; Z = 4 [3].

Изолированные шестичленные кольца расположены слоями, параллельными плоскости *ab* (фиг. 69,*a*), что определяет спайность кристаллов. Катионы также образуют слои из Ті- и Са-октаэдров, Li находится в искаженном тетраэдре, К – в двенадцативершиннике (гексагональная призма). В трех из четырех независимых Са-октаэдрах одна или две вершины заняты ионами F. Слои из Са-октаэдров и Ті–Li-полиэдров расположены по обе стороны Si–O-колец, образуя пакеты (см. фиг. 69,6). Слои Ті–Li-полиэдров представляют собой ажурную псевдогексагональную сетку [4]. Ионы К⁺ размещены в пустотах между Si–O-кольцами.

Согласно [2], позиция атомов F занята почти полностью, заметные количества в ней ОН⁻ отсутствуют.

Средние межатомные расстояния (в Å) по [2]: Si-O = 0,618; Ti-O = 1,945; Li-O = 1,908; K-O = 3,140. Межатомные расстояния (в Å) Ca-F в Ca-октаэдрах короче, чем Ca-O: 2,297-2,336 и 2,380-2,466 соответственно.

Физ. св. Сп. по (001) совершенная [1]. Отдельность в виде неправильных кубов. Хрупок. Тв. 3,5. Уд.в. 2,92 (вычисл. 2,912 [2], 2,83 [3]). Бесцветный, в скопчениях перламутрово-белый. На ИК-спектре наблюдаются двойная полоса поглощения с максимумами 1108 и 1010 см⁻¹, две интенсивные полосы с пиками 583 и 482 см⁻¹ (предположительно колебания связей Si–O₄), полоса около 690 см⁻¹ (связи Ti–O₆) [5]. Указывались [1] максимумы поглощения 1085, 950, 470 и 445 см⁻¹. Фосфоресцирует в ультрафиолетовых лучах [6].

Микр. [1]. Под микроскопом бесцветный. В сечениях \parallel (001) изотропный, \perp (001) слабо двупреломляет. Двуосный (+). Пл. опт. осей субперпендикулярна (001). Угол Np с нормалью к (001) около 50°. $n_g = 1,673$, $n_m = 1,672$, n_p не опр.; $2V = 60^\circ$. Дисперсия сильная, r > v.

Хим. Теор. состав: K₂O – 3,39; Li₂O – 3,23; CaO – 28,30; Ti₂O – 11,52; Si₂O – 51,97; F – 2,74.

Анализ (анал. Быкова) [1]: Li₂O – 2,05; K₂O – 2,96; Na₂O – 0,70; CaO – 30,36; MnO – 0,12; Fe₂O₃ – 0,50; TiO₂ – 9,55; ZrO₂ – 2,28; SiO₂ – 50,46; Nb₂O₅ – 0,72; F – 1,05; $-O = F_2 - 0,44$; сумма 100,31. Соответствует формуле KLi₂Ca₈Ti₂Si₁₂O₃₇F, отличной от установленной позже [2, 3] в результате структурного изучения минерала.

Нахожд. Обнаружен в щелочном массиве Дара-Пиоз в Таджикистане как акцессорный минерал кварц-альбит-эгириновых пегматоидных прожилков, связанных с вмещающими кварц-эгириновыми сиенитами. Встречен также в альбититах этих сиенитов. Ассоциирует с мизеритом, эканитом и сфеном [1].

Фиг. 69. Структура баратовита (по Менчети и Сабелли)

a – проекция вдоль оси z, кольца [Si₆O₁₈] заштрихованы; δ – проекция вдоль оси b (на высоте 1/2c – слой Ca-октаэдров, на 1/4c – атомы Li, Ti и K)

Межплоскостные расстоянии баратовита из Таджикистана [1]

	Fe-излучение, Mn-фильтр, D = 57,3 мм											
I	d (Å)	hkl	Ι	d(Å)	hkl	I	<i>d</i> (Å)					
3	4,81		4	3,54	008	20	2,41					
1	4,63		1	3,41	0.0.10	17	1,92					
2	4,22	006	100	3,22		3	1,83					
1	4,09		3	3,10		1	1,73					
1	3,86		5	3,02		1	1,71					
2	3,68		2	2,95		4	1,60					
0,5	3,61		3	2,87		4	1,49					

Литература

- 1. Дусматов В.Д., Семенов Е.И., Хомяков А.П., Быкова А.В., Джафаров Н.Х. // Зап. ВМО. 1975. Ч. 104, вып. 5. С. 580.
- 2. Menchetti S., Sabelli C. // Amer. Miner. 1979. Vol. 64, N 3/4. P. 383.
- 3. Сандомирский П.А., Симонов М.А., Белов Н.В. // ДАН СССР. 1976. Т. 231, № 3. С. 615.
- 4. Белов Н.В., Белова Е.Н. // Минерал. сб. Львов. 1978. № 32, вып. 1. С. 3.
- 5. Поваренных А.С. // Минерал. журн. 1979. Т. 1, № 2. С. 3.
- 6. Murakami N., Kato T., Hirowatari F. // Miner. J. Jap. 1983. Vol. 11, N 6. P. 261.

Катаямалит Katayamalite

KLi₃Ca₇Ti₂[Si₆O₁₈]₂(OH, F)₂

Назван по имени выдающегося минералога Японии проф. Н. Катаяма [1]. Синон. ОН-баратовит (Семенов, 1991). Первоначально принимался за клиноцоизит [2].

Характ. выдел. Зерна размером $(0,01-0,2) \times (0,1-0,5)$ мм, тонкозернистые скопления [1], кристаллы до $0,27 \times 0,20 \times 0,13$ мм [3].

Структ. и морф. крист. Трикл. с. $C\overline{1}$. $a_0 = 9,721$, $b_0 = 16,923$, $c_0 = 19,942$ Å; $\alpha = 91,43$, $\beta = 104,15$, $\gamma = 89,94^{\circ}$; $V_0 = 3180,0$ Å³; Z = 4 [3]. Монокл. с. $C_{2h}^6 - C2/c$. $a_0 = 16,923$, $b_0 = 9,721$, $c_0 = 20,909$ Å; $\beta = 112,40$, [4] (см. Введение к группе).

В отличие от баратовита в позиции дополнительных анионов (OH, F) преобладают OH-группы. Понижение симметрии до триклинной – следствие незначительной деформации слоев Ca-октаэдров и отклонения некоторых атомов кислорода Si– O-колец от аналогичных позиций в моноклинной структуре баратовита [3] (фиг. 70).

Средние межатомные расстояния (в Å) близки таковым в баратовите: Si-O = = 1,61; Ti-O = 1,93; Li-O = 1,91; K-O = 3,13; Ca-O лежат в пределах 2,36-2,48; Ca-O(OH) - 2,40; Ca-OH - 2,31-2,35.

Кристаллы таблитчатые, слабо изогнутые [1].

Физ. св. Сп. совершенная по (001). Тв. 3,5–4. Уд.в. 2,91 (вычисл. 2,899). Цв. бетый. Черта белая. Бл. стеклянный. В ультрафиолетовых лучах – яркое голубоватобелое свечение [1].

Микр. Бесцветный, со своеобразной интерференционной окраской. Сильная абсорбция, слабое двупреломление.

Двуосный (+). Угол Ng с нормалью к (001) – около 36°. $\forall m \approx b. n_g = 1,677, n_m = 1,671, n_p =$ = 1,670; $n_g - n_p = 0,007; 2V$ около 32°. Дисперсия сильная, r > v. Паралтельное двойникование по (001). Иногда обнаруживает слабую зональность вокруг включений зерен альбита [1].

Хим. [1]. Теор. состав: $K_2O - 3,40$; $Li_2O - 3,24$; CaO - 28,39; TiO₂ - 11,55; SiO₂ - 52,12; H₂O - 1,30.

Фнг. 70. Структура катаямалита в проекции вдоль оси с (по Като и Мураками); кольца [Si₆O₁₈] заштрихованы

Анализ (микрозонд.): K₂O – 2,89; Na₂O – 0,22; Li₂O^{*} – 3,25; CaO – 28,25; MnO – 0,22; Fe₂O₃^{2*} – 0,29; TiO₂ – 10,99; SiO₂ – 52,31; H₂O^{3*} – 1,21; F – 0,34; –O = $F_2 - 0,14$; сумма 99,83.

*Метод пламенной фотометрии.

^{2*}Определено титрованием KMnO₄.

^{3*}Термогравиметрический метод.

Спектральным анализом обнаружены очень малые или незначительные коли чества Al, Mg, Sn, Ba, Be и P.

Эмпирическая формула: (K_{0,85}Na_{0,10})_{0,95}Li_{3,00}(Ca_{6,94}Mn_{0,04})_{6,98}(Ti_{1,90}Fe_{0,05})_{1,95}× × Si_{12,00}O_{35,78} (OH_{1,85}F_{0,25})_{2,10} [1].

Нахожд. Встречен как акцессорный минерал (до 0,30–0,5 об.% пород) в эгириновом сиените на о-ве Иваки, преф. Эхиме на юго-западе Японии [1]. Сиенит образует небольшой шток в грубозернистом биотитовом граните. Переход от сиенита к граниту постепенный, через кварцевый сиенит и щелочной гранит, что свидетельствует о метасоматическом образовании сиенита по биотитовому граниту Приурочен к меланократовой части породы. Наблюдается совместно с альбитом. эгирином, пектолитом, волластонитом и сугилитом, образующими включения неизмененном катаямалите.

Межплоскостные расстояния катаямалита из Япония [1]

		CuKα	-излучение		
hkl	I	<i>d</i> (Å)	hkl	1	<i>d</i> (Å)
0,40; 221; 132; 133	15	4,14	334; 337; 318; 315	15	2,185
1 34; 133	15	3,66	156; 157	10	2,146
025; 205; 203	20	3,48	24 8; 2 4 6	10	2,108
1 35; 134	20	3,30	175, 356	10	2,085
044; 006	100	3,23	319; 316; 157; 158	10	1,99 9
151; 152; 243; 241; 206; 204	30	3,06	0.0.10	40	1,933
314; 311; 152; 153	30	2,943	177; 176	15	1,863
2 44; 1 36; 135; 242	30	2,898	ī91; ī90; 190; 4 62; ī91; 462;	25	1,841
3 1 5; 312; 153; 154	2 0	2,730	533; 463; 532; 532; 192; 533; 461		
207	15	2,702	0.4.10; 194	10	1,740
316; 313	15	2,558	3.3.11; 338	10	1,641
008	30	2,417	4 .0.11; 407	15	1,612
317; 314	10	2,357	2.6.11; 269; 2.10.5	15	1,532
155; 156	15	2,333	0.0.14	25	1,382
247; 245	15	2,288			

Литература

1. Murakami N., Kato T., Hirowatari F. // Miner, J. Jap. 1983. Vol. 11, N 6. P. 261.

2. Taneda S. // Jap. J. Geol. Geogr. 1952. Vol. 22. P. 235.

3. Kato T., Murakami N. // Miner. J. Jap. 1985. Vol. 12, N 5. P. 206.

4. Baur W H., Kassner D. // Europ. J. Miner. 1992. Vol. 4, N 4. P. 839.

СИЛИКАТЫ С ДЕВЯТИЧЛЕННЫМИ КОЛЬЦАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА ЭВДИАЛИТА

ГРУППА ЭВДИАЛИТА

Ранее со структурой этого типа был описан эвдиалит (т. III, вып. 2, с. 227).

	Сингония	a_h	c _h	Уд.в.
Аллуайвит Na ₁₉ (Ca, Mn) ₆ (Ti, Nb) ₃ ×	Триг.	14,046	60,60	2,76
×[Si ₁₀ O ₂₈] ₂ [Si ₃ O ₉] ₂ Cl 2H ₂ O				

В результате уточнения кристаллических структур эвдиалита [1] и его разновидностей: эвколитов [2-4], барсановитов [4, 5], калиево-оксониевого эвдиалита [6, 7] подтверждена возможность превращения девятерых эвдиалитовых колец в плоские диски [Si₁₀O₂₈]; дано объяснение их кристаллохимических, оптических и спектроскопических особенностей [8-11]. Все структуры имеют одинаковое строение смешанного каркаса из тройных [Si₃O₉]-, девятерных [Si₉O₂₇]- и шестерных колец из Са-октаэдров, скрепленных одиночными Zr-октаэдрами. Они различаются распределением и степенью упорядоченности как внутрикаркасных Na, K, Sr, TR, Fe, Mn, Ti, Cl, H₂O, H₃O⁺), так и дополнительных атомов (Si, Al, Zr, Nb), центрирующих каркасообразующие девятерные кольца [Si₉O₂₇], причем SiO₄-тетраэдры могут ориентироваться свободной вершиной вверх или вниз фиг. 71, $a-\epsilon$). Возможны разные комбинации и разное заселение дополнительных тетраэдров и октаэдров (фиг. 72, I-IV). Максимальное упорядочение достигается в труктуре барсановита, где одно из двух девятерных колец полностью заменяется на плоский диск [Si₁₀O₂₇(OH)], а второе центрируется дополнительным октаэдром см. фиг. 72, III). Квадратная координация атомов Fe²⁺, зажатых между Ca-октаэдрами соседних шестерных колец, определяющая специфическую свекольномалиновую окраску эвдиалита, модифицируется в эвколитах и барсановите в квадратную пирамиду (при вхождении Fe³⁺) или достраивается до октаэдра (при эхождении Ti). Этот полиэдр М(2) объединяется с октаэдром М(1), центрирующим зевятерное [Si₉O₂₇]-кольцо, и крупными восьмивершинниками М(3), заселенными Na, Sr и TR, в жесткий кластер из семи полиэдров, заполняющий всю полость между шестерными кольцами из Са-октаэдров (фиг. 73). Крупные катионы Na(K) в лолостях могут занимать несколько подпозиций с разной заселенностью и кооринацией, существенно изменяя локальную симметрию в структуре. Это наиболее тарактерно для атомов Na в крупных полостях, ограниченных сверху и снизу тевятерными [Si₉O₂₇]-кольцами (фиг. 74). В ряду эвдиалит-эвколит-барсановит порядоченность распределения дополнительных атомов в полостях возрастает, с ем связывается проявление ацентричности структуры и наличие стойкого ьезоэффекта.

Калиево-оксониевый эвдиалит характеризуется значительным дефицитом Na высокозарядных катионов, а также отсутствием Fe²⁺. Дефицит Na восполняетя вхождением H₃O⁺-групп и К [6, 7]. В межкольцевых полостях Na отсутстет (замещаясь OH-группами, см. фиг. 74,*a*), но входит в виде дополнительного ктаэдра в центр девятерного [Si₉O₂₇]-кольца, атомы Zr вместе с Fe³⁺ – в октаэдры \[(2).

, -

Фиг. 71. Девятерное кремнекислородное кольцо [Si₉O₂₇] в структуре эвдиалита в проекции на плоскость (0001) (по Расцветаевой)

а – без дополнительных атомов; б, в – с дополнительными SiO₄-тетраэдрами (свободной вершиной вниз или вверх); г – с дополнительными (Zr, Ti, Nb, Al)O₆ октаэдрами

Фиг. 72. Девятерные эвдиалитовые кольца, скрепленные атомами Zr или Ti, в структурах разных эвколитов (*I*, *II*), барсановита (*III*) и аллуайвита (*IV*) (по Расцветаевой)

Показаны ориентировка дополнительных [SiO₄]-тетраэдров и (Zr, Ti, Nb, Al)-октаэдров и их заселенность в расчете на элементарную ячейку

Фиг. 73. Кластерный фрагмент в структуре эвколита из дополнительного М(1)-октаэдра, центрирующего девятерное [Si₉O₂₇]-кольцо, трех М(2)-пятивершинников Fe³⁺ и трех М(3)-восьмивершинников Na, Sr, TR, выполняющий полость между соседними шестерными кольцами из Ca-октаэдров; проекция на (0001) (по Расцветаевой)

Фиг. 74. Распределение атомов Na и OH-групп в межкольцевой полости в структурах минералов группы эвдиалита в проекции на плоскость (0001) (по Расцветаевой)

а – оксониевый эвдиалит; б – аллуайвит, в – барсановит; г – ТК– Fe-эвколит; д – ТК–Мп-эвколит; е – Fe-эвколит

В аллуайвите, в отличие от эвдиалита и его разновидностей, оба кремнекислородных кольца преобразованы в диски [Si₁₀O₂₈], все циркониевые октаэдры в каркасе полностью заменены на титановые, период ячейки *с* удваивается.

Литература

- 1. Расцветаева Р.К., Андрианов В.И. // ДАН СССР. 1987. Т. 293, № 5. С. 1122.
- 2. Расцветаева Р.К., Боруцкий Б.Е., Гусев А.И. // Кристаллография. 1988. Т. 33, № 2. С. 353.
- 3. Расцветаева Р.К., Боруцкий Б.Е. // Минерал. журн. 1990. Т. 12, № 4. С. 81.
- 4. Расцветаева Р.К., Пущаровский Д.Ю., Ямнова Н.А., Боруцкий Б.Е. // Сравнительная кристаллохимия. М.: Изд-во МГУ, 1987. С. 153.
- 5. Расцветаева Р.К., Разманова З.П., Боруцкий Б.Е., Дорфман М.Д. // Зап. ВМО. 1990. Ч. 119, вып. 3. С. 65.
- 6. Расцветаева Р.К., Соколова М.Н., Боруцкий Б.Е. // Кристаллография. 1990. Т. 35, № 6. С. 1381.
- 7. Соколова М.Н., Боруцкий Б.Е., Архипенко Д.К., Расцветаева Р.К., Власова Е.В. // ДАН СССР. 1991. Т. 318, № 3. С. 712.
- 8. Расцветаева Р.К., Боруцкий Б.Е. // Мннерал. журн. 1988. Т. 10, № 1. С. 48.
- 9. Польшин Э.В., Платонов А.Н., Боруцкий Б.Е., Таран М.Н., Геворкьян С.В., Меньшиков Ю.П., Литвин М.А., Беличенко В.П. // Там же. 1987. Т. 9, № 6. С. 36.
- 0. Pol'shin E.V., Platonov A.N., Borutsky B.E., Taran M.N., Rastsvetaeva R.K. // Phys. Chem. Miner. 1991. Vol. 18. P. 117.
- 1. Расцветаева Р.К. // Структурная кристаллография. М.: Наука, 1992. С. 204.

Аллуайвит Alluaivite

$Na_{19}(Ca, Mn)_6(Ti, Nb)_3[Si_{10}O_{28}]_2[Si_3O_9]_2Cl \cdot 2H_2O$

Назван по месту находки на горе Аллуайв в Ловозерском массиве (Кольский п-ов) [1].

Характ. выдел. Зерна неправильной формы (до 1 мм).

Структ. и морф. крист. Триг. с. $D_{3d}^5 - R\overline{3}m$. $a_h = 14,046$, $c_h = 60,60$ Å; $a_h:c_h = 1:4,314$; V = 10354 Å³; Z = 6 [1, 2].

В отличие от эвдиалита элементарная ячейка удвоена в направлении оси с. Два на формульную единицу) дополнительные Si-тетраэдра встроены в середину невятичленных эвдиалитовых колец [Si₉O₂₇]¹⁸⁻, превращая их в десятичленные

Фиг. 75. Фрагмент структуры аллуайвита в проекции на плоскость (110) (по Расцветаевой и др.)

Черным выделены структурные элементы, нарушающие трансляцию эвдиалитовой ячейки вдоль оси с; цифрами обозначены Na н H₂O

дисковые радикалы $[Si_{10}O_{28}]^{16-}$, в одном из которых ориентация дополнительного тетраэдра совпадает с таковой основного кольца, в другом – противоположна (фиг. 75). Упорядоченная ориентация этих тетраэдров приводит к удвоению периода *с* и центросимметричности сгруктуры.

Замена Zr-октаэдров на меньшие по размерам Ti-октаэдры способствует сокращению объема полостей смешанного каркаса. Это благоприятно для размещения в них атомов Na, содержание которых в аллуайвите выше, чем в эвдиалите, а такж: определяет бо́льшую упорядоченность атомов Na Cl. Часть атомов Na, располагаясь между Ca-октаэдрами двух соседних колец, имеет необычную четверную координацию (в эвдиалите установлена для Fe²⁺). В отличие от эвдиалита одна из двух вакантных полостей внутри шестичленных колец из Caоктаэдров и ограничивающих их сверху и снизтройных колец [Si₃O₉] занята на ²/з молекулой H₂O и на ¹/з – атомом K, что также является причином удвоения периода c_0 до 60,60 Å.

Структурная формула [2]: ${(Ti_{2,3}Nb_{0,7})(Ca_{4,5} \times Mn_{1,5})[Si_3O_9]_2[Si_{10}O_{28}]_2}^{19,3-}$ ${(Na_{19,1}Sr_{0,3}TR_{0,1} \times (Cl_{0,8}(H_2O)_{1,6}K_{0,1}])^{19,3+}}$. Фигурными скобками выделены составы каркасной и цеолитной частей структуры.

Межатомные расстояния (средние, в Å) [2' Si(1,2,6)-O = 1,62; Si(3,4,8)-O = 1,61; Si(5)-O = = 1,63; Si(7)-O = 1,57; Ti-O = 1,94 (в октаэдре Ca-O = 2,32 и 2,35 (в октаэдре); Na(1)-O = 2,54 (пятивершинник); Na(2)-O = 2,59 (восьмивершинник); Na(3)-O = 2,59 и Na(4)-O = 2,74 (семивершинники); Na(5)-O = 2,73 и Na(6)-O = 2,60 (восьмивершинники); Na(7)-O = 2,29 и Na(8)-O = 2,18 (плоские квадраты).

Физ. св. [1]. Изл. раковистый. Тв. 5-6. Уд.в 2,76 (вычисл. 2,78). Хрупок. Бесцветный, местами

со слабым розовато-коричневатым оттенком. Бл. сильный стеклянный. Прозрачный. В ультрафиолетовых лучах имеет яркое красно-оранжевое свечение.

ИК-спектр сходен с эвдиалитовым, но отличается наличием слабых максимумов поглощения в области 1600 и 3400–3500 см⁻¹, связанных с H₂O.

Микр. [1]. Одноосный (+). n_e = 1,626, n_o = 1,618; n_e-n_o = 0,008.

Хим. [1, 3]. В отличие от эвдиалита и его разновидностей в аллуайвите Zr полностью заменен на Ti, отсутствует Fe, наблюдается более высокое содержание S и Na.

Анализ (микрозонд., среднее из анализов 3 зерен; анал. Нечелюстов): Na₂O – 18,6; K₂O – 0,2; CaO – 8,6; SrO – 1,0; BaO – 0,6; MnO – 3,6; La₂O₃ – 0,2; Ce₂O₃ – 0,8; SiO₂ – 53,3; TiO₂ – 6,0; ZrO₂ – 0,2; Nb₂O₅ – 3,9; Cl – 0,8; H₂O – 1,7^{*}; –O = Cl₂ – 0,2; сумма 99,3.

* Определено кулонометрическим методом Елиной.

Эмпирическая формула (на 53 катиона):

$$(\mathrm{Na_{17,47}K_{0,12}Sr_{0,28}Ba_{0,11}La_{0,03}Ce_{0,14})_{18,15}}(\mathrm{Ca_{4,46}Mn_{1,47}})_{5,93}(\mathrm{Ti}_{2,18}\mathrm{Nb}_{0,85}\mathrm{Zr}_{0,05})_{3,08}\times$$

 \times Si_{25,82}O_{73,26}Cl_{0,66}·2,75H₂O.

Диагн. нсп. [1]. Медленно выщелачивается в 10%-ной HCl.

Нахожд. [1, 3]. Встречается в Ловозерском массиве (Кольский п-ов) в пегматоидных породах агпантового типа, сложенных нефелином, содалитом, калиевым полевым шпатом. В подчиненных количествах присутствуют арфведсонит, волокнистый эгирин, канкрисилит, эвдиалит, высокощелочные силикаты, титано-, ниобои цирконосиликаты (макатит, грумантит, лоренценит, казаковит, нептунит, ломоносовит, вуоннемит, соболевит, паракелдышит, терскит и др.). Находится в тесных срастаниях с эвдиалитом, в котором образует редкие обособления, более поздние по отношению к эвдиалиту.

Отл. От эвдиалита отличается вдвое большей величиной параметра *c*₀ и наличием центра симметрии, отсутствием окраски, яркой люминесценцией в ультрафиолетовых лучах, более слабой растворимостью в разб. HCl.

Межплоскостные расстонния аллуайвита из Ловозера [1] Си-излучение, Ni-фильтр. D = 57,3 мм

hkl	1	d (Å)	hkl	1	d(Å)	hki	1	<i>d</i> (Å)
110	8	7,14	315	10	2,960	2.4.13	I	1,635
113	3	5,79	404	10	2,825	4.1.15	1	1,606
006	1	5,04	137	5	2,664	3.1.17	3	1,569
205	7	4,30	309	5	2,583	1.5.14	2	1,538
116	3	4,11	327	3	2,348	455	2	1,514
214	1	3,93	4.0.10	7	2,148	5.3.11	3	1,472
203	4	3,77	2.2.12	3	2,045	087	2	1,438
220	1	3,51	434	3	1,941	5.2.15	ĩ	1,402
131	5	3,36	256	1	1,822	728	1	1,387
306	2	3,17	440	8	1,762	900	7	1.358
217	2	3,15	354	1	1,699	8.0.11	2	1,334
119	4	3,00	075	1	1,677			

Литература

1. Хомяков А.П., Нечелюстов Г.Н., Расцветаева Р.К. // Зап. ВМО. 1990. Ч. 119, вып. 1. С. 117.

2. Расцветаева Р.К., Хомяков А.П., Андрианов В.И., Гусев А.И. // ДАН СССР. 1990. Т. 312, № 6. С. 1379.

3. Хомяков А.П. Минералогия ультраагпаитовых щелочных пород. М.: Наука, 1990. 200 с.

СИЛИКАТЫ С ДВЕНАДЦАТИЧЛЕННЫМИ КОЛЬЦАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА ТРАСКИТА

	Сингония	<i>a</i> 0	c_0	Уд.в.
Траскит Ba ₂₄ (Ca, Sr)(Ti, Fe, Mn) ₁₆ ×	Гексаг.	17,88	12,30	3,71
\times [Si ₁₂ O ₃₆][Si ₂ O ₇] ₆ (O, OH) ₃₀ Cl ₆ · 14H ₂ O				

Траскит Traskite

Ba₂₄(Ca, Sr)(Ti, Fe, Mn)₁₆[Si₁₂O₃₆][Si₂O₇]₆(O, OH)₃₀Cl₆ · 14H₂O

Назван по фамилии калифорнийского геолога Дж.Б. Траска [1].

Характ. выдел. Зерна, кристаллы от 0,1 до 3 мм, обычно менее 1 мм [1].

Структ. и морф. крист. Гексаг.с. $D_{3h}^1 - P\overline{6}m2$. $a_0 = 17,88$, $c_0 = 12,30$ Å; Z = 1 [1] $a_0 = 17,89$, $c_0 = 12,33$ Å [2].

Основу структуры [2] составляет ажурный каркас Ва-десятивершинников Ва(O, OH, Cl)₁₀, с широкими каналами вдоль оси с (фиг. 76, *а*-г).

Кремнекислородные анионы двух типов: плоские высокосимметричные две надцатичленные кольца [Si₁₂O₃₆] и диортогруппы [Si₂O₇]. Структура цеолитопо добная. В ее крупных каналах вокруг осей б размещаются кольца [Si₁₂O₃₆]на этаж: z = 0,5 и дитригональные кольца из молекул H₂O на этаже z = 0,0; остальные молекулы воды "вложены" в оба типа колец. Диортогруппы (вертикально ориетированные, см. фиг. 76, г) соединяют Ва-каркас с тригональными призмами CaO₄ вдоль оси *с* диортогруппы чередуются с октаэдрами (Fe, Ti)O₃(OH)₃. Октаэ. рические позиции внутри Ва-каркаса заполнены атомами Ti, частично замещенными на Fe, Mn и Al.

Межатомные расстояния (в Å): Si-O = 1,55-1,72; Fe-O = 1,96-2,0? (Fe, Mn, Al)-O = 2,10-2,36; Ti-O = 1,92-2,20; Ba-O = 2,54-3,51; Ca-O = 2,36.

Дополнительные диффузные линии на рентгенограмме врашения вдоль оси с свидетельствуют наличии сверхпериода в 24,6 Å и принадлежности к типу ОД-структур [2].

Кристаллы очень редки, преобладают грани (0001) и (1010), (1122), (4152 (6171) [1].

Физ. св. Сп. не обнаружена. Изл. раковистый. Тв. около 5. Уд.в. 3,71 (вычисч 3,75). Цв. буро-красный. Черта светлая, красновато-бурая. Бл. стеклянный. В ульрафиолетовых лучах не флюоресцирует [1]. В оптическом спектре поглощения пр $E \perp c$ наблюдается слабая полоса поглощения 450 нм, обусловленная переносозаряда в паре Fe²⁺-Ti⁴⁺ [3].

Микр. Плеохроизм: по No – буровато-красный, по Ne – соломенно-желтый - бесцветного. Одноосный (–). n_o = 1,714, n_e = 1,702 [1].

Хим. Teop. состав: $Ba_{24}CaFe_4(Ti_8Mn_2MgAl)_{12}[Si_{24}O_{78}](O_3OH_{26}F)_{30}Cl_6 \cdot 14H_2O$ MgO – 0,58; CaO – 0,80; MnO – 2,03; FeO – 4,10; BaO – 52,57; Al₂O₃ – 0,73; SiO₂ – 20,60; TiO₂ – 9,13; H₂O – 6,95; Cl – 3,04; F – 0,27.

Анализ (в пересчете на 100%, анал. Путман)* [4]: $K_2O^{2*} - 0.5$; MgO - 0.34 CaO - 0.86; SrO - 0.34; MnO - 1.36; FeO^{3*} - 4.2; BaO - 51.19; Al₂O₃ - 0.33; SiO₂ - 27.77; TiO₂ - 5.6; Cl^{2*} - 3.5; F - 0.04; H₂O^{4*} - 5.1; -O = Cl₂ + F₂ - 1.0; сумма 100.0.

^{3*} Общее Fe.

^{*} Дуговой эмиссионный спектрографический метод.

^{2*} Рентгечовский спектрохимический метод.

^{4*} Определено как п. п., анал. Алфорс.

a – ажурный слой из Ва(3)-полиэдров, крышка тригональной Са-призмы, шестиугольные H₂O-кольца вокруг начала координат (z = 0); δ – Ва(1)- и Ва(5)-десятивершинники (z = 0,25); e – слой из пятиугольных Ва(2)- и Ва(4)-призм, соединенных по ребрам (z = 0,5); z – "мелкокатионная" вязь структуры. Черным показаны 12-членные кремнекислородные кольца вокруг осей $\overline{6}$ и вертикальные [Si₂O₇]группы

Эмпирическая формула: (Ba $_{25,40}$ Ca $_{1,17}$ Sr $_{0,25}$ K $_{0,08}$) $_{26,90}$ (Fe $_{4,45}$ Ti $_{5,33}$ Mn $_{1,46}$ Mg $_{0,57}$) $_{9,81}$ × ×(Si $_{35,17}$ Al $_{0,49}$) $_{35,66}$ (OH) $_{43,09}$ Cl $_{7,51}$ Fi $_{60}$ O $_{88,78}$.

Диагн. исп. Нерастворим в разб. кислотах и основаниях. В закрытой трубке выделяет воду [1].

Повед. при нагр. При 1200° сплавляется в соломенно-желтое стекло [1].

Нахожд. Встречен в округе Фресно, Калифорния (США), в гнейсовидных санборнит-кварцевых породах, образующих уплощенные тела в кварцитах вблизи контакта с гранодиоритами, наряду с верпланкитом и мюиритом. Неравномерно распространен в породе в виде мелких вкрапленных зерен, сингенетичных санборниту [1].

Межплоскостные расстояния траскита округа Фресно, шт. Калифорини (США) [1]

 CuK_{α} -излучение, D = 114,59 мм

hkl	1	d (Å)	hki	1	d(Å)	hkl	1	d (Å)
100	50	15,4	302; 400	>5	3,92	420; 114;	25	2,90
101	5	9,7	113; 401	15	3,70	433		
						204	5	2.85

Силикаты с кольцами кремнекислородных тетраэдров

hkl	1	d (Å)	hkl	1	d(Å)	hkl	1	d (Å)
111	5	7,1	222	10	3,61	214	15	2,72
102	5	5,7	312	40	3,51	323; 331	10	2,68
300	5	5,1	402	25	3,27	422	< 5	2,64
202; 301	15	4,8	303	20	3,21	601	20	2,53
212	10	4,2	322	35	3,08	105; 333	10	2,42
311	5	4,04	330; 313;	100	2,96			-
			412					

Литература

1. Alfors J.T., Stinson M.C., Matthews R.A., Pabst A. // Amer. Miner. 1965. Vol. 50, N 3/4. P. 314.

2. Малиновский Ю.А., Победимская Е.А., Белов Н.В. // ДАН СССР. 1976. Т. 229, № 5. С. 1103.

3. Mattson S.M., Rossman G.R. // Phys. Chem. Miner. 1988. Vol. 16, N 1. P. 78.

4. Alfors J.T., Putman G.W. // Amer. Miner. 1965. Vol. 50, N 9/10. P. 1500.

СИЛИКАТЫ С ВОСЕМНАДЦАТИЧЛЕННЫМИ КОЛЬЦАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА МЕГАЦИКЛИТА

	Сингония	a_0	b_0	c_0	β	Уд.в
Мегациклит Na ₁₆ K ₂ [Si ₁₈ O ₃₆ (OH) ₁₈] · · 38H ₂ O	Монокл.	24,91	11,94	14,92	94,47°	1,82

Мегациклит Megacyclite $Na_{16}K_2[Si_{18}O_{36}(OH)_{18}] \cdot 38H_2O$

Назван от греч. слов μεγα'λος (мегалос) – большой и крікоς (крикос) – кольцо, по особенности кристаллической структуры [1]. Первоначальное название "минерал М9" [2].

Характ. выдел. Зерна неправильной формы (до 1–3 мм в поперечнике) и их агрегаты (3–5 мм).

Структ. н морф. крист. [3]. Монокл.с. $C_{2h}^5 - P_{2_1}/c$. $a_0 = 24,91$, $b_0 = 11,94$ $c_0 = 14,92$ Å; $\beta = 94,47^\circ$; $a_0:b_0:c_0 = 2,0862:1:1,2495$; V = 4426 Å³; Z = 2.

В структуре установлен необычно крупный островной кольцеподобный радика: нового типа $[Si_{18}O_{36}(OH)_{18}]^{18-}$, состоящий из $18[SiO_4]$ -тетраэдров (до этого самыма крупными из выявленных были двенадцатичленные кольца в структуре траскита: Эта циклическая группа образована двумя дискретными девятичленными цепочками, связанными центром инверсии (фиг. 77, *a*). Циклогруппы уплощены по (001) в вытянуты вдоль оси *a*. Они в шахматном порядке заполняют $^{1}/_{4}$ пустот катионного каркаса из Na- и K-полиэдров (см. фиг. 77, *б*). Слои из циклогрупп чередуются вдоть оси *c* с изогнутыми лентами из Na-полиэдров, а в направлении оси *a* они изолированы друг от друга сетками из K-октаэдров, параллельными (100). Характерная особенность структуры – чередование вдоль оси *a* группировок атомов с очень прочными (внутри циклических групп) и очень слабыми (между этими группамя связями – объясняет наличие совершенной спайности по (100).

В спектре комбинационного рассеивания интенсивный максимум с частотой 1108 см⁻¹ близок к частотному интервалу кольцевых силикатов (1000–950 сми, по-видимому, характерен именно для чрезвычайно крупных эллиптических колец. Отмечается сдвиг частоты колебания, связанного с образованием мостиковы?

a - (Si, O)-кольца на уровне z = 0,5 и 0; между кольцами и внутри них – акцепторные и донориые связи Н...О (пунктирные и сплошиые линии соответственно): $\delta - [SiO_4]$ -кольца в каркасе из К- и Na-полиэдров

связей Si–O–Si, в более низкочастотную область (596 см⁻¹) по сравнению с каркасным силикатом – грумантитом (641 см⁻¹) – NaSi₂O₄(OH) · H₂O, что указывает на меньшую устойчивость эллиптических колец [Si₁₈O₃₆(OH)₁₈]^{18–} по сравнению с каркасом грумантита.

Межатомные расстояния (среднее, в Å): в октаэдрах K–O = 2,874; в пятнвершинниках Na(1,4)–O = 2,380, Na(2)–O = 2,393, Na(3)–O = 2,384, Na(5)–O = 2,445 Na(6)–O = 2,420, Na(8)–O = 2,392; в тетраэдрах Na(7)–O(OH, H₂O) = 2,395, Si(1)–O = = 1,626, Si(2)–O = 1,634, Si(3)–O = 1,627, Si(4)–O = 1,617, Si(5)–O = 1,121 Si(6,7,9)–O = 1,628, Si(8)–O = 1,632.

Физ. св. [1, 2]. Сп. совершенная по (100), менее совершенная по (001). Из ступенчатый. Тв. 2. Уд.в. 1,82 (вычисл. 1,87). Бесцветный. Бл. стеклянный. Прозрачен. В ультрафиолетовых лучах не люминесцирует.

В ИК-спектре имеются полосы 1225, 1125, 1090, 1040, 995, 900, 865, 505, 474 450 см⁻¹; в области колебаний протонных группировок – 3570, 3410, 1660 см⁻¹.

Мнкр. [1, 2]. Двуосный (-). Nm = b, $cNp = 30^{\circ}$. $n_g = 1,481$, $n_m = 1,478$, $n_p = 1,460$: $n_g - n_p = 0,021$; $2V = 43^{\circ}$ (вычисл. 44°). Дисперсия сильная, r > v.

Диагн. исп. Сравнительно легко растворяется в воде при комнатной температуре, давая щелочной раствор.

Хнм. Анализ (микрозонд., среднее для 4 зерен, анал. Нечелюстов): Na₂O – 19,75; K₂O – 3,62; SiO₂ – 43,42; H₂O – 33,21^{*}; сумма 100,00.

* По разиости.

Эмпирическая формула (при O + OH = 27): $Na_{7.96}K_{0.96}Si_{9.02}O_{18}(OH)_9 \cdot 18,51H_2O$.

Нахожд. [1, 2]. Обнаружен в Хибинском щелочном массиве (гора Расвумчорр в жильных пегматитах и гидротермалитах ультраагпаитового типа, сложенных калиевым полевым шпатом, фенакситом, дельхайелитом и второстепенными пектолитом, эвдиалитом, щербаковитом, ломоносовитом, лампрофиллитом, энигматитом эгирином и натритом. Зерна и агрегаты мегациклита рассеяны неравномерно в крупных (до 5 см) кристаллах и зернах фенаксита. Местами наблюдается в тесных срастаниях с другим водорастворимым силикатом натрия – ревдитом. Гидротермальный минерал, кристаллизующийся на заключительной стадии формирования ультраагпаитовых пегматитов из силикатно-солевых жидкостей, резко пересыщен ных щелочными и летучими компонентами.

Изм. [1, 2]. При длительном хранении на воздухе белеет и замещается вторичными продуктами.

		Межн	поскостные р	асстоянии і	мегациклита и	із Хибин [1]						
	FeK _{α,β} -излучение, $D = 57,3$ мм											
hkl	1	d (Å)	hki	1	d (Å)	hkl	I	d (Å)				
3 0 0	10	8,24	521	10	3,60	716	2ш	2,070				
002	20	7,42	114	15	3,46	942	15w	1,976				
102	20	6,92	124	100	3,08	461	15	1,873				
020	8ш	5,96	040	70ш	2,938	6 46	10	1,771				
411	5	4,96	902	60ш	2,649	328	5ш	1,712				
022	5	4,62	541	10	2,489	272	10	1,650				
511	15	4,47	116	35	2,400	12.0.5	10	1,640				
511	60	4,26	543	35	2,289							
4 13	20	3,79	451	3	2,194							

Литература

- 1. Хомяков А.П., Нечелюстов Г.Н., Ямнова Н.А., Пущаровский Д.Ю. // Зап. ВМО. 1993. Ч. 122, вып. 1. С. 125.
- 2. Хомяков А.П. Минералогия ультрааглантовых щелочных пород. М.: Наука, 1990. 200 с.

•

3. Ямнова Н.А., Расцветаева Р.К., Пущаровский Д.Ю., Мернаф Т., Михеева МГ., Хомяков А.П. // Кристаллография. 1992. Т. 37, № 2. С. 334.

СИЛИКАТЫ С ЦЕПОЧКАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Силикаты, описанные в этом разделе, характеризуются непрерывными кремнекислородными цепочками, периодичность которых определяется числом всех повторяющихся SiO₄-тетраэдров. Существуют цепочки трех типов: простые открыто-разветвленные и циклически-разветвленные. В двух первых отношение Si:O = 1:3; в циклически-разветвленных оно иное и может иметь разные значения.

СИЛИКАТЫ С ЦЕПОЧКАМИ СДВОЕННЫХ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа пироксенов Моноклинные пироксены Группа авгита Эссенеит CaFe³⁺[SiAlO₆] Питданнит Ca(Zn, Mn, Mg, Fe)[Si₂O₆] Группа эгирина Джервисит (Na, Ca, Fe²⁺)(Sc, Mg, Fe²⁺)[Si₂O₆] Намансилит NaMn³⁺[Si₂O₆] Наталиит Na(V, Cr)[Si₂O₆] Структура типа линтисита Группа линтисита Линтисит Na₃LiTi₂[Si₂O₆]₂O₂ \cdot 2H₂O [Кукисвумит] Na₆ZnTi₄[Si₂O₆]₄O₄ · 4H₂O Ромбические пироксены Группа энстатита Донпикорит (Mn, Mg)Mg[Si₂O₆]

СИЛИКАТЫ С ЦЕПОЧКАМИ ТРЕХЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа волластонита
Группа волластонита
Kаскандит HCaSc[Si ₃ O ₉]
Умбит $K_2Zr[Si_3O_9] \cdot H_2O$
[Параумбит] (К, Н) ₂ Zr[Si ₃ O ₉] · <i>n</i> H ₂ O
Структура типа илерита
Группа илерита
Илерит Na ₂ Zr[Si ₃ O ₉] · 3H ₂ O
Кальциоилерит CaZr[Si ₃ O ₉] · 3H ₂ O

Комковит $BaZr[Si_3O_9] \cdot 3H_2O$ Сазыкинаит-(Y) $Na_5YZr[Si_3O_9]_2 \cdot 6H_2O$

СИЛИКАТЫ С ЦЕПОЧКАМИ ЧЕТЫРЕХЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа астрофиллита

Группа астрофиллита

Магнезиальный астрофиллит (Na, K)₄Mg₂(Fe²⁺, Fe³⁺, Mn)₅Ti₂[Si₄O₁₂]₂× × (O, OH, F)₇

Гидроастрофиллит (H₃O, K, Ca)₃(Fe²⁺, Mn)₅₋₆Ti₂[Si₄O₁₂]₂(O, OH)₇

Циркофиллит (K, Na, Ca)₃(Mn, Fe²⁺)₇(Zr, Nb)₂[Si₄O₁₂]₂(O, OH, F)₇

Структура типа харадаита

Сузукиит Ba₂V₂⁴⁺[Si₄O₁₂]O₂

Структура типа тайканита

Тайканит BaSr₂Mn₂³⁺[Si₄O₁₂]O₂

Структура типа гагеита

Группа гагеита

Баланджероит (Mg, Fe²⁺, Fe³⁺, Mn²⁺)₂₁[Si₄O₁₂]₂O₃(OH)₂₀

Структура типа омилита

Омилит Sr₃(Ti, Fe³⁺)[Si₄O₁₂](O, OH) · (2–3)H₂O

СИЛИКАТЫ С ЦЕПОЧКАМИ ПЯТИЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа родонита Группа родонита Натронамбулит (Na, Li)(Mn, Ca)₄[Si₅O₁₄(OH)] Литиомарстурит LiCa₂Mn₂[Si₅O₁₄(OH)] Сантаклараит СаМп²⁺₄[Si₅O₁₄(OH)](OH) · H₂O Структура типа къявеннита Къявеннит СаМпВе₂[Si₅O₁₃(OH)₂] · 2H₂O ·

СИЛИКАТЫ С ЦЕПОЧКАМИ ШЕСТИЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа гейдоннеита Группа гейдоннеита Джорджчаоит NaKZr[Si₃O₉] · 2H₂O Структура типа чкаловита Чкаловит Na₆Be₃[Si₆O₁₈] Структура типа энигматита Группа энигматита Уилкинсонит Na₂(Fe²⁺₄Fe³⁺₂)[Si₆O₁₈]O₂ Макарочкинит (Ca, Na)₂(Fe²⁺, Fe³⁺, Ti)₆[(Si, Be, Al)₆O₁₈]O₂ Доррит Ca₂Mg₂Fe³⁺₄[Al₄Si₂O₁₈]O₂ Рёнит* Ca₂(Mg, Fe²⁺)₄Fe³⁺Ti⁴⁺[Si₃Al₃O₁₈]O₂ Криновит* Na₂Mg₄Cr₂³⁺[Si₆O₁₈]O₂ Структура типа тоберморита Группа тоберморита Клинотоберморит Ca₅[Si₆(O, OH)₁₈] · 5H₂O [Оелит] Ca₁₀[Si₈B₂O₂₉] · 12,5H₂O Структура типа пеллиита Пеллийт Ba₂Ca(Fe, Mg)₂[Si₆O₁₇] Структура типа джониннесита Джониннесит Na₂Mn₉(Mg, Mn)₇[Si₆O₁₇]₂(AsO₄)₂(OH)₈ Структура типа хауиита Группа хауиита Танеямалит (Na, Ca)(Mn²⁺, Mg, Fe³⁺, Al)₁₂[Si₆O₁₇]₂(O, OH)₁₀ Структура типа санероита Санероит Na₂(Mn²⁺, Mn³⁺)₁₀[(Si₁₁V)O₃₄(OH)₂](OH)₂

СИЛИКАТЫ С ЦЕПОЧКАМИ ДЕВЯТИЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа либауита Либауит СазСи²⁺[Si₉O₂₆]

СИЛИКАТЫ С ЦЕПОЧКАМИ СДВОЕННЫХ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА ПИРОКСЕНОВ

Подробное описание структур типа пироксенов дано в т. III, вып. 2, с. 243. Систематика минеральных видов в семействе пироксенов предложена в [1].

Литература

1. Бокий Г.Б., Гинзбург И.В. // Тр. Ин-та геологии и геофизики СО АН СССР. 1985. Вып. 610. С. 12.

моноклинные пироксены

ГРУППА АВГИТА

Ранее в группе описаны: авгит, диопсид, геденбергит, фассаит, йохансенит (т. III, вып. 2, с. 283).

	Сингония	a_0	b_0	c_0	β	Уд.в.
Эссенеит CaFe ³⁺ [SiAlO ₆]	Монокл.	9,79	8,822	5,37	105,81°	3,54
Питданнит Ca(Zn, Mn, Mg, Fe) ×	"	9,82	9,00	5,27	105,6	3,68
X ShOk						

Эссенент Esseneite CaFe³⁺[SiAlO₆]

Назваи в честь американского минералога Э.Дж. Эссене [1]. Синон. Fe-авгит (Семенов, 1991), богатый Fe и Al клинопироксен [2].

Характ. выдел. Призматические кристаллы длиной 2-8 мм [1].

Структ. и морф. крист. Монокл.с. C_{2h}^6 -C2/c. $a_0 = 9,79$, $b_0 = 8,822$, $c_0 = 5,37$ Å; $\beta = 105,81^\circ$; $a_0:b_0:c_0 = 1,109:1:0,608$; Z = 4 [1]. Для богатого Fe³⁺ и Al клинопироксена из бухитов Баффало [2]: $a_0 = 9,793$, $b_0 = 8,835$, $c_0 = 5,326$ Å; $\beta = 105,84^\circ$; для сиитетического CaFe³⁺AlSiO₆ [3]: $a_0 = 9,783$, $b_0 = 8,787$, $c_0 = 5,372$ Å; $\beta = 105,82^\circ$; V = 444,3 Å³.

В кристаллической структуре [1] октаэдрические позиции M(2) заняты Ca (97%) и Na (3%), позиции M(1)–Fe³⁺ (58%) и Mg (42%), тетраэдрические позиции – Si и Al. В синтетическом CaFe³⁺AlSiO₆ содержание Fe³⁺ в тетраэдрических позициях до 9%, что объясняется влиянием скорости охлаждения на упорядоченность Fe³⁺ и Al соответственно в позициях M(1) и T.

Средние межатомные расстояния (в Å): Т-О = 1,682; М(1)-О = 1,971; 2,055 и 2,125; М(2)-О = 2,393; 2,406, 2,536 и 2,644 [1].

Физ. св. [1]. Сп. совершенная по (110). Тв. 6. Уд.в. 3,54 (вычисл.). Цв. красновато-бурый. Черта белая. Бл. стеклянный. Прозрачный в тонких кристаллах. Не люминесцирует.

Термодинамические константы (вычисл.): $\Delta G_{298}^0 = -2705,8 \text{ кДж/моль}; \Delta H_{298}^0 = -2871,1 \text{ кДж/моль}; S_{298}^0 = 177,0 \text{ Дж/моль} \cdot \text{K}$ [1].

Микр. Плеохроизм сильный: по Ng – яблочно-зеленый, по Nm – зелеиовато-

Фиг. 78. Состав природных пироксенов в системе CaMgSi₂O₆-CaFeAlSiO₆-CaAlAlSiO₆ (по Каске и Пихору)

/ – из паралав Джиллетт; 2 – средний состав; 3 – из бухитов Баффало, Вайоминг, США; 4 – из зоны Моттлд, Израиль; 5 – из кимберлитового ксенолита Якутии

желтый, по Np – лимонно-желтый. Двуосный (–). Nm = b, $cNg = 9^{\circ}$ в остром углу β . $n_g = 1,825$, $n_m = 1,815$, $n_p = 1,795$; $n_g - n_p = 0,030$; $2V = 77^{\circ}$. Дисперсия сильная r < v.

Хим. Теор. состав: CaO – 22,69; Fe₂O₃ – 32,36; Al₂O₃ – 20,64; SiO₂ – 24,31.

В природном эссенеите Ca замещается на Na, Fe³⁺ – на Mg, Al, Ti, Fe²⁺, Mn a Si – на Al. Изоморфизм по схеме Fe³⁺Al \rightarrow MgSi. На диаграмме CaMgSi₂O₆– CaFeAlSiO₆–CaAlAlSiO₆ (фиг. 78) химические составы эссенеита из Джиллетт **н** Баффало занимают поле, близкое к конечному члену [1].

Анализы (микрозонд.):

	1	2	3	4		1	2	3	4
Na ₂ O	0,14	0,34	0,32	0,03	Al ₂ O ₃	17,95	11,90	14.13	13.04
K ₂ O	-	-	0,02	-	Fe ₂ O ₃	23,89	21,39	25,21	17,42
MgO	2,68	4,39	4,45	7,70	SiO ₂	29,51	33,20	32,28	36,90
CaO	23,40	22,65	23,06	24,19	TiO ₂	0,99	0,78	0,91	0,59
MnO	0,11	0,08	0,13	_	Cinar	00.26	00.99	100.51	00.80
FeO	0.69	5,15	-		Сумма	9 9,30	77,00	100,51	77,07

1 – эссенеит (среднее из 43) из паралав Джиллетт (шт. Вайоминг, США) [1]; 2 – монокристаля эссенеита из Джиллетт; оригинал уточнения кристаллической структуры [1]; 3 – богатый Fe³⁺ и Al клинопироксен (среднее из 74) из бухитов Баффало (шт. Вайоминг, США) [2]; 4 – эссенеит из горелых пород Челябинского угольного бассейна (Урал) (среднее из 2) [3].

Эмпирическая формула (на 6 атомов О):

 $1-(Ca_{1,01}Na_{0,01})(Fe_{0,72}^{3+}Mg_{0,16}Al_{0,04}Ti_{0,03}Fe_{0,02}^{2+})(Si_{1,19}Al_{0,81})_2O_6,$

 $2 - (Ca_{0.97}Na_{0.02})(Fe_{0.54}^{3+}Mg_{0.26}Ti_{0.02}Fe_{0.17}^{2+})(Si_{1.33}Al_{0.56})_{1,89}O_6;$

 $3 - (Ca_{0.98}Na_{0.02})(Fe_{0.70}^{3+}Mg_{0.26}Ti_{0.02}Mn_{0.02})(Si_{1,29}Al_{3,65}Fe_{0.06}^{3+})_2O_6;$

 $4 - Ca_{1,01}(Fe_{0,51}^{3+}Mg_{0,44}Ti_{0,02})_{0,97}(Si_{1,43}Al_{0,60})_{2,03}O_6.$

Нахожд. Установлен вблизи Джиллетт (шт. Вайоминг, США) в шлакоподобное паралаве – продукте плавления осадочных пород, перекрывающих сгоревшит угольный пласт [1]. Тесно ассоциирует с анортитом, мелилитовым твердым раствором, магнетит-герцинитовым твердым раствором и силикатным стеклом. Минимальная температура формирования паралав 1200–1600°.

Ассоциация эссенеита в паралавах объясняется [1] следующими реакциями приводящими к повышенному содержанию эссенеитового компонента в клинопироксене: анортит + магнетит \rightleftharpoons эссенеит + герцинит + кварц (сдвинута вправо привысокой температуре), анортит + магнетит + геленит → эссенеит + герцинит анортит + геленит + волластонит → эссенеит + магнетит (реакции окисления-восстановления при фугитивности кислорода в условиях между кварц-фаялит-магнетитовым и гематит-магнетитовым буферами).

К эссенеиту относится часть богатых Fe³⁺ и Al клинопироксенов (c >50⁴ CaFe³⁺AlSiO₆) из бухитов района Баффало (шт. Вайоминг, CША), возникших за счет спекания осадочных пород, перекрывающих сгоревший угольный пласт [2 Минеральная ассоциация включает клинопироксены, анортит, мелилиты, гематит магнезиоферрит, псевдобрукит и силикатное стекло.

Обнаружен в горелых отвалах Челябинского угольного бассейна (Урал) [3] в виде желтых, оранжевых или коричневых призматических кристаллов в составе скарноподобных стяжений вместе с анортитом, минералами группы мелилита п гематитом.

В поле эссенеита (см. фиг. 78) попадают клинопироксены из зоны Мотт за

(формация Хатруриум), Израиль [4]) и из фассаит-гранат-анортитового ксенолита в кимберлитах трубки "Удачная" (Якутия) [5].

Искусств. Соединение CaFe³⁺AlSiO₆ синтезировано [6] из смеси чистых CaCO₃, Al₂O₃, Fe₂O₃, MgO и кварца в стехиометрических пропорциях. Смесь, растертая в агатовой ступке с этиловым спиртом, прокаливалась в платиновом тигле при 1200° в течение 2 ч до образования шлака. Шлак затем дробился и размалывался в агатовой ступке, и хорошо перемешанный порошок прокаливался в платиновом тигле при 1250° в течение 3 ч; после 5-кратного "шлакования" получены почти однородные кристаллы без примеси гематита.

Отл. [1]. От сходного эгирина отличается цветами плеохроизма и меньшим углом cNg (у эгирина $cNg = 84-90^{\circ}$).

	СиК _а -излучение								
hkl	I	d (Å)	hkl	I	d (Å)	I	d(Å)		
110	10	6.45	221	70	2,526	2	1,677		
200	5	4,71	311	10	2,322	5	1,650		
111; 020	2	4,43	112; 312	10	2,252	10	1,627		
111	2	3,72	330	5	2,147	7	1,612		
220	20	3,214	331	20	2,125	30	1,545		
221	100	3,000	421	15	2,110	25	1,430		
310	60	2,96 0	402; 041	20	2,031	20	1,409		
311	20	2,909	132	10	1,980	10	1,370		
112; 202	30	2,576		20	1,734				
131	40	2,554		5	1,686				

Тежплоскостные (расстояния	эссенента и	з Джиллетт	. шт. 🛛	Вайоминг ((CIIIA))[]	1]
Textusioence imple	PHOCI OFILIERS	30001101114 11		,	Comments of the second	Canal A	/ 14	-,

Литература

- 1. Cosca M.A., Peacor D.R. // Amer. Miner. 1987. Vol. 72, N 1/2. P. 148.
- 2. Foit F.F., Hooper R.L., Rosenberg P.E. // Ibid. P. 137.
- 3. Чесноков Б.В., Щербакова Е П. Минералогия горелых отвалов Челябинского угольного бассейна: (Опыт минералогии техногенеза). М.: Наука, 1991. 151 с.
- 4. Gross S. // Bull. Geol. Surv. Israel. 1977. Vol. 70. P. 1.
- 5. Шатский В.С., Соболев Н.В., Павлюченко В.С. // ДАН СССР. 1983. Т. 272, № 1. С. 188.
- 6. Hijikata K. // J. Fac. Sci. Hokkaido Univ. Ser. IV. 1968. Vol. 14, N 2. P. 149.

Питданнит Petedunnite

 $Ca(Zn, Mn, Mg, Fe)[Si_2O_6]$

Назван в честь американского минералога Пита Данна [1].

Характ. выдел. Зерна размером 10-100 мкм.

Структ. и морф. крист. Монокл.с. $C_{2h}^6 - C^2/c$. $a_0 = 9,82$, $b_0 = 9,00$, $c_0 = 5,27$ Å; $\beta = 105,6^\circ$; $a_0:b_0:c_0 = 1,091:1:0,585$; Z = 4 [1]. Для синтетического CaZnSi₂O₆ [1]: $a_0 = 9,803$, $b_0 = 8,975$, $c_0 = 5,243$ Å; $\beta = 105,75^\circ$.

В структуре атомы Zn, Mn, Mg и Fe занимают позицию M(1), атомы Ca – позицию M(2) [1].

Физ. св. Сп. совершенная по (110). Тв. не определена. Уд.в. 3,68 (вычисл.). Цв. темно-зеленый. Бл. стеклянный. Полупрозрачный. Не люминесцирует.

Микр. Относительно слабо плеохроирует: по Np и Nm – светло-желтый, по Ng – светло-зеленый; Np = Nm < Ng. Двуосный (+). Nm II b, $cNg = 40^{\circ}$. $n_g = 1,70$, $n_m = 1,69$, $n_p = 1,68$; $n_g - n_p = 0,02$; $2V = 80^{\circ}$. Дисперсия сильная, r > v.

Фиг. 79. Диаграмма составов пироксенов

І – питданнит; 2 – пироксены с Fe > Мg.
 З – пироксены с Fe < Mg; 4 – граница твердых растворов природных пироксенов (по Эссене п Пикору)

У синтетического CaZnSi₂O₆ плеохроизма и дисперсии не иаблюдалось. cNg большой, $n_m = 1,72$ [1].

Хим. Теор. состав $CaZnSi_2O_6$ CaO – 21,76; ZnO – 31,62; SiO₂ – 46,62.

Анализ (микрозоид.): Na₂O – 0,7; MgO – 2,4; CaO – 21,3; MnO – 5,8; ZnO – 12,6 FeO – 5,7; Al₂O₃ – 1,2; Fe₂O₃ – 3,8; SiO₂ – 48,4; сумма 101,9.

Эмпирическая формула (на 4 катиона и 6 атомов О): $(Ca_{0,92}Na_{0,06}Mn_{0,02})_{1,00} \times (Zn_{0,37}Mn_{0,18}Mg_{0,14}Fe_{0,19}^{2+}Fe_{0,12}^{3+})_{1,00}(Si_{1,94}Al_{0,06})_2 O_6.$

Нахожд. Встречен в цинковом месторождении Франклин (шт. Нью-Джерси США) в образце (размером 10 см), сложенном темно-зеленым клинопироксеном с каемкой светло-зеленого клинопироксена и массивного кальцита. Образует микрозерна (10–100 мкм) в монокристалле пироксена мозаичного строения, который содержит микровключения еще до 15 других минералов. Образуется предположительно в связи с катионным обменом первичного диопсид-геденбергит-йохансенитового твердого раствора с богатыми Zn флюидами, которые обусловили выделения в пироксене микровключений и других цинковых минералов.

Искусств. Образуется после обработки при 900° и давлении 20 кбар в течение 6 сут чистого стекла состава CaZnSi₂O₆, полученного плавлением смеси CaCO₃, ZnO и SiO₂ при 1400° [1].

	Меж	плоскостны	е расстояння питданни	ITA H3 M	есторождени	ія Франклин (СШ	(A) [1]				
	СυК _α -излучение, Ni-фильтр, <i>D</i> = 114,6 мм										
hkl	I	d (Å)	hki	Ι	d (Å)	hkl	Ι	d (Å)			
110	10	6,49	311	2	2,906	041	2	2,060			
200	5	4,76	131	30	2,589	402; 202	30	2,022			
020	2	4,50	202; 002	80	2,537	132	2	1,979			
021	1	3,36	311	1	2,324		5	1,910			
220	2	3,25	312; 112; 222,	10	2,227		10	1,874			
221	100	3,02	330				10	1,770			
310	40	2,96	331; 421	10	2,137						

Литература

1. Essene E.J., Peacor D R. // Amer. Miner. 1987. Vol. 72, N 1/2. P. 157.

группа эгирина

В группу входят эгирин, жадеит, омфацит, юриит^{*} и промежуточные члены эгирин-диопсид и эгирин-геденбергит, которые в качестве самостоятельных минеральных видов не утверждены (т. III, вып. 2, с. 347).

* = космохлору (Никель, Мандарино, 1989).

	Сингония	a_0	b_0	<i>c</i> ₀	β	Уд.в.
Джервисит (Na, Ca, Fe ²⁺) ×	Монокл.	9,853	9,042	5,312	106 ,6°	-
× (Sc, Mg, Fe ²⁺)[Si ₂ O ₆]						
Намансилит NaMn ³⁺ [Si ₂ O ₆]	•	9,513	8,615	5,356	105,12	3.6
Наталиит Na(V, Cr)[Si ₂ O ₆]	"	9,65	8,77	5,30	107,08	3,57

Джервисит Jervisite (Na, Ca, Fe²⁺)(Sc, Mg, Fe²⁺)[Si₂O₆]

Назван в честь итальянского минералога У.П. Джервиса [1].

Характ. выдел. Кристаллы (до 0,20 × 0,08 × 0,02 мм).

Структ. и морф. крист. Моиокл.с. C_{2h}^6 -C2/c. $a_0 = 9,853$, $b_0 = 9,042$, $c_0 = 5,312$ Å; $\beta = 106^{\circ}37'$; $a_0:b_0:c_0 = 1,089:1:0,588$; Z = 4 [1]. Для синтетического NaSc[Si₂O₆]: $a_0 = 9,8438$, $b_0 = 9,0439$, $c_0 = 5,3540$ Å; $\beta = 107,215^{\circ}$ [2]; $a_0 = 9,83$, $b_0 = 9,06$, $c_0 = 5,37$ Å; $\beta = 107,2^{\circ}$ [3].

Изоструктурен синтетической фазе NaSc[Si₂O₆] [2], в структуре которой атомы Na занимают позицию M(2) в центрах сильно искаженных кубических антипризм, Sc находится в позиции M(1) в искаженных октаэдрах.

Средние межатомные расстояния (в Å): Si-O = 1,632; Sc-O = 2,102; Na-O = 2,454; Si-Si(2) = 3,108; M(1)-M(1) = 3,629; M(1)-Si(1) = 3,356; M(1)-Si(2) = 3,279; углы O-Si-O = 109,4°; O-M(1)-O = 89,9°.

На кристаллах синтетического NaSc[Si₂O₆] установлены простые формы (100), (010), (*hk*0), а также (0*k*1), (*h*0*l*), (*hk*1); двойники по (100) [3].

Физ. св. Сп. совершенная по (110). Цв. светло-зеленый. Бл. стеклянный [1].

Микр. Синтетический NaScSi₂O₆ [3] двуосный (-); $cNp = 8,0^{\circ}$, b = Nm; $n_e = 1,724$, $n_m = 1,715$, $n_p = 1,683$; 2V большой.

Хим. Теор. состав NaScSi₂O₆: Na₂O – 14,09; Sc₂O₃ – 31,37; SiO₂ – 54,54.

Промежуточный член изоморфной серии эгирин Ca(Mg, Fe)[Si₂O₆]–NaSc[Si₂O₆]. Анализ (микрозонд., среднее из 3 определений): Na₂O – 5,55; MgO – 2,80; MnO – 0,44; CaO – 7,25; FeO – 8,59; Al₂O₃ – 0,42; Sc₂O₃ – 18,48; SiO₂ – 50,42; TiO₂ – 0,55; сумма 94,50.

Эмпирическая формула (на 2 атома Si): $(Na_{0,43}Ca_{0,31}Fe_{0,14}^{2+}\Box_{0,12})(Sc_{0,66}Fe_{0,15}^{2+} \times Mg_{0,19})Si_2O_6.$

Нахожд. В жеодах гранитов Бавено (Италия) с каскандитом, кварцем, ортоклазом и альбитом [1].

Искусств. Соединение NaSc[Si₂O₆] синтезировано в 1968 г. [3] методами гидротермальной кристаллизации из Sc₂O₃ и Na₂SiO₃ в пропорции 1:3 при 750° и 2 кбар в течение 48 ч и методом плавления смеси Sc₂O₃ (0,3 г), SiO₂ (0,6 г) и Na₂WO₄ · 2H₂O (50 г) при нагревании до 1180° в течение 12 ч с последующим охлаждением до 900° (10 гард/ч) и закалкой. Межплоскостные расстояния джервисита из Бавено, Италия [1]

Камера Гандольфи										
I	d (Å)	hkl	I	d (Å)	hkl	I	d(Å)			
Стаб.	6,51	330; 331	Оч. слаб,	2,161	600; 351;	Слаб.	1,573			
Слаб.	4,51	421	Оч. слаб.	2,132	602; 621		•			
Слаб.	3,68	041; 202;	Оч. слаб.	2,067	402; 332;	Слаб.	1,528			
Слаб.	3,389	132; 241			060; 622;		•			
Слаб.	3,255	511; 422;	Оч. слаб.	1,922	620; 260					
Сильн.	3,038	222; 510;			351, 152;	Слаб.	1,435			
Средн.	2,979	132			531; 243;					
Слаб.	2,607	150; 421;	Слаб.	1,778	223; 261					
Средн.	2,543	312			710; 621	Слаб.	1,336			
Оч. слаб.	2,304	042	Оч. слаб.	1,689	314	Слаб.	1,304			
Оч. слаб.	2,233	531; 440	Средн.	1,647	352	Слаб.	1,259			
] Стаб. Слаб. Слаб. Слаб. Слаб. Сильн. Средн. Слаб. Средн. Оч. слаб. Оч. слаб.	I d (Å) Стаб. 6,51 Слаб. 4,51 Слаб. 3,68 Слаб. 3,389 Слаб. 3,255 Сильн. 3,038 Средн. 2,979 Слаб. 2,607 Средн. 2,543 Оч. слаб. 2,304 Оч. слаб. 2,233	Камер <i>I d</i> (Å) <i>hkl</i> Стаб. 6,51 330; 331 Слаб. 4,51 421 Слаб. 3,68 041; 202; Слаб. 3,89 132; 241 Слаб. 3,255 511; 422; Сильн. 3,038 222; 510; Средн. 2,979 132 Слаб. 2,607 150; 421; Средн. 2,543 312 Оч. слаб. 2,304 042 Оч. слаб. 2,233 531; 440	Камера Гандольф <i>I d</i> (Å) <i>hkl I</i> Стаб. 6,51 330; 331 Оч. слаб. Слаб. 4,51 421 Оч. слаб. Слаб. 3,68 041; 202; Оч. слаб. Слаб. 3,389 132; 241 Слаб. 3,255 511; 422; Оч. слаб. Сильн. 3,038 222; 510; Средн. 2,979 132 Слаб. 2,607 150; 421; Слаб. Средн. 2,543 312 Оч. слаб. 2,304 042 Оч. слаб. Оч. слаб. 2,233 531; 440 Средн.	Камера Гандольфи I d (Å) hkl I d (Å) Стаб. 6,51 330; 331 Оч. слаб. 2,161 Слаб. 4,51 421 Оч. слаб. 2,132 Слаб. 3,68 041; 202; Оч. слаб. 2,067 Слаб. 3,389 132; 241 Слаб. 3,255 511; 422; Оч. слаб. 1,922 Сильн. 3,038 222; 510; Средн. 2,979 132 Слаб. 2,607 150; 421; Слаб. 1,778 Средн. 2,543 312 Оч. слаб. 2,304 042 Оч. слаб. 1,689 Оч. слаб. 2,233 531; 440 Средн. 1,647	Камера Гандольфи $I d(\AA) \qquad hkl \qquad I \qquad d(\AA) \qquad hkl$ Стаб. 6,51 330; 331 Оч. слаб. 2,161 600; $\overline{3}51$; Слаб. 4,51 $\overline{421}$ Оч. слаб. 2,132 $\overline{602}$; $\overline{621}$ Слаб. 3,68 041; 202; Оч. слаб. 2,067 402; 332; Слаб. 3,389 $\overline{132}$; $\overline{241}$ 060; $\overline{622}$; Слаб. 3,255 $\overline{511}$; $\overline{422}$; Оч. слаб. 1,922 620; 260 Сильн. 3,038 222; 510; $\overline{531}$; $\overline{243}$; Слаб. 2,607 150; 421; Слаб. 1,778 223; 261 Средн. 2,543 312 710; 621 Оч. слаб. 2,304 042 Оч. слаб. 1,689 $\overline{314}$ Оч. слаб. 2,233 $\overline{531}$; 440 Средн. 1,647 $\overline{352}$	Камера Гандольфи I d(Å) hkl I d(Å) hkl I Стаб. 6,51 330; 331 Оч. слаб. 2,161 600; 351; Слаб. Слаб. 4,51 421 Оч. слаб. 2,132 602; 621 Слаб. Слаб. 3,68 041; 202; Оч. слаб. 2,067 402; 332; Слаб. Слаб. 3,389 132; 241 060; 622; Слаб. Слаб. 3,038 222; 510; 351, 152; Слаб. Слаб. 3,038 222; 510; 351, 152; Слаб. Слаб. Средн. 2,979 132 531; 243; Слаб. Средн. 2,607 150; 421; Слаб. 1,778 223; 261 Слаб. Средн. 2,543 312 710; 621 Слаб. Оч. слаб. 1,689 314 Слаб. Оч. слаб. 2,233 531; 440 Средн. 1,647 352 Слаб.			

Литература

1. Mellini M., Merlino S., Orlandi P., Rinaldi R. // Amer. Miner. 1982. Vol. 67, N 5/6. P. 599.

2. Hawthorne F.C., Grundy H.D. // Acta crystallogr. B. 1973. Vol. 29, pt 11. P. 2615.

3. Ito J., Frondel C. // Amer. Miner. 1968. Vol. 53, N 7/8. P. 1276.

Намансилит Namansilite

NaMn³⁺[Si₂O₆]

Назваи по химическому составу [1]. Сивон. Na, Мп-клинопироксен [2].

Характ. выдел. Изометричные или удлиненные зерна до 0,6 мкм и мелкие их скопления [1]; кристаллы [2].

Структ. и морф. крист. Монокл.с. $C_{2h}^6 - C_2/c$. Параметры элементарной ячейки при Z = 4:

	<i>a</i> ₀ (Å)	b_0	<i>c</i> ₀	β	$a_0 b_0 c_0$	Ссылка
Намансилит, Д. Восток	9,513	8,615	5,356	105.12°	1,104:1:0,621	[1]
Na, Mn-клинопироксен,	9,506	8,611	5,355	105,08	1,103:1:0,621	[2]
Италия						
Синтетический NaMn[Si ₂ O ₆]	9,513	8,621	5,354	105,14	1,103:1:0,621	[3]

В кристаллической структуре неназванного Na, Mn-клинопироксена [2] Mn занимает позиции M(1), Na – позиции M(2), Si – тетраэдрические позиции. Средние межатомные расстояния (в Å): Si–O = 1,628; M(1)–O = 2,023; M(2)–O = 2,495: O–O = 2,657 и 2,862; углы O–Si–O = 109,44°; O–M(1)–O = 89,96° [2]. Аналогичные данные известны для синтетического NaMn[Si₂O₆] [3].

Методом ренттеновской фотоэлектронной спектроскопии установлено присутствие только Mn³⁺, а также координационные параметры Si, Na и O, характерные для цепочечных силикатов [1].

Кристаллы удлиненно-призматические [2]. Под электронным микроскопом видны удлиненные пластинчатые частицы [1].

Физ. св. Сп. совершенная по (110) с углом (110):(110) = 87°. Хрупкий. Тв. 6–7; микротвердость 794–1023 кгс/мм² при нагрузке 100 г. Отпечатки при микровдавливании квадратные, сопровождаются появлением цветной иризации и микротрещинок, параллельных спайности. Уд.в. 3,60 [1], у неназванного Na, Мп-клинопироксена 3,51 [2]. Цв. темно-красный до оранжево-красного [1], красно-фиолетовый с фиолетово-буроватой чертой [2]. Бл. стеклянный, на плоскостях спайности перламутровый [1], алмазный [2].

Микр. Сильный плеохроизм: по Ng – кроваво-красный, по Nm – малиново-красный, по Np – лимонно-желтый. Двуосный (-). Nm = b, $cNp = 20^{\circ}$. Удлинение (+). $n_g = 1,837$ (вычисл.), $n_m = 1,769$ (вычисл.), $n_p = 1,746$. $n_g - n_p = 0,091$ (измер.). $2V = 15-20^{\circ}$. Наблюдаются полисинтетические и реже простые двойники по (100) [1]. У неназванного Na, Мп-клинопироксена из Италии [2]: $n_g = 1,835$, $n_m = 1,795$, $n_p = 1,750$.

Хим. Теор. состав: Na₂O - 13,45; Mn₂O₃ - 34,46; SiO₂ - 52,09.

Отмечается изоморфное замещение Na на K, Sr, Ba и Mn³⁺ на Fe³⁺, Mg, Ti, Al. Анализы (микрозонд.):

	1	2		1	2
Na ₂ O	13,81	13,42	Ti ₂ O ₃	0,19	-
K ₂ O	0,05	0,02	Fe ₂ O ₃	1,65	0,18
MgO	0,32	0,02	Mn_2O_3	32,36	35,33
CaO	0,07	0,08	SiO ₂	52,64	51,32
SrO	0,42	-	TiO ₂	-	0,16
BaO	0,05	-		101.17	100 (2
Al ₂ O ₃	0,20	0,09	Сумма	101,16	100,62

 намансилит (среднее из 5) из Ирнимийского месторождения, Дальний Восток [1]; 2 – неназванный Na, Мп-клинопироксен (среднее из 16) из Валь-ди-Вара (Италия) [2].

Диаги. исп. В HCl не растворяется.

Нахожд. Обнаружен в прожилках мощностью до 3 мм в браунитовых рудах Ирнимийского месторождения, Дальний Восток [1]. В тесной ассоциации с браунитом, тайканитом, неназванным новым Na, Ba, Mn-силикатом, пектолитом, марганцевыми амфиболами, марганецсодержащими ортоклазом и флогопитом. Образование связывается с гидротермальными щелочными растворами, возникшими в позднем мезозое во вмещающих породах при внедрении даек основного состава.

Неназванный Na, Mn-клинопироксен найден в марганцевых рудах месторождения Церчиара в Валь-ди-Вара (Восточная Лигурия, Италия) [2] в ассоциации с пектолитом, калиевым полевым шпатом, кварцем, браунитом и неидентифицированным Ва, Mn-силикатом.

Искусств. Прямоугольные призматические кристаллы NaMnSi₂O₆ размером 0,05 × 0,06 × 0,08 мм синтезированы [3] при 1470 К и давлении 6 ГПа за 24 ч.

Межплоскостные расстояния намансилита из Ирнимийского месторождения [1]

Fe-излучение, Si-эталон, D = 114,6 мм

hki	I	d (Å)	hkl	I	d(Å)	hkl	1	<i>d</i> (Å)
110	8	6,330	331	7	2,081	531	7	1,580
020	8	4,306	421	5	2,044	440	5	1,570
111	7	3.718	041	7	1,994	402	6	1,530
221	9	2.927	241	3	1,896	133	6	1,514
310	8	2.886	_	Оч. слаб.	1,849	350	1	1,486
311	5	2.837	_	Оч. слаб.	1,757	_	3	1,468
002	9	2.584	312	3	1,731	060	6	1,437
131	9	2.501	150	6	1,694	-	3	1,409
112	7	2,268	_	2	1.680	531	7	1,399
_	Оч. слаб.	2.22	223	2	1,658			

Литература

- 1. Калинин В.В., Марсий И.М., Диков Ю.П., Тронева Н.В., Трубкин Н.В. // Зап. ВМО. 1992. Ч. 120 вып. 1 С. 89.
- 2. Basso R., Lucchetti G., Palenzona A. // Neues Jb. Miner. Monatsh. 1989. H. 2. S. 59.
- 3. Ohashi H., Osawa T., Tsukimura K. // Acta crystallogr. C. 1987. Vol. 43, pt 4. P. 605.

Наталиит Natalyite

 $Na(V, Cr)[Si_2O_6]$

Назван в память о русском геологе Наталье Васильевне Фроловой (1907–1960) [1]. Член нзоморфного ряда $NaCr^{3+}[Si_2O_6]$ (космохлор) – $NaV^{3+}[Si_2O_6]$ (искусств.) при V > Cr.

Характ. выдел. Зерна (до 0,3 × 1 мм) [1]; кристаллы (до 3-5 мм) [2].

Структ. и морф. крист. Монокл.с. C_{2h}^6 -C2/c. Параметры элементарной ячейки при Z = 4:

№ ан.	a ₀ (Å)	b 0	<i>c</i> 0	β	$a_0 b_0 c_0$	Местонахождение	Ссылка
1	9,58	8,72	5,27	107,16°	1,098:1:0,604	Слюдянка	[1]
2	9,65	8,77	5,30	107,08	1,100:1:0,604	Карелия	[2]
-	9,640	8,748	5,297	106,89	1,102:1:0,605	Синтетич. NaVSi ₂ O ₆	[3]

В кристаллической структуре V^{3+} , Cr^{3+} , Fe^{3+} занимают октаэдрическую позицию M(1). Параметры элементарной ячейки возрастают с увеличением содержания V и Fe [2].

Кристаллы [1] таблитчато-призматического габитуса с удлинением по [001] с отдельными гранями призмы (110) и пинакоида (100) или (010); иногда шестоватоволокнистые вдоль [001] и асбестовидные.

Физ. св. Сп. по (110) с углом между призматическими направлениями 87–88°, отдельность по (001). Тв. около 7; микротвердость 1013–1079 кгс/мм² при нагрузке 50 г [1]. Уд.в. 3,57 [2] (вычисл. 3,55 [1]). Цв. яркий интенсивно-зеленый со слабым желтоватым оттенком; в порошке ярко-зеленый, с более заметным желтоватым оттенком [1]; светло-коричневый [2]. Бл. на сколах стеклянный; поверхность зерен шелковистая (из-за волокнистого строения). Зерна непрозрачны, в сколах прозрачны [1, 2].

Спектр поглощения имеет четкий максимум поглощения (при 680 нм) по Ng н небольшой перегиб (при 660 нм) по Np, которые связываются с переходом ${}^{3}T_{1g}({}^{3}F) \rightarrow {}^{3}T_{2g}({}^{3}F)$ в октаэдрических комплексах V^{3+} [2]. Отделяется в электромагнитную фракцию при слабом-умеренном токе [1].

Микр. Плеохроизм сильный: по $Ng \approx Nm$ – густо-изумрудно-зеленый, слабоголубоватый (в тонких зернах), по Np – зелено-желтый до желтого [1]; у карельского обратная схема абсорбции $Ng < Nm \ll Np$: по Ng – зеленый, по Nm – коричневый, по Np – буро-коричневый [2]. Удлинение (–) [1]. Двуосный (–). Пл.опт. осей (010). Nm = b [1].

ng	n _m	n _p	n _g -n _p	cNp	2V	Местонахождение	Ссылка
1,762	-	1,741	0,021	1014°	68 - 72°	Слюдянка	[1]
1,770	1,762	1,737	0,033	15-20	63-65	Карелия	[2]
1,785	-	1,737	0,048	-	-	Синтетич.	[3]
						NaVSi ₂ O ₆	

Хим. Теор. состав для NaVSi₂O₆: Na₂O – 13,72; V₂O₃ – 33,18; SiO₂ – 53,10. Изоморфные замещения: V³⁺ на Cr³⁺, Fe³⁺, Al³⁺ и частично Mg; Na на Mg и Ca;

Si на Ti и Al [1, 2]. В образце из Карелии [2] отмечается четкая обратно пропорциональная зависимость между содержаниями V и Fe, а также Na и Mg; при этом внутренние части кристаллов обогащены Fe и Mg.

Анализы (микрозонд.):

	1	2		1	2
Na ₂ O	12,65	11,38	Al ₂ O ₃	0,75	0,26
K ₂ O	_	0,02	V ₂ O ₃	17,97	27,3
MgO	1,28	1,27	Cr ₂ O ₃	12,23	1,22
CaO	1,78	0,29	SiO ₂	53,15	51,96
FeO	-	6,68	TiO ₂	0,11	0,01
MnO	-	0,01	Сумма	99,92	100,40

1 – из Слюдянки (Южное Прибайкалье); среднее из 5 определений [1]; 2 – из Карелии (Онежский прогиб); среднее из 7 определений [2].

Эмпирические формулы (на 6 атомов О):

 $1 - (Na_{0.920}Ca_{0.071})_{0.991}(V_{0.541}Cr_{0.363}Mg_{0.071}Al_{0.029})_{1.004} \times$

 \times (Si_{1,993}Ti_{0,003}Al_{0,004})_{2,00}O₆;

 $2 - (Na_{0.85}Mg_{0,07}Ca_{0,01})_{0.93}(V_{0,83}Fe_{0,21}^{3+}Cr_{0,04}AI_{0,01})_{1,09}Si_{1,98}O_{6}.$

Образец из Карелии ближе к конечному члену NaVSi₂O₆, чем типовой образец из Слюдянки.

Диагн. исп. Нерастворим в HCl и HNO₃ [1].

Нахожд. Впервые обнаружен в обогащенных Сг и V метаморфических кварцдиопсидовых породах слюдянского докембрийского комплекса в Слюдянке, Южное Прибайкалье [1]. Встречается в виде включений в темном полупрозрачном кварце, образующем линзы в ярко-зеленых диопсидитах. В кварце также наблюдаются включения эсколаита-карелианита, граната ряда уваровит-голдманит, Сг, V-турмалина, пирита, розового апатита и других минералов; с диопсидом не соприкасается.

Установлен в метасоматических хром-ванадиевоносных слюдитах Онежского прогиба в Карелии, сложенных хромовыми, ванадиевыми слюдами, турмалином, альбитом, доломитом. Приурочен к альбит-роскоэлитовым метасоматитам ранних стадий и к поздним кальцитовым жилам с карелианитом и монтрозеитом. По краям и трещинам кристаллы замещаются дисперсным монтрозеитом и кальцитом [2].

Искусств. NaV³⁺Si₂O₆ синтезирован [3] из смеси силиката натрия, V₂O₃, гематита и кварца в соответствующих пропорциях при температуре 600°, давлении 500 кбар в течение 45 сут. Стабилен по крайней мере до 30 кбар и 800° в присутствии H₂O в восстановительных условиях.

Межплоскостные расстояния наталинта из Слюдянки [1]

 CuK_{α} -излучение, D = 0,3 мм

hkl	1	d(Å)	hkl	1	d(Å)	hki	I	d (Å)
110	6	6.24	241	4	1,917	223	5	1,372
020	6	4.36	511	1	1,868	533; 712	6	1,318
111	2	3.59	422	1	1,832	710; 512; 314	5	1,294
22.0	4	3.18	150	5	1,713	004; 062	6	1,259
221	10	2.96	312	1	1,683	352	4	1,223
310: 311	8	2.87	042	3	1,650	604	3	1,154
002; 131	10	2,52	223	5	1,630	823	2	1,079

hki	1	d (Å)	hkl	1	d(Å)	hki	1	d (Å)
221	7	2,46	441; 531	6	1,600	752	2	1,060
311; 312	2	2,24	440	2	1,581	281	3	1,053
022; 112	6	2,19	602	4w	1,517	750; 354	3	1,047
331; 330	6	2,10	532; 621	5	1,499		2	1,022
421	3	2,08	060	4	1,454		3	0.978
402	2	2,02	622	2	1,436			
041	2	2,00	422	I	1,411			
202	I	1,974	260; 352; 351	8ш	1,391			

Литература

1. Резницкий Л.З., Скляров Е.В., Ущаповская З.Ф. // Зап. ВМО. 1985. Ч. 114, вып. 5. С. 630.

2. Румянцева Е.В. // Там же. 1994. Ч. 123, вып. 4. С. 55.

3. Hariya Yu, Yoshikawa K. // J. Fac. Sci. Hokkaido Univ. Ser. IV. 1978. Vol. 18, N 1/2. P. 49.

СТРУКТУРА ТИПА ЛИНТИСИТА

ГРУППА ЛИНТИСИТА

	Сингония	<i>a</i> ₀	b 0	<i>c</i> 0	β	Уд.в.
Линтисит Na ₃ LiTi ₂ [Si ₂ O ₆] ₂ O ₂ \cdot 2H ₂ O	Монокл,	28,583	8,600	5,219	91,03°	2,77
[Кукисвумит] $Na_6ZnTi_4[Si_2O_6]_4O_4 \cdot 4H_2O_6$	Ромб.	28,889	8,604	5,215	_	2,90

Кукисвумит отнесен к группе условно по близости параметров элементарной ячейки и межплоскостных расстояний.

Линтисит Lintisite

$$Na_3LiTi_2[Si_2O_6]_2O_2 \cdot 2H_2O_1$$

Назван по составу [1]. Первоначальное название "минерал М-47" [2].

Характ. выдел. Кристаллы (0,1×0,5×5 мм) и их волокнистые и параллельношестоватые агрегаты (толщиной 0,1–0,5 мм и шириной 1–5 мм) [1].

Структ. и морф. крист. Монокл. с. $C_{2h}^6 - C_2/c$. $a_0 = 28,583$, $b_0 = 8,600$, $c_0 = 5,219$ Å; $\beta = 91,03^\circ$; $a_0: b_0: c_0 = 3,3236: 1:0,6068$; V = 1282,7 Å³; Z = 4 [1, 3].

Структура (фиг. 80) построена из Si-O-цепочек, колонок сочлененных по ребрам Li-тетраэдров, зигзагообразных цепочек из сочлененных по ребрам Na-октаэдров и цепочек из Ti-октаэдров. В крупных полостях располагаются молекулы H₂O и атомы Na(1). Атомы Na находятся в двух координациях: шестерной Na(2) и восьмерной Na(1).

Межатомные расстояния (в Å): Si(1)–O = 1,598–1,648; Si(2)–O = 1,586–1,663; Li–O = 2,013–2,014; Ti–O = 1,807–2,141; Na(1)–O = 2,355–2,687; Na(2)–O = 2,328–2,638.

Кристаллы игольчатые, вытянутые по оси с и уплощенные по (100). Характерно двойникование по (100).

Физ. св. [1]. Сп. весьма совершенная по (100), совершенная по (010). Изл. занозистый. Тв. 5-6. Уд. в. 2,77 (вычисл. 2,825).

Бесцветный или светло-желтый. Прозрачный. Бл. стеклянный в изломе и перламутровый на плоскостях спайности. В ультрафиолетовых лучах наблюдается слабое желтое свечение.

ИК-спектр содержит серию хорошо разрешенных максимумов поглощения в

Фиг. 80. Структура линтисита в проекции вдоль оси с (по Мерлино и др.)

основной области (412, 435, 507, 538, 583, 630, 700, 920, 1015, 1060, 1130 см⁻¹) и 1645 см⁻¹ в области деформационных колебаний молекул H₂O.

Микр. [1]. Бесцветный. Двуосный (-). $cNg = 2^{\circ}$, Nm = b. Погасание прямое либо слабо косое. Удлинение (+). $n_g = 1,739$, $n_p = 1,672$; $n_g - n_p = 0,130$; $2V = 85^{\circ}$. Дисперсия сильная, r < v.

Хим. [1]. Nb и Fe изоморфно замещают Ti.

Анализ (микрозонд., среднее из 4): Na₂O – 12,72; K₂O – 0,03; Li₂O^{*} – 2,68; FeO^{2*} – 0,28; MnO – 0,05; SiO₂ – 44,03; TiO₂ – 27,68; Nb₂O₅ – 1,10; H₂O^{3*} – 6,55; сумма 99,13 (гора Аллуайв, Ловозерский массив).

* Метод пламенной спектрофотометрии.

^{2*} Общее Fe.

3* Определено по п.п.

Эмпирическая формула (на 14 атомов О): Na_{2.97}Li_{0.99} (Ti_{1.91}Nb_{0.05}Fe_{0.02})_{1.98} × ×Si_{4.03}O₁₄· 2H₂O.

Диагн. исп. [1]. Легко разлагается 10%-ной HCl с сохранением кремниевого остова.

Повед. при нагр. [1]. На кривой нагревания в интервале 150–550° регистрируется постепенная потеря веса и резкая – в интервале 550-660°. Общая потеря веса (6,55%) обусловлена удалением молекул H₂O. Температура плавления 900–950°. Порошкограмма прокаленного при 600° соответствует рамзаиту (= лоренциниту (Clark, 1993)).

Нахожд. [1]. Найден в богато минерализованных содалит-нефелин-полевошпатовых пегматитах в виде неполных псевдоморфоз по рамзаиту на горе Аллуайв, в Ловозерском массиве (Кольский п-ов). Предположительно образовался в результате взаимодействия с рамзаитом остаточных силикатно-солевых растворов, богатых щелочными, летучими и редкими элементами.

Отл. От кукисвумита отличается по составу; от виноградовита и рамзаита – по оптическим свойствам, структуре и составу.

Межплоскостные расстояния линтисита из Ловозерского массива (гора Аллуайв) [1] FeK₀-излучение. Камера Гандольфи

hkl	1	d (Å)	hkl	1	d (Å)	hki	1	d (Å)
200	Сильн.	14,29	511	Оч.слаб.	3,49	040	Слаб.	2,153
400	Оч.слаб.	7,16	620	Оч.слаб.	3,20	802	Оч.слаб.	2,126
310	Cp.	6,39	421	Силын	2,996	931; 13.1 . 1.	Оч.слаб.	1,965
600; 510	Cp.	4,77	621	Cp.	2,744	132	Оч.слаб.	1,925
020	Слаб.	4,30	621	Ср.	2,709	350	Оч.слаб.	1,693
311	Оч.слаб.	4,06	131	Оч.слаб.	2,502	242; 550	Ср.	1,650
710	Cp.	3,69	402	Слаб.	2,432	14.0.2	Слаб.	1,593

Литература

1. Хомяков А.П., Полежаева Л.И., Мерлино С., Пазеро М. // Зап. ВМО. 1990. Ч. 119, вып. З. С. 76.

2. Хомяков А.П. Минералогия ультраагпантовых щелочных пород. М.: Наука, 1990. 200 с.

3. Merlino S., Pasero M., Khomyakov H.P. // Ztschr. Kristallogr. 1990. Bd. 193, H. 1/2. S. 137.

Кукисвумит Kukisvumite

 $Na_6ZnTi_4[Si_2O_6]_4O_4 \cdot 4H_2O$

Назван по месту находки на горе Кукисвумчорр, в Хибинском массиве [1].

Характ. выдел. Кристаллы (0,1×0,5×7 мм) и их веерообразные сростки.

Структ. и морф. крист. Ромб. с. D_{2h}^{10} -*Pccn.* $a_0 = 28,889$, $b_0 = 8,604$, $c_0 = 5,215$ Å; $a_0: b_0: c_0 = 3,3575: 1: 0,6061$; V = 1296,2 Å³; Z = 2.

Призматические кристаллы, вытянутые по [001] и уплощенные по (100).

Физ. св. Сп. не обнаружена. Отдельность по (010). Излом занозистый. Упругий. При раздавливании расщепляется на тонкие волокна вдоль удлинения. Тв. 5,5–6. Микротвердость 517–571 кгс/мм² при нагрузке 20 г. Уд.в. 2,90 (вычисл. 2,95). Цв. белый или бесцветный, иногда с серебристым оттенком. Бл. стеклянный. Прозрачный. Черта белая. Флюоресцирует. Под электронным зондом зеленовато-желтое свечение.

ИК-спектр характеризуется полосами поглощения (в см⁻¹): 3410, 3360, 1680, 1645, 1137, 1060, 1020, 955, 930, 895, 700, 600, 575, 545, 495, 450, 420.

Микр. Бесцветный. Двуосный (-). $Ng \parallel удлинению, Np \perp уплощению. Погасание прямое. <math>n_g = 1,795$, $n_m = 1,746$, $n_p = 1,676$; $n_g - n_p = 0,119$ (при $\lambda = 589$ нм) $2V = 77^{\circ}$.

Хим. Теор. состав: Na₂O – 16,32; ZnO – 7,14; TiO₂ – 28,04; SiO₂ – 42,17; H₂O – 6,33.

Анализы (микрозонд., 1 – среднее из 3):

	1	2		1	2
Na ₂ O	15,88	16,27	SiO ₂	42,87	42,66
K ₂ O	0,02	_	TiO ₂	26,61	27,03
ZnO	5 ,9 9	5,99	Nb ₂ O5	0,83	0,83
MnO	0,94	0,61	H ₂ O*	6,38	6,38
FeO	0,45	0,23	Сумма	100,00	100,00
Al ₂ O ₃	0,03	_			

* По разности (методом Пенфильда определено 6,5%).

1, 2 – гора Кукисвумчорр: 1 – кристалл, 2 – из псевдоморфозы по лампрофиллиту.

Лазерным спектральным анализом обнаружен Ве – 0,00*n*% (В и Li – 0,000). Установлен F – 0,19% (среднее из 2 анализов отдельных навесок).

Эмпирическая формула (на 28 атомов О): Na_{5,96} (Zn_{0,84}Mn_{0,10})_{0,94} × × (Ti_{3,85}Nb_{0,07}Fe_{0,04})_{3,96} Si_{8,08}O₂₈· 4,03H₂O.

Повед. при нагрев. На кривой нагревания фиксируется несколько эндотермических эффектов. Большая часть воды (около 5%) выделяется в интервале 160– 430°, в области 540–570° потеря веса составляет около 2%. Регистрируется несколько небольших эндотермических эффектов при 755, 885, 905, 925, 970° без потери веса.

Нахожд. Обнаружен в пегматитовой жиле арфведсонит-микроклинового состава на горе Кукисвумчорр в Хибинском массиве. Встречается в виде кристаллов в пустотах выщелачивания и в псевдоморфозах по лампрофиллиту. Ассоциирует с эвдиалитом, альбитом, ненадкевичитом, анальцимом, сфалеритом, молибденитом, фторапатитом, кальцитом, стронцианитом и доннейитом. Предположительно кристаллизовался в гидротермальных условиях из растворов, содержащих цинк.

Отл. По составу и оптическим свойствам отличается от виноградовита и рамзаита (= лоренцениту), от линтисита – по составу и сингонии.

Межплоскостные расстояния кукисвумита из Хибинс	кого массява [1]
Си-излучение. Пифрактометр	

hki	1	d(Å)	hkl	I	d (Å)	hkl	1	d(Å)
20 0	90	14649	721	3	2,584	84 0	5	1,848
110	13	8,25	202	5	2,567	16.0.6	25	1,806
40 0	3	7,24	11.1.0	5	2,511	404	5	1,725
310	60	6,42	12.0.0	12	2,406	150	4	1,718
600	80	4,815	930	12	2,139	13.0.2	8	1,691
020	47	4,302	12.2.0	6	2,102	16.2.0	6	1,655
710	65	3,722	440	6	2,061	442	8	1,648
800	28	3.614	902	3	2,026	10.3.2;12.4.0	35	1,604
910	100	3.009	141	2	1,984	14.2.2	4	1,514
521	25	2.878	931	3	1,976	133	5	1,485
130	10	2.855	11.3.0	3	1.934	2.1.10	3	1,358
820	5	2 758	541	10	1.880			

Литература

1. Яковенчук В.Н., Пахомовский Я.А., Богданова А.Н. // Минерал. журн. 1991. Т. 13, № 2. С. 63.

РОМБИЧЕСКИЕ ПИРОКСЕНЫ

ГРУППА ЭНСТАТИТА

В группе ранее описаны (т. III, вып. 2, с. 405): энстатит, гиперстен, ферросилита также бронзит, феррогиперстен и эвлит, не считающиеся самостоятельными минеральными видами (Флейшер, 1990).

	Сингония	a_0	b_0	<i>c</i> 0	Уд.в.
Донпикорит (Мп, Mg)Mg[Si ₂ O ₆]	Ромб.	18,384	8,879	5,226	3,36

Донпикорит Donpeacorite

(Mn, Mg)Mg[Si₂O₆]

Назван в честь американского минералога Дональда Р. Пикора [1].

Характ. выдел. Зерна (1-3 мм), массивные зернистые агрегаты.

Структ. и морф. крист. Ромб. с. D_{2h}^{15} -*Pbca.* $a_0 = 18,384, b_0 = 8,879, c_1 = 5,226 \text{ Å}; a_0: b_0: c_0 = 0,483: 1: 0,588; V = 853,12 \text{ Å}^3; Z = 8 [1].$

Mn входит в позицию M(2) при Mn > Mg. В изученном образце [1] позиция M занята Mg (100%), позиция M(2) – Mn (53%) и Mg (47%).

Межатомные расстояния (в Å) [1]: Si(A)-O = 1,629; Si(B)-O = 1,638; M(1)-O = 2,114, M(2)-O = 2,218; O-O = 2,673, 2,951 и 2,997; углы: O-Si(B)-O = 109 \cdot O-M(1) = 104,6; O-M(2)-O = 91,3; O(3)(A)-O(3)(A)-O(3)(A) = 163,8; O(3)(B)-O(3)(B) - O(3)(B) = 146,0°.

Физ. св. Сп. совершенная по (110). Тв. 5-6. Уд. в. 3,36 (вычисл. 3,403). Ца желто-оранжевый. Бл. стеклянный.

Микр. Светло-розовый. Двуосный (-). Ng || c; $n_g = 1,692$, $n_m = 1,684$, $n_p = 1.67^$ $n_g - n_p = 0,015$; $2V = 88^\circ$.

Хим. Теор. состав для MnMgSi₂O₆: MgO – 17,44; MnO – 30,66; SiO₂ – 51,90. составе природного образца Mn составляет 0,56 и 0,63 форм. ед., замещаясь Mg и в меньшей степени Ca и Fe. Его можно определить как магнезиальный донпикоргсостава $Dp_{56}En_{44}$ и $Dp_{63}En_{37}$.

Анализы (микрозонд., 1 - оригинал структурных исследований) [1]:

	1	2		1	2
Na ₂ O	0,03	Не опр.	Al ₂ O ₃	0,23	0,16
MgO	26,31	24,12	SiO ₂	55,12	54,64
CaO	0,69	0,82	Cuant	101.00*	00.06
MnO	18,48	20,22	Сумма	101,00*	99,90
FeO	0,14	Не опр.			

* В оригинале сумма 100,00.

Эмпирическая формула (на 4 катиона):

 $l - Mg_{1,41}Mn_{0,56}Ca_{0,03}Al_{0,01}Si_{1,98}O_{5,99};$

 $2 - Mg_{1,32}Mn_{0,63}Ca_{0,03}Al_{0,01}Si_{2,01}O_{6,01}$.

Нахожд. Установлен в богатых марганцем кремнистых мраморах близ Балмат (шт. Нью-Йорк, США), метаморфизованных до верхов амфиболитовых фаций (t = 650°, P = 6,5 кбар). Составляет до 50 об.% породы, основная масса которой сложена волокнистым Mn-Mg-амфиболом – тиродитом (40% породы) с примесытурмалина, железистого браунита, марганцовистого доломита, гедифаноподобного апатита и ангидрита.

	Межплоскостные расстояния донпикорита из Балмат, шт. Нью-Йорк (США) [1] CuKa-излучение								
hkl	I	d (Å)	hkl	1	d(Å)	hkl	I	d(Å)	
220; 211	10	4,03	421	9	2,724	141; 820	5	2,041	
411	6	3,24	131	9	2,551	422	2	2,022	
420; 221	100	3,18	611	4	2,531	-	9	1,9947	
600	10	3,09	202	10	2,510	-	8	1,7420	
321	10	2,961	112; 231; 521	8	2,487	-	11	1,4950	
610	60	2,896	302	5	2,404	-	11	1,4794	
511	9	2,847	512; 721	5	2,071	-	7	1,4019	

Литература

1. Petersen E.U., Anovitz L.M., Essene E.J. // Amer. Miner. 1984. Vol. 69, N 5/6. P. 472.

СИЛИКАТЫ С ЦЕПОЧКАМИ ТРЕХЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА ВОЛЛАСТОНИТА

группа волластонита

В группе ранее описаны: волластонит, бустамит, пектолит, серандит, фошагит (т. III, вып. 2, с. 489).

	Сингония	<i>a</i> ₀	<i>b</i> ₀	c_0
Каскандит CaSc[Si ₃ O ₈ (OH)]	Трикл.*	9,791	10,420	7,076
Умбит $K_2Zr[Si_3O_9] \cdot H_2O$	Ромб.	10,208	13,241	7,174
Π араумбит] (K, H) ₂ Zr[Si ₃ O ₉] \cdot nH ₂ O	61	10,34	13,29	14,55
* $\alpha = 98,91$, $\beta = 102,63$, $\gamma = 84,17^{\circ}$.				

Структуры каскандита и умбита близки волластонитовой; параумбит включен в группу условно.

Kаскандит Cascandite CaSc[Si₃O₈(OH)]

Назван по составу (Ca, Sc) [1].

Характ. выдел. Кристаллы (0,20×0,08×0,02 мм).

Структ. и морф. крист. Трикл. с. $C_i^1 - P\overline{1}$. $a_0 = 9,791$, $b_0 = 10,420$, $c_0 = 7,076$ Å; $\alpha = 98,91$, $\beta = 102,63$, $\gamma = 84,17^\circ$; $a_0 : b_0 : c_0 = 0,939 : 1 : 0,679$; Z = 4 [2].

Основу структуры (фиг. 81) [2] составляют кремнекислородные цепочки с периодом повторяемости, равным трем. Октаэдры двух типов: М(1) – заняты Са, меньшие по размеру М(2) – Sc и небольшим количеством Fe²⁺ и Mn²⁺. Октаэдры, соединяясь ребрами, образуют ленты (шириной в 2 октаэдра), параллельные оси с. Каждая октаэдрическая лента соединяется общими углами с шестью тетраэдрическими цепочками. В отличие от пектолита и серандита позиция А вакантна или, возможно, частично занята атомами (Fe²⁺, Mn²⁺). Водородные связи внутрице-почечные.

Фиг. 81. Структура каскандита в проекции на плоскость (100) (по Меллини и Мерлино). Пунктиром показаны водородные связи

Средние межатомные расстояния (в Å): Si(1)–O = 1,624; Si(2)–O = 1,626 Si(3)–O = 1,622; Ca–O = 2,420; Sc–O = 2,131.

Кристаллы тонкопластинчатые по (001). Наблюдались формы: (001), (100). (120), (530).

Физ. св. Сп. хорошая по (001) и (100). Цв. бледно-розовый. Бл. стеклянный. Микр. n₁ = 1,663, n₂ = 1,684 на (001) [1].

Идеализированная формула по [1, 2]: CaScSi₃O₈(OH); по М. Флейшеру (1990 Ca(Sc, Fe²⁺)Si₃O₈(OH).

Анализ (микрозонд.) [1]: Na₂O - 0,06; MgO - 0,20; CaO - 16,83; MnO - 2,32 FeO - 4,50; Al₂O₃ - 0,11; Sc₂O₃ - 14,74; SiO₂ - 51,83; TiO₂ - 0,08; H₂O - 2,59^{*}; сумул 93,26.

* Вычислено иа основе предположения о наличии одной молекулы H₂O на элементарную ячейку.

Эмпирическая формула: Ca(Sc_{0.74}Mg_{0.02}Al_{0.01}Fe²⁺_{0.22}Mn_{0.01})(Na_{0.01}Ca_{0.04}> \times Mn_{0,10} $\Box_{0.85}$)Si₃O_{8.02}(OH); кристаллохимическая с учетом данных химического **п** структурного анализов [2]: Ca (Sc³⁺_{1-x}M²⁺_x)(M²⁺_x \Box_{1-x})Si₃O_{8+x}(OH)_{1-x}, где M²⁺ – (Fe²⁺, Mn²⁺), x = 0,1-0,2.

Нахожд. Найден в виде мелких кристаллов в жеодах гранитов массива Кава-Диверио, Бавено (Италия), с кварцем, ортоклазом, альбитом и джервиситом [1].

СиК _α -излучение									
hkl	I	d (Å)	hkl	I	d (Å)	1	d(Å)		
100	Слаб.	7,22	121	Слаб.	2,675	Слаб.	1,717		
001	Слаб.	6,75	211, 112	Слаб.	2,595	Слаб.	1,688		
110	Слаб.	4,46	300	Слаб.	2,421	Слаб.	1,642		
	_					-			
-------------	----------	-------	---------------------------	-------	-------	--------	--------------		
hkl	1	d(A)	hkl	1	d(A)	1	<i>d</i> (A)		
111	Слаб.	3,84	301;022	Слаб.	2,337	Слаб.	1,623		
20 0	Средн.	3,62	<u>7</u> 72; 311	Слаб.	2,300	Слаб.	1,595		
020; 002	Слаб.	3,39	1 22; 003	Слаб.	2,249	Слаб.	1,564		
211	Слаб.	3,25	220	Слаб.	2,220	Слаб.	1,524		
102; 201	Слаб.	3,14	<u>1</u> 30; <u>1</u> 31;	Слаб.	2,190	Слаб.	1.447		
121; 012;	Средн.	3,10	321			Средн.	1,429		
021			013; 221	Слаб.	2,158	Слаб.	1,398		
102; 012	Средн.	2,968	321; 310	Слаб.	2,128	Слаб.	1,331		
112	Оч.слаб.	2,924	221	Слаб.	2,060	Слаб.	1,296		
120	Сильн.	2,821	302	Слаб.	2,040	Слаб.	1,257		
211	Оч.слаб.	2,753		Слаб.	1,779				

Литература

1. Mellini M., Merlino S., Orlandi P. // Amer. Miner. 1982. Vol. 67, N 5/6. P. 599. 2. Mellini M., Merlino S. // Ibid. P. 604.

Умбит Umbite

$K_2Zr[Si_3O_9] \cdot H_2O$

Назван по месту находки в районе оз. Умба в Хибинском массиве [1]; предварительные названия: "минерал № 14" [2], "К-Zr-силикат [3], "новая природная модификация K₂ZrSi₃O₂ · H₂O" [4].

Характ. выдел. Кристаллы (1-3)×(0,01-0,1) мм, их параллельные и веерообразные сростки [1, 5].

Структ. и морф. крист. Ромб. с. $P2_12_12_1-D_2^4$. $a_0 = 10,208$, $b_0 = 13,241$, $c_0 = 2,174$ Å; $a_0: b_0: c_0 = 0,771: 1:0.542$; V = 969,7 Å³; Z = 4 [1, 4].

Полиморфная модификация костылевита. Основу структуры [4] составляют ажурные сетки из Zr-октаэдров и Si-тетраэдров, образующие трехмерный каркас смешанного типа $\{Zr[Si_3O_9]_{\infty}^{2^-}$. Si–O-радикал представлен волластонитовой цепочкой $[Si_{2+1}O_9]_{\infty}$. На ячейку приходится четыре такие цепочки, идущие вдоль оси *с* и связанные между собой одиночными, почти правильными Zr-октаэдрами (фиг. 82). Между цепочками в том же направлении проходят каналы, в которых размещаются атомы К (в девятивершинниках) и молекулы воды.

Средние межатомные расстояния (в Å): Zr-O = 2,06; Si-O = 1,61, 1,62 и 1,63; K-O = 3,00 и 3,08.

Наблюдались грани: (010) – основная, (101), (110) и (011), придающие кристаллам форму восьмиугольных табличек, уплощенных по оси *b* и несколько вытянутых вдоль оси *c* [1, 5]. *a* : *b* : *c* = 0,77095 : 1 : 0,54180.

Формы:

b	010	n 110	p 011	q 101
φ	0°00'	52°22′	0°00′	90°00'
ρ	90 OO	90 0 0	28 27	35 06

Физ. св. Сп. совершенная слюдоподобная по (010), менее совершенная по (100). Микротвердость 305–451 кгс/мм². Уд.в. 2,79. Бесцветный или желтоватый. В тонких пластинках водяно-прозрачный. Бл. стеклянный в изломе, перламутровый на плоскостях спайности. В ультрафиолетовых лучах слабая желтовато-белая фотолюминесценция при комнатной температуре и яркая беловато-зеленая при температуре жидкого азота, обусловленная предполагаемыми комплексами [Ti⁴⁺Oi₆] [3] и вызванная сорбированными примесями (органика, вода) [1]. В ИК-спектре 10. Минералы т. IV, вып. 3

Фиг. 82. Структура умбита в проекции вдоль оси у (по Илюшину и др.).

сильные полосы поглощения 3170 и 3320 см⁻¹ свидетельствуют о наличии молеку. воды [1].

Микр. Пл. опт. осей параллельна пл. совершенной спайности (010); Ng = aNm = b, Np = c. Двуосный (-). $n_g = 1,619$, $n_m = 1,610$ (вычисл.), $n_p = 1,596$; $n_g - n_p = 0,023$; $2V = 80^{\circ}$ [1].

Хим. Теор. состав: K₂O – 22,66; ZrO₂ – 29,64; SiO₂ – 43,37; H₂O – 4,33.

Анализ (микрозонд., среднее из анализов 3 зерен): Na₂O – 0,16; K₂O – 22,41: CaO – не обн.; Fe₂O₃ – 0,12; TiO₂ – 3,33; ZrO₂ – 22,28; HfO₂ – 0,43; SiO₂ – 42,36. H₂O^{*} – 5,03; F^{*} – 2,00; -O=F₂ – 0,84; сумма 97,28.

* Химические определения из отдельных навесок с примесью арктита и др., анал. Полежаева.

Эмпирическая формула (на 3 Si): ($K_{2,02}Na_{0,02}$)($Zr_{0,77}Ti_{0,18}Hf_{0,01}Fe_{0,01}$) Si₃H_{2,38}× × $F_{0.45}O_{9.92}$ [1].

Нахожд. Встречен в ультраагпаитовых пегматитах Хибинского массива (Кольский п-ов) в долине р. Вуоннемиок, в керне скважины. Приурочен к пегматоидному прожилку, секущему пойкилитовый нефелиновый сиенит. Пластинки умбита находятся в тесных срастаниях с костылевитом и включены в монокристальные обособления арктита. Наряду с этими минералами прожилок слагают крупнокристаллический калиевый полевой шпат и неравномернозернистый агрегат эгирина, натролита, пектолита, виллиомита, ломоносовита, щербаковита, расвумита, вадеита, измененного эвдиалита и др. Выделение умбита связано с постмагматическими процессами преобразования натриевых минеральных ассоциаций под влиянием существенно калиевых растворов. Является типоморфным для калиевой ветви ультраагпаитовых пегматитов.

Отл. От параумбита отличается вдвое меньшим параметром со.

			СиКα-излучение				
hki	I	<i>d</i> (Å)	hki	I	d (Å)	I	d(Å)
110	3	8,12	421	1	2,276	1	1,268
020; 011	6ш	6,56	251	1	2,238	1	1,230
101	9	5,91	160; 332	4	2,156	1	1,221
200	1	5,19	133	3	2,062	2	1,206
121	3	4,37	351	2	2,010	1	1,161
220; 211	I	4,02	520; 261	3	1,949	I	1,137
002	3	3,59	521; 432	2	1,888	1	1,124
221;012	2	3,51	170; 530	1	1,859	I	1,102
040; 310	7	3,31	171; 004; 531	8ш	1,797	1	1.085
Q22; 140	1	3,17	271	1	1,722	1	1,072
231; 320;	10ш	3,02	541; 610	2	1,689	I	1,044
122; 041			611; 134; 224	2 w	1,642	2	1,030
202	1	2,93	631; 263	4 m	1,549	2	1,016
141; 212	8	2,87	462; 640; 523	1	1,512	2	1,000
321; 032	2	2,80	533; 364	2	1,465	I	0,935
330; 132; 222	2	2,71	035; 481	1	1,364	I	0,918
241	1	2,61	192; 183;	1	1,349	I	0,908
410; 051	2	2,51	504;660			I	0,874
232; 042; 312	1	2,44		I	1,321	1	0,865
420; 340	2	2,39		1	1,302		
103	1	2,338		1	1,285		

Межплоскостные расстоянии умбита из Хибинского массива [1]

Литература

1. Хомяков А.П., Воронков А.А., Кобяшев Ю.С., Полежаева Л.И. // Зап. ВМО. 1983. Ч. 112, вып. 4. С. 461.

2. Хомяков А.П. // Геохимия. Минералогия: XXVI Междуиар. геол. конгр.: Докл. сов. геологов. М.: Наука, 1980. С. 164.

3. Гафт М.Л., Горобец Б.С., Хомяков А.П. // ДАН СССР. 1981. Т. 260, № 5. С. 1234.

4. Илюшин Г.Д., Пудовкина З.В., Воронков А.А., Хомяков А.П., Илюхин В.В., Пятенко Ю.А. // Там же. Т. 257, № 3. С. 608.

5. Хомяков А.П. Минералогия ультраагпаитовых щелочных пород. М.: Наука, 1990. 200 с.

Параумбит Paraumbite

 $(K, H)_2 Zr[Si_3O_9] \cdot nH_2O$

Назван по сходству с умбитом [1], первоначальное название – "минерал № 15" [2]. Синои. Гидроумбит (?) (Семенов, 1991).

Характ. выдел. Хорошо образованные кристаллы (0,1–1,0 мм), их розеткоподобные агрегаты [3]. Псевдоморфозы по эвдиалиту (до 1–3 см), тонкие чешуйчатые каемки вокруг его кристаллов, прожилковидные скопления (до 2–3 мм) хрупких изогнутых пластинок [(0,01–0,1)×(1–3) мм] [1].

Структ. и морф. крист. Ромб. с. $a_0 = 10,34$, $b_0 = 13,29$, $c_0 = 14,55$ Å; $V_0 = 1999,4$ Å³; $a_0 : b_0 : c_0 = 0,778 : 1 : 1,095$; Z = 8. Четкий псевдопериод $c_0/2$, равный c_0 умбита [1, 4].

Физ. св. Сп. совершенная, слюдоподобная по пластинчатости (010), менее совершенная по (100). Микротвердость 280–504 кгс/мм² при нагрузке 30 г. Уд. в. 2,50–2,67 (материал неоднороден). Бесцветный, в агрегатах белый. Мутный, в тонких пластинках водяно-прозрачный [1], иногда просвечивает [3]. Бл. стеклянный до перламутрового на плоскостях спайности. В ИК-спектре сильные полосы

поглощения 1660, 3350, 3450 и 3570 см⁻¹ указывают на наличие в минералводы.

Микр. Двуосный (-). a = Ng, b = Nm, c = Np. $n_g = 1,610$, $n_m = 1,601$, $n_p = 1,55$ $n_g - n_p = 0,022$; $2V = 82^{\circ}$ [1, 4].

Хим. Изучен недостаточно. Микрозондовое исследование выявило неоднородность минерала.

Анализ (микрозонд., анал. Полежаева): Na₂O – 0,12; K₂O – 15,39; CaO – не обн Fe₂O₃ – 0,10; TiO₂ – 0,89; ZrO₂ – 27,87; HfO₂ – 0,32; SiO₂ – 39,58; сумма 84,2⁻ Дефицит суммы (15,7%) условно принят за H₂O.

Эмпирическая формула (на 11 катионов, без H): $(K_{2,92}Na_{0,03}) \cdot (Zr_{2,02}Ti_{0,10}Hf_{0,01}Fe_{0,01})H_{0,94}Si_{5,89}O_{18,00} \cdot 7,34H_2O.$

Диагн. исп. Легко разлагается 10%-ной HCl при комнатной температуре.

Нахожд. Найден в Хибинском массиве на горе Эвеслогчорр [1] в полевоппатовых пегматитах, подвергшихся вместе с вмещающими их рисчорритаха интенсивному катаклазу и перекристаллизации. Совместно с другими поздни» • цирконосиликатами (вадеитом, гейдоннеитом) частично или полностью замещает порфировидные выделения эвдиалита в пегматитах, сложенных блоками калиевого полевого шпата, волокнистым баритолампрофиллитом, натролитом и пектолито-Второстепенные минералы пегматитов – эгирин, анальцим, лейкофанит, апатит, ненадкевичит, сфалерит. Псевдоморфозы цирконосиликатов имеют зональное строе ние: вадеит приурочен к внешним, срастания параумбита и гейдоннеита – к центральным частям.

Встречен в массиве Сент-Илер, Квебек (Канада) [3], в пегматитовой дайке в ассоциации с альбитом, микроклином, анальцимом, сидеритом, рутилом, натролит и пиритом, а также в ксенолите с содалитом, эгирином, эвдиалитом, уссингитом псерандитом.

Отл. От сходного умбита отличается удвоенной величиной параметра с. е рентгенограммой.

	- 0				
I	d (Å)	I	d (Å)	I	d (Å)
2	8,40	1	2,26	1	1,433
3	8,12	2ш	2,17	2	1,389
1	7,14	2	2,103	1	1,336
3	6,60	2	2,032	1	1,301
8	6,46	3	1,965	1	1,252
10ш	5,25	3	1,910	2	1,221
2	5,37	2	1,866	1	1,177
3	5,19	5	1,828	2	1,113
4	4,40	2	1,797	1	1,092
5ш	4,06	3	1,728	1	1,084
7	3,34	1	1,667	1	1,063
3	3,13	1	1,642	1	1,052
9ш	3,01	1	1,603	1	0,971
7	2,90	3	1,568	1	0,922
1	2,72	1	1,523	1	0,913
6	2,56	2	1,499	1	0,845
2	2,39	2	1,486		
1	2,32	2	1,455		
	/ 2 3 1 3 8 10m 2 3 4 5m 7 3 9m 7 1 6 2 1	I d (Å) 2 $8,40$ 3 $8,12$ 1 $7,14$ 3 $6,60$ 8 $6,46$ 10m $5,25$ 2 $5,37$ 3 $5,19$ 4 $4,40$ 5m $4,06$ 7 $3,34$ 3 $3,13$ 9m $3,01$ 7 $2,90$ 1 $2,72$ 6 $2,56$ 2 $2,39$ 1 $2,32$	I $d(A)$ I28,40138,122m17,14236,60286,46310m5,25325,37235,19544,4025m4,06373,34133,1319m3,01172,90312,72162,56222,39212,322	I $d(\dot{A})$ I $d(\dot{A})$ 2 $8,40$ 1 $2,26$ 3 $8,12$ $2uu$ $2,17$ 1 $7,14$ 2 $2,032$ 3 $6,60$ 2 $2,032$ 8 $6,46$ 3 $1,965$ 10uu $5,25$ 3 $1,910$ 2 $5,37$ 2 $1,866$ 3 $5,19$ 5 $1,828$ 4 $4,40$ 2 $1,797$ $5uu$ $4,06$ 3 $1,728$ 7 $3,34$ 1 $1,667$ 3 $3,13$ 1 $1,642$ $9uu$ $3,01$ 1 $1,603$ 7 $2,90$ 3 $1,568$ 1 $2,72$ 1 $1,523$ 6 $2,56$ 2 $1,499$ 2 $2,39$ 2 $1,486$ 1 $2,32$ 2 $1,455$	I $d(\dot{A})$ I $d(\dot{A})$ I2 $8,40$ 1 $2,26$ 13 $8,12$ $2uu$ $2,17$ 21 $7,14$ 2 $2,032$ 13 $6,60$ 2 $2,032$ 18 $6,46$ 3 $1,965$ 110uu $5,25$ 3 $1,910$ 22 $5,37$ 2 $1,866$ 13 $5,19$ 5 $1,828$ 24 $4,40$ 2 $1,797$ 1 $5uu$ $4,06$ 3 $1,728$ 17 $3,34$ 1 $1,667$ 13 $3,13$ 1 $1,642$ 19uu $3,01$ 1 $1,603$ 17 $2,90$ 3 $1,568$ 11 $2,72$ 1 $1,523$ 16 $2,56$ 2 $1,499$ 12 $2,39$ 2 $1,486$ 11 $2,32$ 2 $1,455$ 1

Межплоскостные расстояния параумбита из Хибинского массива [1] СиК-илучение

Литература

- 1. Хомяков А.П., Воронков А.А., Кобяшев Ю.С., Полежаева Л.И. // Зап. ВМО. 1983. Ч. 112, вып. 4. С. 461.
- 2. Хомяков А.П. // Геохимня. Минералогия: XXVI Междунар. геол. конгр.: Докл. сов. геологов. М.: Наука, 1980. С. 164.
- 3. Horvath L., Gault R.A. // Miner. Rec. 1990. Vol. 21, N 4. P. 321.
- 4. Хомяков А.П. Минералогия ультраагпантовых щелочных пород. М.: Наука, 1990. 200 с.

СТРУКТУРА ТИПА ИЛЕРИТА

До расшифровки структуры илерит (hilairite^{*}) был условно отнесен по близости состава к группе бенитоита (т. III, вып. 2, с. 15), объединяющей силикаты с трехчленными кольцами кремнекислородных тетраэдров.

ГРУППА ИЛЕРИТА

	Сингония	a _h	ch	Z	Уд.в
Илерит [*] Na ₂ Zr[Si ₃ O ₉] · 3H ₂ O	Триг.	10,556	15,855	6	2,73
Кальциоилерит CaZr[Si ₃ O ₉] · 3H ₂ O		20,870	16,002	12	2,68
Комковит BaZr[Si ₃ O ₉] - 3H ₂ O		10,526	15,736	6	3,31
Сазыкинаит-(Y) Na ₅ YZr[Si ₃ O ₉] ₂ · 6H ₂ O		10,825	15,809	3	2.67

Расшифровка структуры илерита показала, что ее основу составляет смешанный каркас из Zr-октаэдров и винтовых цепочек [Si₃O₉] нового типа [1]. В каркасе Zr[Si₃O₉] Zr-октаэдр объединяет три Si-цепочки, каждый Si-тетраэдр которых имеет в качестве соседей два Si-тетраэдра и два Zr-октаэдра, лежащих на разных тройных осях. В полостях каркаса располагаются атомы Na и молекулы H₂O

фиг. 83). Атомы Na(1) окружены тремя О и тремя молекулами H₂O по искаженной тригональной призме, атомы Na(2) – двумя молекулами H₂O и пятью O. Октаэд-

ические позиции каркаса и его полости допускают определение вариации состава, что подтвердилось открытием структурных аналогов илерита: кальциевого – кальциоилерита [2], бариевого – комковита [3] и иттриево-редкоземельного – сазыкинаита-(Y) [4].

Фиг. 83. Структура илерита в проекции ab (по Соколовой и др.)

Межатомные расстояния (в Å): Zr–O = 2,082 и 2,083 (в октаэдрах); Si–O = 1,598-1,644 (в тетраэдрах); Na(1)–O = 2,55; Na(1)–H₂O = 2,20; Na(2)–O = 2,62-2,99; Na(2)–H₂O = 2,244 [1].

Литература

1. Илюшин Г.Д., Воронков А.А., Невский Н.Н., Илюхин В.В., Белов Н В. // ДАН СССР. 1981. Т. :~ № 5. С. 1118.

2. Boggs R.C. // Amer. Miner 1988. Vol. 73, N 9/10. P. 1191.

3. Соколова Е.В., Аракчеева А.В., Волошин А.В. // ДАН СССР. 1991. Т. 320, № 6. С. 1384.

4. Расцветаева Р.К., Хомяков А.П. // Кристаллография. 1992. Т. 37, № 6. С. 1561.

Кальциоилерит Calcioilairite

 $CaZr[Si_3O_9] \cdot 3H_2O$

Назван по составу и сходству с илеритом [1]. Синои. Са-илерит [2].

Характ. выдел. Кристаллы до 2 мм в длину.

Структ. и морф. крист. Триг. с. $D_3^7 - R32$. $a_h = 20,870$, $c_h = 16,002$ Å; $a_h : c_h = 1 : 0,7667$; Z = 12.

Кристаллы тригонального облика с формами: (1120), (2110), (1012) и (0112).

Физ. св. Сп. нет. Тв. 4. Уд. в. 2,68 (вычисл. 2,74). Цв. белый до светлеголубого. Бл. стеклянный. Изл. раковистый. Не люминесцирует.

Микр. Одноосный (-). $n_o = 1,622, n_e = 1,619.$

Хим. Теор. состав: CaO – 13,56; SiO₂ – 43,58; ZrO₂ – 29,79; H₂O – 13,07.

Анализ (микрозонд., среднее из 5): Na₂O – 0,20; CaO – 11,14; CuO – 0,65; FeO – 0,19; SiO₂ – 40,02; ZrO₂ – 32,60; TiO₂ – 0,06; Al₂O₃ – 1,32; H₂O (по разности) – 13.82 сумма 100,00.

Эмпирическая формула (на 9 атомов О): $(Ca_{0,89}Na_{0,03}Cu_{0,03})_{0,95}$ $(Zr_{1,14} \cdot XFe_{0,01})_{1,15}(Si_{2,82}Al_{0,09})_{2,91}O_9 \cdot 3,30H_2O.$

Са частично замещается Na, Cu, возможно, Zr, a Si – Al.

Нахожд. Найден в небольших количествах в миароловых пустотах в ультращелочных гранитах батолита Гольден-Хорн в северной части Каскадных гор (шт Вашингтон, США). Ассоциирует с микроклином, кварцем, альбитом, флюорит хлоритом, бастнезитом, цирконом и малахитом.

Отл. От илерита отличается по составу, параметрам элементарной ячейка . оптическим свойствам.

Межплоскостные расстоянии кальциоилерита из	Гольден-2	Хорна ((США)	[1]
---	-----------	---------	-------	-----

СиК _α -излучение, Si-стандарт. Дифрактометр	
--	--

hkl	Ι	d(Å)	hkl	Ι	d (Å)	hkl	Ι	d(Å
202	12	5,989	434	3	2,386	930	17	1,671
220	100	5,228	722	3	2,128	384	15	1,668
422	14	3,139	075	5	2,009	574	3	1,589
205	34	3,017	018	5	1,980	2.1.10	3	1,558
125	4	2,890	725	31	1.817	862	3	1,461
612	8	2,606	292	5	1,738	10.1.6	3	1,443

Литература

1. Boggs R.C. // Amer. Miner. 1988. Vol. 73, N 9/10. P. 1191.

2. Хомяков А.П., Нечелюстов Г.Н., Расцветаева Р.К. // Зап. ВМО. 1993. Ч. 122, вып. 5. С. 76.

Комковит Komkovite $BaZr[Si_3O_9] \cdot 3H_2O$

Назван по имени русского минералога и кристаллографа А.И. Комкова (1926-1987) [1].

Характ. выдел. Кристаллы (1-2 мм).

Структ. и морф. крист. Триг. с. $D_3^7 - R 32$. $a_h = 10,526$, $c_h = 15,736$ Å; $a_h : c_h = 1 : 1,494$; V = 1510 Å³; Z = 6. В структуре [2] в отличие от илерита позиция Na(1) занята крупным атомом Ba²⁺, позиция Na(2) – приблизительно на 80% молекулами H₂O, образующими винтовые цепочки вокруг оси 3₂. Ва-двенадцативершинники и Zr-октаэдры, соединяясь общими гранями, образуют бесконечные цепочки вдоль тройных осей структуры. Кроме того, Ва-полиэдры связаны общими, укороченными до 2,54 и 2,70 Å ребрами с Si-тетраэдрами (фиг. 84).

Средние межатомные расстояния (в Å): в Ва-полиэдрах Ва-O = 3,25; O-O = = 3,11; в Si-тетраэдрах Si-O = 1,65, O-O = 2,60; в Zr-полиэдрах Zr(1)-O(2) = 2,04, O-O = 2,89, Zr(2)-O(1) = 2,08, O-O = 2,93.

Кристаллы изометричные; наблюдались грани тригональной пирамиды [1].

Физ. св. Сп. отсутствует. Отдельность предположительно в двух направлениях: в плоскости (001) и параллельно оси [001]. Тв. 3-4. Хрупкий. Уд. в. 3,31 (вычисл. 3,38). Цв. коричневый. Черта светло-коричневая. Бл. стеклянный. Не пюминесцирует. В катодных лучах светится голубым цветом.

ИК-спектр характеризуется полосами поглощения: 1045, 970, 920, 740, 545, 495 см⁻¹; в области валентных колебаний молекул $H_2O - 1665$ и 1650 см⁻¹; в области деформационных колебаний $H_2O - 3540$ и 3510 см⁻¹. Близок ИК-спектру илерита.

Микр. Не плеохроирует. В иммерсионных препаратах окраска коричневая. Одноосный (-). $n_o = 1,671$, $n_e = 1,644$.

Хим. Теор. состав: BaO – 30,02; SiO₂ – 35,28; ZrO₂ – 24,12; H₂O – 10,58.

Анализ (микрозонд.): K₂O – 0,13; BaO – 28,19; CaO – 0,08; FeO – 0,33; SiO₂ – 34,44; ZrO₂ – 24,94; HfO₂ – 0,46; H₂O (определена кулонометрическим методом) – 10,70; сумма 99,27.

Эмпирическая формула (на 9 атомов О): $(Ba_{0.95}Fe_{0.02}Ca_{0.01}K_{0.01})_{0.99} \times (Zr_{1.04}Hf_{0.01})_{1.05}Si_{2.95}O_9 \cdot 3,08H_2O.$

Фиг. 84. Структура комковита BaZr[Si₃O₉]·2,4H₂O в проекции ab (по Соколовой н др.)

Часть Ва замещается на К, Са и Fe, а Zr – на Hf.

Повед. при нагр. Дегидратация происходит с начала нагревания с энд термическим максимумом на кривой ДТА при 140°, заканчивается при 600° [1] Снижение температуры эндотермического эффекта до 140° объясняется ослаблиием связей катионов с молекулами H_2O в структуре (увеличение межатомных расстояний $Ba-H_2O = 3,01$ против $Na-H_2O = 2,244$ в структуре илерита) и обрызованием H_2O -цепочек в каналах структуры комковита [2].

Нахожд. Встречен в доломитовых прожилках, секущих метасоматически-и. мененные пироксениты, в керне скважины в карбонатитовом комплексе Вуорияра (Кольский п-ов). Ассоциирует с доломитом, флогопитом, стронцианитом, баритом джорджчаоитом и пиритом. Предполагается, что образование комковита связанс. изменением катаплеита [1].

Отл. От бацирита BaZr[Si₃O₉] отличается присутствием воды, рентгенометра ческими данными, физическими и оптическими свойствами.

Mana		nn Duo		F 1 1	1
межноскостные	расстонния комковита	NS DYU	ркирви		L

Fe-излучение, Ge-стандарт, D = 114.6 мм

hkl	I	d (Å)	hkl	I	<i>d</i> (Å)	hkl	I	d (Å)
012	1	5,96	018	1	1,911	418	2	1,398
110	10	5,23	118	4	1,841	610	1	1,389
202	1	3,94	500; 050	2	1,829	508	3	1,334
104	8	3,59	208	5	1,796	440	1	1,314
122	2	3,13	330	2	1,750	700; 530	1	1,304
300	8	3,02	235	1	1,736	3.0.11	1	1,292
024	9	2,96	128	5	1,700	615	2	1.264
123	1	2,880	054	1	1,656	262; 244	1	1,258
302	2	2,840	150; 243	3	1,642	263	2	1,231
220	4	2,615	244; 055	1	1,579	535	3	1,203
214	6	2,571	153	1	1,564	528	1	1,171
312	3	2,393	318	5	1,546	270	1	1,112
116	2	2,327	237	1	1,527	2.0.14	3	1,090
134	2	2,124	514	2	1,505	3.4.10	2	1,081
230	6	2,106	2.0.10	1	1,480	180	2	1,067
232	1	2,026	520	2	1,460	460; 183	2	1,046
410	3	4,984	521	3	1,448	1.3.14	2	1.027
008	3	1,960	238	1	1,434			
233	1	1,931	604	2	1,424			

Литература

1. Волошин А.В., Пахомовский Я.А., Меньшиков Ю.П., Соколова Е.В., Егоров-Тисменко Ю.К. Минерал. журн. 1990. Т. 12, № 3. С. 69.

2. Соколова Е.В., Аракчеева А.В., Волошин А.В. // ДАН СССР. 1991. Т. 320, № 6. С. 1384.

Сазыкинант-(Y) Sazykinaite-(Y) Na₅YZr[Si₃O₉] $_2 \cdot 6H_2O$

Назван по имени Л.Б. Сазыкиной, минералога и художника, автора картин из цветного камня [1]. Синон. Редкоземельный илерит, ТR-илерит [2].

Характ. выдел. Кристаллы (до 2 мм в поперечнике).

Структ. и морф. крист. [2]. Триг. с. D_3^7 -R32. $a_h = 10,825, c_h = 15,809$ Å; $a_h : c_h = 1 : 1,4604; V = 1604$ Å³; Z = 3.

В отличие от илерита одна из двух Zr-позиций занята Y (и TR), а другая. 🎫

Фиг. 85. Структура сазыкинаита-(Ү) в проекции на плоскость (001) (по Расцветаевой и др.)

30% – Ті и Nb, позиции Na(1) и Na(2) заселены полностью (фиг. 85). Отношение Na : (Zr, V) = 2,5 (в илерите Na : Zr = 2).

Межатомные расстояния (среднее, в Å): Si-O = 1,621; O-O = 2,646 (в тетраэдрах); Y-O = 2,260; O-O = 3,25; Zr (Ti и Nb)-O = 2,077; O-O = 2,96 (в октаэдрах).

Кристаллы тригонального облика [1].

Физ. св. Сп. несовершенная по (0112). Тв. 5. Изл. раковистый, иногда ступенчатый. Уд. в. 2,67 (вычисл. 2,73). Цв. светло-зеленый, с желтоватым оттенком. Бл. сильный, стеклянный. Прозрачный или просвечивает. В ультрафиолетовых лучах флюоресцирует зеленым цветом.

ИК-спектр имеет полосы поглощения 990, 925, 715, 495 и 470 см⁻¹, в области колебаний молекул H_2O 3520, 2990 и 1690 см⁻¹. ИК-спектр близок к таковым илерита и комковита [1].

Микр. Одноосный (-). $n_o = 1,585(2), n_e = 1,578(2), n_o - n_e = 0,007.$

Хим. [1]. Теор. состав: Na₂O – 18,02; Y₂O₃ – 13,13; ZrO₂ – 14,33; SiO₂ – 41,94; H₂O – 12,58.

Анализ (микрозонд., среднее из 5): Na₂O – 15,18; K₂O – 3,05; Y₂O₃ – 8,74; Ce₂O₃ – 0,17; Nd₂O₃ – 0,25; Sm₂O₃ – 0,38; Eu₂O₃ – 0,24; Gd₂O₃ – 1,03; Tb₂O₃ – 0,21; Dy₂O₃ – 1,26; Er₂O₅ – 0,79; Tm₂O₃ – 0,16; Yb₂O₃ – 0,60; ThO₂ – 0,74; ZrO₂ – 10,24; TiO₂ – 1,36; SiO₂ – 40,51; Nb₂O₅ – 1,30; H₂O^{*} – 12,6; сумма 98,81.

* Потеря веса на ТГ-кривой.

Эмпирическая формула (на 18 атомов О): $Na_{4,38}K_{0,58}(Y_{0,69}TR_{0,27}) \times (Zr_{0,74}Ti_{0,15}Nb_{0,09})Si_{6,03}O_{18} \cdot 6,25H_2O.$

В некоторых зернах зафиксировано присутствие окислов La, Pr и Ho – 0,02, 0,06 и 0,09 соответственно.

Диагн. исп. Легко разлагается 10%-ными HCl и HNO₃ [1].

Повед. при нагр. На кривой ДТА фиксируется четкий эндотермический эффект при 245°, обусловленный дегидратацией минерала. Общая потеря веса в интервале 20–1000° составляет 12,6%. Термически обработанные кристаллы становятся непрозрачными и приобретают белую окраску, но частично сохраняют исходную кристаллическую структуру. Зерна, прогретые до 500°, дают дебаеграмму с резко ослабленными диффузными линиями.

Нахожд. Встречен на горе Коашва (Хибинский массив) в пегматитовой жиле в пустотах в зоне, сложенной преимущественно волокнистым эгирином, а также калиевым полевым шпатом, натролитом, щелочным амфиболом, астрофиллитом, ломоносовитом, сфалеритом. Тесно ассоциирует с лабунцовитом. Кристаллизация минерала происходила в позднюю гидротермальную стадию в условиях высок ицелочности [1].

Отл. От других минералов группы отличается по составу, оптическим свойствам и порошкограмме.

		Межнию	скостные рас	стояния	сазыкинанта из	Хибии [1]		
			СиК _α -излу	чение.)	Цифрактометр			
hkl	1	d (Å)	hkl	I	d (Å)	hkl	I	<i>d</i> (Å)
012	32	6,03	042	7	2,248	318	2	1,577
110	63	5,40	132	14	2,175	131	5	1,564
113	2	3,776	321	2	2,134	514	4	1,549
104	4	3,645	232	13	2,077	342	5	1,514
211	3	3,453	410	7	2,046	520	13	1,503
122	84	3,236	404	18	2,018	336	5	1,491
30 0	88	3,127	143	3	1,909	238	2	1,458
024	100	3,030	324	13	1,890	2.1.10	3	1,447
220	19	2,708	502	4	1,825	434	2	1,437
214	8	2,641	330	21	1,805	612	4	1,407
131	3	2,565	422	11	1,730	508	3	1,362
312	9	2,472	054	12	1,696	440	3	1,354
223	4	2,407	152	4	1,648	164	6	1,346
116	5	2,371	244	7	1,618	532	3	1,321
						262	4	1 283

Литература

1 Хомяков А.П., Нечелюстов Г.Н., Расцветаева Р.К. // Зап. ВМО. 1993. Ч. 122, вып. 5. С. 76.

2. Расцветаева Р.К., Хомяков А.П. // Кристаллография. 1992. Т. 37, № 6. С. 1561.

СИЛИКАТЫ С ЦЕПОЧКАМИ ЧЕТЫРЕХЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА АСТРОФИЛЛИТА

ГРУППА АСТРОФИЛЛИТА

Группа включала слюдоподобные титаносиликаты: лампрофиллит, бартолампрофиллит, астрофиллит, куплетскит, цезийкуплетскит, ниобофиллит и уствно – эрикссонит, килхоанит и относилась к силикатам со сдвоенными кремн кислородными тетраэдрами (т. III, вып. 1, с. 638), в структуре которых диортогрупы образуют сложные композиции. В астрофиллите эти группы составляют открыто-разветвленные двухзвенные изолированные цепочки [Si₄O₁₂], допозняющиеся Ті-октаэдрами до образования изолированных слоев Ti₂[Si₄O₁₂]О₂. Дзя Si-Ti-слоя, между которыми находится Mg-октаэдрический сердечник, образуют трехэтажный пакет, аналогичный Si-Mg-пакетам в слюдах [1]. На этом основаных группа астрофиллита, включающая также близкие по структуре куплетскит, цезий-куплетскит и ниобофиллит, отнесена к цепочечным силикатам.

Разработана теория политипии астрофиллита [2, 3]. На настоящий момеобнаружены две из 14 теоретически возможных политипных модификации – моноклинная и триклинная.

	Ги дроастрофиллит							299
	Сингония	<i>a</i> 0	b 0	<i>c</i> 0	α	β	γ	Уд.в.
Магнезиальный астрофиллит [*] (Na, K) ₄ Mg ₂ (Fe ²⁺ , Fe ³⁺ , Mn) ₅ Ti ₂ × ×[Si ₄ O ₁₂] ₂ (O,OH,F) ₇	Монокл.	10,43	23,00	5,35	-	102°	-	
Гидроастрофиллит (H_3O, K, Ca) ₃ (Fe ²⁺ , Mn) ₅₋₆ Ti ₂ [Si ₄ O ₁₂] ₂ × ×(O,OH) ₇	Трикл.	11,86	11,98	5,42	103,42°	95,15	112,20°	3,151
Циркофиллит (K,Na,Ca) ₃ (Mn, Fe^{2+}) ₇ (Zr,Nb) ₂ [Si ₄ O ₁₂] × (O, OH, F) ₇	- 2 ×	-	-	-	-	_	_	3,34

*Описаи (т. III, вып. 1, с. 652) как разновидность астрофиллита (магнезиоастрофиллит)

Циркофиллит – циркониевый аналог астрофиллита; дебаеграмма близка таковой астрофиллита.

Литература

1. Woodrow P.J. // Acta crystallogr. 1967. Vol. 22. P. 643.

2. Звягин Б.Б., Врублевская З.В. // Кристаллография. 1976. Т. 21, № 5. С. 949.

3. Врублевская З.В., Звягин Б.Б. Там же. С. 955.

Гидроастрофиллит Hydroastrophyllite

 $(H_3O, K, Ca)_3(Fe^{2+}, Mn)_{5-6} Ti_2[Si_4O_{12}]_2(O, OH)_7$

Назваи по составу и сходству с астрофиллитом [1]. Ранее это название использовано для продукта гипергенного изменения астрофиллита из щелочных пегматитов Кольского п-ова [2].

Характ. выдел. Агрегат плоских кристаллов.

Структ. и морф. крист. Трикл. с. $a_0 = 11,86, b_0 = 11,98, c_0 = 5,42$ Å; $\alpha = 103,42,$ $\beta = 95,15, \gamma = 112,20^{\circ}; a_0:b_0:c_0 = 0,990:1:0,452.$

Физ. св. [1]. Сп. в двух направлениях Уд.в. 3,151. Цв. темно-бурый.

Микр. [1]. Плеохроизм: по Ng – темно-желтый, по Nm – оранжево-желтый, по Np – ярко-желтый. Ng > Nm > Np. Двуосный (-). ng = 1,728, nm = 1,720, np = 1,660; $n_{o} - n_{n} = 0.068; 2V = 40^{\circ}.$

Хим. [1]. Формула твердо не установлена.

Анализ: Na₂O - 0,53; K₂O - 1,28; CaO -2,40; BaO - 0,32; MgO - 0,51; FeO -0,05; MnO - 0,05; Fe₂O₃ - 24,24; Al₂O₃ - 3,92; MnO₂ - 3,37; SiO₂ - 25,72; TiO₂ -9,63; Nb₂O₅ - 5,01; Ta₂O₅ - 0,82; H₂O⁺ - 6,65; H₂O⁻ - 5,74; F - 1,83; - O = F₂ - 0,77; сумма 99,30.

Эмпирическая формула: (расчет по параметрам элементарной ячейки и уд.в.): $(K_{0.31}Ba_{0.02}(H_3O)_{1.67})_{2.00}(Na_{0.20}Ca_{0.51}(H_3O)_{0.29} Fe_{3.48}^{3+}Fe_{0.01}^{2+}Mn_{1.30}^{4+}Mg_{0.14})_{5.37}(Ti_{1.38}\times$ $\times (Nb_{0.43} Ta_{0.04})_{1.85} (Si_{4.92} Al_{0.88})_{5.80} O_{17.40} OH_{6.60} (O_{2.61} OH_{3.29} F_{1,10})_{7.00}$

Авторы [1] предлагают формулу: (K, Ba, H₃O)₂(Na, Ca, H₃O)(Fe³⁺, Mn⁴⁺, Mn²⁺, Mg)₅(Ti, Nb, Ta)₂(Si, Al)₆(O, OH)₂₄(O, OH, F)₇; М. Флейшер (1990) и А.М. Кларк (Clark, 1993) - (H₃O, K, Ca)₃ (Fe²⁺, Mn)₅₋₆ Ti₂Si ₈(O, OH)₃₁.

Повед. при нагр. [1]. До 400° потеря веса составила 13,5%, в интервале 750-800° - 1,5%. Главный эндотермический пик на кривой нагревания - при 155°.

Нахожд. Описан как вторичный минерал в щелочном пегматите пров. Сычуань, Китай [1].

	межилоскости	ые расстоя	ния гидровст	рофиллита	J RRTHA EN	ł
I	d (Å)	1	d (Å)	1	d (Å)	
9	10,55	2	2,493	3	1,665	
10	3,51	2	2,407	4	1,630	
2	3,266	3	2,312	4	1,592	
1	3,063	1	2,242	1	1,515	
4	2,870	6	2,118	2	1,446	
4	2,781	1	2,057	2	1,418	
8	2,643	6	1,768			
5	2,584	3	1,744			

[1]

Литература

1. Hupei Geologic College // Sci. Geol. Sinica. 1974. Vol. 1. P. 18.

2. Семенов Е.И. // Тр. Минерал. музея АН СССР. 1959. Вып. 9. С. 120.

Циркофиллит Zircophyllite

 $(K, Na, Ca)_3(Mn, Fe^{2+})_7(Zr, Nb)_2[Si_8O_{24}](O, OH, F)_7$

Назван по составу н сходству с астрофиллитом [1].

Характ. выдел. Несовершенные пластинчатые кристаллы до 2 см в длину [1], поликристаллические агрегаты, радиальные срастания.

Структ. и морф. крист. [1]. Трикл. с. Пр. гр. и параметры элементарной ячейки не определены.

В поликристаллических срастаниях наблюдаются многочисленные внутренние углы и различно ориентированная штриховка. Простых форм не обнаружено.

Физ. св. [1]. Сп. весьма совершенная по (001). Хрупкий. Тв. 4-4,5. Уд.в. 3,34 Цв. от темно-коричневого до почти черного. Черта светло-коричневая. Бл. сильный стеклянный до алмазного по плоскостям спайности.

Микр. [1]. Наблюдается сложное двойникование. Плеохроизм интенсивный: по Ng – коричневый, по Nm и Np – темно-желтый. Удлинение (-), параллельно спайности. Двуосный (-). Смена опт. знака астрофиллита (+) на (-) происходит при содержании ZrO₂ от 5,5 до 7,6%. Ng \perp спайности; Nm = a, bNp = 9–11°, ng = 1,747, $n_m = 1,738, n_p = 1,708; n_g - n_p = 0,039. 2V = 62^\circ$. Дисперсия очень сильная, r > v.

Хим. Анализ [1]: Na₂O - 1,55; K₂O - 5,61; CaO - 0,94; MnO - 18,83; FeO - 18,06; $SiO_2 - 32,64$; $TiO_2 - 2,30$; $ZrO_2 - 13,61$; $Nb_2O_5 - 2,30$; $H_2O - 3,20$; F - 1,20; -O = 100= F₂ - 0,49; сумма 99,75 (анал. Казакова).

Спектральным анализом [1] установлены: Hf - до 1,2, Sr, Ba, Y, Pb, Be - сл Методом пламенной фотометрии [2] определены Sr - 0,09, Ba - 0,45.

Эмпирическая формула (при Si = 8) [2]: $(K_{1,70}Na_{0,71}Ca_{0,27})_{2.68}(Fe_{3.87}^{2+}Mn_{3.77})_{7.59}X$ $\times (Zr_{1.58}Ti_{0.40}Nb_{0.27})_{2.25}Si_{8.00}O_{24,00}[(OH)_{5,08}O_{2,72}F_{0.90}]_{8.70}$

Нахожд. [1]. Встречен в Коргередабинском нефелин-сиенитовом массиве (Тува в зональной пегматитовой жиле с центральными зонами альбита и натролита Ассоциирует с натролитом, красным эгирин-авгитом (акмитом), лейкофанитофлюоритом, апатитом и апофиллитом.

Характерен для низкотемпературных гидротермальных цеолитовых жил в щелочных породах, богатых Zr, где собственно астрофиллит редок.

Изм. Устойчив в гипо- и гипергенных условиях.

Отл. От астрофиллита отличается морфологией индивидов, опт. знаком и составом, от ниобофиллита – составом.

Межплоскостные расстояния циркофиллита из Тувы [1]

Си-излучение, Ni-фильтр. Дифрактометр

1	d(Å)	1	d(Å)	1	d (Å)	I	d(Å)
4	9,80	1	2,84	1	2,32	2	1,670
3	3,75	7	2,80	5	2,10	1	1,620
10	3,50	5	2,66	1	2,00	1	1,550
3	3,26	2	2,60	3	1,781	1	1,446
2	3,00	2	2,38	2	1,732	1	1,330

Литература

1. Капустин Ю.Л. // Зап. ВМО. 1972. Т. 101, вып. 4. С. 459.

2. Капустин Ю.Л. // Геохимия. 1982. № 4. С. 533.

СТРУКТУРА ТИПА ХАРАДАИТА

ГРУППА ХАРАДАИТА

Данная группа, включающая харадаит (haradaite^{*}) и условно – иннэлит и иошимураит, была отнесена к диортосиликатам (т. III, вып. 1, с. 675).

	Сингония	<i>a</i> 0	b ₀	<i>c</i> ₀	Уд.в.
Харалант Sr V_2^{4+} [SidO12]O2	Ромб.	7,06	14,64	5,33	3,8
Сузукиит $Ba_2V_2^{4+}[Si_4O_{12}]O_2$	н	7,089	15,261	5,364	4,0

Формула харадаита, SrV[Si₂O₇], приведенная в Справочнике ранее, а также у М. Флейшера и Д. Мандарино (Fleischer, Mandarino, 1995), отражает лишь его химический состав. Структура характеризуется наличием цепочек [Si₄O₁₂]; по Ф. Либау (1988) – сильно изогнутых неразветвленных четырехзвенных цепочек.

Сузукинт Suzukiite Ba₂ V_2^{4+} [Si₄O₁₂]O₂

Назван в честь выдающегося петрографа и минералога Японин проф. Дж. Сузуки [1].

Характ. выдел. [1]. Чешуйки, кристаллы, их скопления.

Структ. и морф. крист. Ромб. с. D_{2h}^{17} -Атат или $C_{2\nu}^{16}$ -Ата2. $a_0 = 7,089$, $b_0 = 15,261, c_0 = 5,364$ Å; $a_0:b_0:c_0 = 0,465:1:0,352; Z = 2$ [1].

Структурная формула дана по аналогии с харадаитом [2], бариевым аналогом которого является сузукиит [1].

Физ. св. [1]. Сп. совершенная по (010), отчетливая по (100) и (001). Тв. 4–4,5 на (010). Уд. в. 4,0 (вычисл. 4,03). Цв. ярко-зеленый. Черта бледно-зеленая. Бл. стеклянный.

Микр. [1]. Плеохроизм отчетливый: по Np – бледно-зеленый, по Nm – светлый, желтовато-зеленый, по Ng – синевато-зеленый. Np < Nm < Ng. Двуосный (–). $a = Np, b = Nm, c = Ng. n_g = 1,748, n_m = 1,739, n_p = 1,730; n_g - n_p = 0,018; 2V = 90°.$ Дисперсия очень сильная, r < v.

Хим. [1]. Теор. состав: BaO – 43,02; VO₂ – 23,27; SiO₂ – 33,71.

Анализ (микрозонд.): SrO – 3,21; BaO – 38,38; VO₂ – 23,56; SiO₂ – 33,59; TiO₂ – 0,20; сумма 98,94.

Эмпирическая формула (на 14 атомов О): (Ba_{1,78}Sr_{0,22})_{2,00}(V⁴⁺_{2,02}Ti_{0,02})_{2,04}Si_{3,97}O₁₄.

Нахожд. Обнаружен в массивной родонит-родохрозитовой руде из марганцевых отложений рудника Могуразава, преф. Гумма (Япония) [1, 3], в виде чешуйчатых агрегатов, приуроченных к участкам кварца и барита, изредка в ассоциации с алабандином и нагасималитом, которые нарастают на чешуйки сузукиита. Другие ассоциирующие минералы – Мп-кальцит, Ва-роскоэлит, борнит, тетраэдрит, дигенит и герсдорфит [1].

Искусств. Есть указание [1] на гидротермальный синтез $Ba_2V_2^{4+}[O_2/Si_4O_{12}]$ из смеси окислов при 500° и 500 бар. Отмечалась также синтетическая фаза ромбического $BaVSi_2O_7$ с параметрами: $a_0 = 6,01$; $b_0 = 10,00$; $c_0 = 9,55$ Å; Z = 4 ($\approx 1300^\circ$ и выше) [4].

Отл. Под микроскопом цвета плеохроизма сходны с таковыми харадаита, нагасималита и роскоэлита, но светлее и с желтоватым оттенком [1].

			Cu-ľ	Ni-нзлуч	ение			
hkl	1	d(Å)	hkl	1	d (Å)	hkl	1	d (Å)
020	100	7,63	0,51	18	2,653	360	3	1,732
111	6	4,13	160	35	2,394	280	10	1,679
040	60	3,818	071	15	2,020	133	5	1.643
031	8	3,696	171	8	1,942	0,91	6	1,617
140	60	3,353	080	6	1,907	191	6	1.576
131	25	3,276	180	8	1,843	0.10.0	16	1.526
211	6	2,902	162	6	1,785	0.12.0	5	1,271

Межилоскостные расстояния сузукнита из Японии [1]

Литература

1. Matsubara S., Kato A., Yui S. // Miner J. Jap. 1982. Vol. 11, N 1. P. 15.

2. Takeuchi Y., Joswig W. // Ibid. 1967. Vol. 5, N 2. P. 98.

3. Matsubara S., Kato A. // Ibid. 1980. Vol. 10, N 3. P. 122.

4. Feltz A., Schmalfuss S., Laugbein H., Tietz M. // Ztschr. anorg. allgem. Chem. 1975. Bd. 417. H. 2. S. 125.

СТРУКТУРА ТИПА ТАЙКАНИТА

	Сингония	<i>a</i> 0	b_0	<i>c</i> ₀	β	Уд.в.
Тайканит BaSr ₂ Mn ₂ ³⁺ [Si ₄ O ₁₂]O ₂	Монокл	7,82	14,60	5,15	92,50°	4,72

Тайканнт Taikanite

$BaSr_2Mn_2^{3+}[Si_4O_{12}]O_2$

Назван по месту находки на северо-западном склоне Тайканского хребта (Дальний Восток) [1].

Характ. выдел. Изометричные или слабо удлиненные зерна (десятые доли мм, редко > 1 мм).

Структ. и морф. крнст. Монокл. с. $C_{2h}^3 - C2/m$. $a_0 = 7,82$, $b_0 = 14,60$, $c_0 = 5,15$ Å; $\beta = 92,50^\circ$; V = 587,43 Å³; $a_0:b_0:c_0 = 0,535:1:3,527$; Z = 2 - для тайканита с Дальнего Востока [1]; $C_2^3 - C2$. $a_0 = 14,600$, $b_0 = 7,759$, $c_0 = 5,142$ Å; $\beta = 93,25^\circ$; Z = 2 - для тайканита из Южной Африки [2]. Фиг. 86. Структура тайканита (по Армбрюстеру н др.)

В структуре [2] одиночные цепочки [Si₄O₁₂], параллельные [010], связаны с зигзагообразными цепочками MnO_6 -октаэдров, параллельными [001]. MnO_6 октаэдры в цепочках соединяются по ребрам и в значительной степени искажены (фиг. 86). Открытые каналы в структуре заполнены атомами Ва и Sr (к.ч. = 8).

Межатомные расстояния (в Å): Si (1)–O = 1,60–1,68; O–Si (1)–O = 103– 118; Si (2)–O = 1,58–1,71; углы: O–Si(2)–O = 99–118; Si(1)–O–Si(2) = = 127–128°; Mn (1)–O = 1,88–2,15; углы: O–Mn (1)–O =84–95°; Mn (2)–O = = 1,87–2,30; углы: O–Mn(2)–O = 80–92°; Ba–O = 2,63–2,98; Sr–O = 2,43–2,75.

Отмечается двойникование [2].

Физ. св. Сп. совершенная по (001). Микротвердость 831–1059 кгс/мм². Уд.в. 4,72 (вычисл. 4,81). Цв. зеленовато-черный, в тонких сколах – темно-изумрудно-зеленый. Бл. стеклянный до жирного. Хрупкий. Изл. раковистый [1].

Микр. Плеохроизм сильный: по Ng и Nm – изумрудно-зеленый, по Np – фиолетовый до черного. Пл. опт. осей

(010). Np = a, Nm = b, cNg = 44°, cNp = 46°, тупой угол β. Двуосный (+). ng = 1,814, nm = 1,792 (вычисл.), np = 1,775; ng - np = 0,039; 2V = 74-80°. Дисперсия сильная, r >υ [1].
Хим. Анализы (микрозонд.):

	1	2		1	2
Na ₂ O	0.18	0,06	MnO*	19,42	_
K ₂ O	-	0,02	Al ₂ O ₃	-	0,08
MgO	0,14	Не обн.	Mn ₂ O ₃ **	-	21,06
CaO	0,46	0,28	Fe ₂ O ₃	_	0,01
SrO	33,78	25,19	SiO ₂	27,17	32,41
BaO	18,43	18,61	Сумма	99,58	99,37
PbO	-	1.65			

*Метод определения валентности не указан.

**Трехвалентное состояние обосновывается тем, что наблюдаемое в структуре искажение Mn³⁺O-октаэдров согласуется с требованнями равновесных валентных связей, определяемых структурной топологней и теоремой Яна-Теллера [2].

1 – Ир-Ними, Дальний Восток (среднее из 3, анал. Тронева) [1]; 2 – месторождение Весселс, ЮАР (среднее из 38) [2].

Эмпирические формулы (на 14 атомов О):

 $1 - (Sr_{2,78}Ca_{0,07}Na_{0,05}Mg_{0,03})_{2,93}Ba_{1,03}Mn_{2,34}^{2+}Si_{3,86}O_{14};$

 $2 - (Sr_{1,82}Ca_{0,04})_{1,86} Ba_{0,92} (Mn_{2,01}^{3+}Fe_{0,01}^{3+})_{2,02} (Si_{4,63}Al_{0,01})_{4,64} O_{14}.$

Нахожд. Впервые обнаружен на марганцевом месторождении Ир-Ними (северозападный склон Тайканского хребта, Дальний Восток [1]) среди нижнекембрийских кремнистых и кремнисто-глинистых сланцев. Находится в ассоциации с браунитом и силикатами Ва, Na и Mn, в тесном парагенезисе с марганцевыми амфиболами. Относится к числу поздних минералов, образованных из гидротермальных щелочных растворов, связанных, возможно, с дифференциацией базальтоидной магмы.

На месторождении Весселс, Калахари (ЮАР) [2], установлен в серандит-пектолитовых прожилках, пересекающих браунитовые руды. Находится в тесной ассоциации с сугилитом, корнитом и эгирином.

		Межилос	костные расстояния та	йкан	ита, Дальнн	ій Восток [1]			
	FeK _α -излучение								
hki	1	d(Å)	hkl	1	d (Å)	hki	1	d (Å)	
110	3	6,950	221	9	2,832	222; 170	1	2,007	
001		5,140	150	2	2,750	400; 350; 26ī	6	1,946	
021; 1TT	1	4,180	240	1	2,666	261; 152 <u>;</u> 420;			
111	1	4,040	002; 310	8	2,569	171; 242	2	1,892	
20 0	1	3,90 0	112;060;151;022	1	2,441	40 [; 35]	1	1,836	
040	3	3,650	241; 31 Ī	1	2,335	080; 242; 401;	1	1,810	
220	4	3,440	330	1	2,305	351; 4 2 I			
13Г	7	3,270	132	1	2,171	4 40; 0 8Γ;			
131; 201	5	3,160	331; 202; 042;	2	2,108	081; 003	4	1,718	
201	3	3,068	22 <u>7</u>						
22Ī	10	2,912	331; 260	1	2,082				

Литература

1. Калинин В.В., Даулеткулов А.Б., Горшков А.И., Тронева Н.В. // Зап. ВМО. 1985. Ч. 114, вып.5. С. 635.

2. Armbruster Th., Oberhansli R., Kunz M. // Amer. Miner. 1993. Vol. 78, N 9/10. P. 1088.

СТРУКТУРА ТИПА ГАГЕИТА

ГРУППА ГАГЕИТА

Ранее гагеит был отнесен к силикатам с одиночными кремнекислородными тетраэдрами, среди которых выделялась структура типа гагеита (т. III, вып. 1, с. 327). Позже [1, 2] в структуре установлены четырехчленные кремнекислородные цепочки и обнаружены моноклинная (2М) и триклинная (1А) модификации гагеита.

	Сингония	a_0	b_0	<i>c</i> 0	α	β	γ
Гагеит-2М (Mn ²⁺ , Mg, Zn) ₂₁ O3×	Монокл.	19,42	19,42	9,84	-	-	89,5°
×[Si ₄ O ₁₂] ₂ (OH) ₂₀							
Гагеит-1А (Mn ²⁺ .Mg,Zn) ₂₁ O ₃ ×	Трикл.	14,17	14.07	9,84	76,5°	76,6°	86,9
×[Si ₄ O ₁₂] ₂ (OH) ₂₀							
Баланджероит	Монокл.	19,163	19,224	9,599	-	-	89,5
$(Mg, Fe^{2+}, Fe^{3+}, Mn^{2+})_{21} \times$							
×[Si ₄ O ₁₂] ₂ O ₃ (OH) ₂₀							
Баланджероит изострук	турен с гаге	итом-21	M [2].				

Литература

1. Ferraris G., Mellini M., Merlino S. // Amer. Miner. 1987. Vol. 72, N 3/4. P. 382. 2, Belluso E., Ferraris G. // Europ. J. Miner. 1991. Vol. 3, N 3. P. 559.

Баланджеронт Balangeroite (Mg, Fe²⁺, Fe³⁺, Mn²⁺)₂₁[Si₄O₁₂]₂ O₃(OH)₂₀

Назван по месту находки в Баланджеро (Пьемонт, Италия) [1].

Характ. выдел. Рыхлые и плотные скопления асбестовидных волокнистых кристаллов длиной в несколько см [1].

Структ. и морф. крист. Монокл. $C_{2h}^4 - P2 / n. a_0 = 19,163, b_0 = 19,224, c_0 = 9,599$ Å; $\gamma = 89,50^\circ; a_0:b_0:c_0 = 0,997:1:0,499$ [2]. Первоначально принятая ромбическая ячейка ($a_0 = 13,85, b_0 = 13,58, c_0 = 9,65$ Å) [1], как показано в [2], является подъячейкой ОД-структуры ($a_m = b_m = 19,40, c_m = 9,65$ Å; $\gamma_m = 88.9^\circ$).

Кристаллическая структура, как в гагеите-2М [3], состоит из октаэдрического каркаса, в каналах которого вдоль [001] проходят кремнекислородные цепочки с четырехкратной периодичностью (фиг. 87) [3]. Каркас составлен из блоков: узких "стенок" (3×1-октаэдр в поперечнике) и "узлов", состоящих из 2×2-октаэдров. Блоки связаны друг с другом и с Si–O-тетраэдрами через вершины; внутри блоков – сочленения по ребрам (см. фиг. 87, б). Все тетраэдрические позиции заняты только атомами Si, октаэдрические в отличие от гагеита – преимущественно Mg. Дополнительные атомы O (вне Si–O-радикала) связаны с катионами октаэдрических "узлов". Число гидроксильных групп может быть меньше указанного в формуле вследствие замещения их на атомы O при увеличении содержания Fe³⁺.

Кристаллические волокна поперечником в 500–5000 Å имеют простые формы (100), (010), (110), (110), что соответствует наиболее развитым октаэдрическим плоскостям в структуре [3].

Фиг. 87. Структура баланджероита н гагеита (по Феррарнсу н др.) *а* – связь между тетраэдрическими цепями н октаэдрическим каркасом вдоль [110]; *б* – проекция обеих структур вдоль [001]

Физ. св. Сп. совершенная по (*hk*0). Хрупкий. Волокна не сгибаются, "деревянистые" [1]. Уд.в. 2,96–3,10 (вычисл. 3,098) [2]. Цв. темно-бурый до светло-бурого. Бл. жирный, стеклянный. Прозрачен в тонких срезах [1].

Для ИК-спектра характерна полоса поглощения при 3500 см⁻¹ [1], отвечающая валентным колебаниям (OH)-групп.

Микр. Плеохроизм сильный: темно-бурый II [001], желто-бурый \perp [001]. Двуосный. $n = 1,680 (\perp [001])$ и по удлинению [1].

Хим. Позиция М в общей формуле $M_{21}[Si_4O_{12}]_2(OH)_{20}$ преимущественно занята Mg^{2+} , а также двухвалентными Fe, Mn, Ca, Zn и частично трехвалентными Fe, Al. Cr, Ti. Следы Na и K связаны с загрязнением проб.

Анализы (микрозонд.):

	1	2
MgO	31,81 (30,35–34,15)	34,34(32,88–38,37)
CaO	0,13 (0-0,16)	0,20 (0,08-1,62)
FeO	16,95 (21,43–27,95)	26,38 (22,75-28,15)
MnO	3,59 (2,93-3,92)	0,79 (0,58-1,79)
Al ₂ O ₃	0,27 (0-1,50)	0,15 (0-0,87)
$Fe_2O_3^*$	8,89 -	Не опр.
Cr ₂ O ₃	0,03 (0-0,13)	0,13 (0-0,69)
SiO ₂	28,37 (24,41–29,36)	28,20 (25,64–29,30)
TiO ₂	0,03 (0-0,05)	0,05 (0-0,08)
H ₂ O**	9,93	Не опр.
Сумма	100,00	90,24

*Общее; по неполному химнческому анализу Fe²⁺/Fe³⁺ = 2,12 [1].

**По разности.

1 – нз Баланджеро [1] (среднее нз 16); 2 – нз массива Ланцо [2] (среднее из 45 по 3 образцам); в скобках – пределы колебаний.

Эмпирическая формула (на 16 атомов Si) [3]:

 $1-(Mg_{26,74}Fe_{7,99}^{2+}Fe_{3,77}^{3+}Mn_{1,71}Al_{0,18}Ca_{0,08}Cr_{0,01}Ti_{0,01})_{40,49}Si_{16}O_{55,81}(OH)_{37,35}.$

Повед. при нагр. [1]. На кривой ДТА наблюдаются эндотермический пик при 620° и экзотермический прогиб при 700°. При 300° происходит сокращение (примерно на 1%) параметров элементарной ячейки, при 650° – структурный распад и при 800° образуется оливин (по данным высокотемпературной рентгеновской дифракции). Кривая ТГА показывает реакцию в интервале 580–750°, соответствующую 6,4% потери массы; в интервале 50–580° теряется 1,6% массы и в интервале 750–1000° – еще 1,4%. Общая потеря массы составляет 9,4%.

Нахожд. Обнаружен в серпентинитах массива Ланцо (долина Ланцо, Пьемонт, Италия); впервые в Баланджеро [1], затем еще в двух участках – в 5 и 15 км от первого места [2].

В Баланджеро наиболее распространен в сланцеватых серпентинитах на контакте с непродуктивной зоной. Приурочен к жилам длинноволокнистого хризотила с магнетитом и самородным Fe-Ni; здесь же встречаются метаморфический оливин, хлорит, Ti-клиногумит, диопсид, антигорит и рудные минералы. Замещается хризотилом (электронно-микроскопические наблюдения) [3]. Жилы образовались на ранних стадиях формирования серпентинитов, на что указывают коррозия хризотила метаморфическим оливином и последующее его замещение антигоритом [1]. Предполагается, что в ходе ретроградного метаморфизма ультраосновных пород баланджероит формировался за счет энстатита по реакции: $21Mg_2Si_2O_6 + 20H_2O = 2Mg_{21}O_3$ (OH)₂₀(Si₄O₁₂)₂ + $12SiO_2 + 8H_2O = 14Mg_3Si_2O_5$ (OH)₄ [2]. Псевдоморфозы баланджероита по ромбическому пироксену часто отмечаются в прозрачных шлифах пород массива Ланцо [1].

В сходной ассоциации (с хризотилом, антигоритом, тремолитом, волокнистыми разностями диопсида, оливина, бруньятеллита и бруситом) установлен в двух других местах массива Ланцо [2]. Здесь также встречаются параллельные сростки баланджероита с хризотилом, возникшие за счет замещения первого вторым.

Отл. От низкосортного хрупкого хризотил-асбеста "метаксита" и "деревянистого" волокнистого феррисепиолита "ксилотила" ("горное дерево") отличается по составу, рентгенограмме и частично по цвету [1].

Межплоскостные расстояния баланджероита из Баланджеро (Италия) [1]

СиК_а-излучение. Дифрактометр

hki	1	d (Å)	hki	I	d(Å)	hkl	I	d (Å)
110	40	9,59	133	5	2,578	443; 170	15	1,927
020	80	6,77	520	30	2,536	270	15	1,863
040	30	3,405	250	40	2,516	703; 180	5	1,688
410	45	3,378	233; 440	5	2,442	073; 553	5	1,656
140	40	3,278	413	25	2,324	106; 016; 380	10	1,595
003	35	3,198	610	10	2,274	803; 480	5	1,523
240	30	3,030	423	5	2,243	473; 183	15	1,494
050; 510	100	2,714	450	20	2,138	236	5	1,475
223; 150	75	2,674	503	25	2,123	146; 833; 663	5	1,443
033	5	2,613	360; 523	10	2,023	526; 256; 763	5	1,358

Литература

1. Compagnoni R., Ferraris G., Fiora L. // Amer. Miner. 1983. Vol. 68, N 1/2. P. 214.

2. Belluso E., Ferraris G. // Europ. J. Miner. 1991. Vol. 3, N 3. P. 559.

3. Ferraris G., Mellini M., Merlino S. // Amer. Miner. 1987. Vol. 72, N 3/4. P. 382.

СТРУКТУРА ТИПА ОМИЛИТА

	Сингония	<i>a</i> ₀	<i>b</i> 0	с ₀	β	Уд.в.
Омилит Sr ₃ (Ti,Fe ³⁺)×	Монокл.	10,979	7,799	7,818	100° 54 ′	3,38
×[Si ₄ O ₁₂](O,OH) ·(2–3)H ₂ O						

Омилит Ohmilite

 $Sr_3(Ti, Fe^{3+})[Si_4O_{12}](O, OH) \cdot (2-3) H_2O$

Назван по месту находкн [1].

Характ. выдел. Мелкие кристаллы (обычно 5×10 мкм, иногда до 0,2 мм в длину), волокнистые агрегаты, сферолиты [1, 2].

Структ. и морф. крист. Монокл. с. $C_{2h}^2 - P 2_1/m$. $a_0 = 10,958$, $b_0 = 7,778$, $c_0 = 7,799$ Å; $\beta = 100^{\circ}54'$ [2]; $a_0 = 10,979$, $b_0 = 7,799$, $c_0 = 7,818$ Å; $\beta = 100^{\circ}54'$; V = 657,4 Å³; Z = 2 [3].

В структуре [2, 3] кремнекислородные тетраэдры связаны в цепочки $[Si_2O_6]_{\infty}$, сходные с таковыми в батисите и харадаите. Цепочки вытянуты вдоль оси *b* и попарно связаны Ti-октаэдрами в бруски состава $[Si_4O_{12}(Ti_2O_2)Si_4O_{12}]$, которые, в свою очередь, объединены атомами Sr. Молекулы H₂O располагаются в каналах между Ti-Si-брусками и полиэдрами Sr (фиг. 88). Мостиковые связи Si–O в цепочках

Фнг. 88. Структура омнлита в проекции вдоль осн b (по Мизоте н др.)

имеют длину 1,643 Å, немостиковые – 1,606 Å. Среднее расстояние Ti–O = 1,992 Å близко к стандартному. Атомы Sr располагаются в трех симметрично независимых позициях в девяти- и восьмивершинниках, образованных атомами кислорода Ti-Siбрусков и молекулами H₂O. Девятивершинники связывают Ti-Si-бруски вдоль оси *с* (среднее Sr–O = 2,675 Å), восьмивершинники – вдоль оси *a* (среднее Sr–O = = 2,586 Å). Молекулы H₂O занимают три независимые позиции. H₂O(1) и H₂O(2) участвуют в водородных связях: H₂O (1)–O = 2,698, H₂O(2)–O = 2,83; углы O–H₂O–O соответственно 106,3 и 108,1°. H₂O(3) слабо связана в структуре, часть соответствующих позиций вакантна [2].

Кристаллы игольчатые и тонкоигольчатые (до волокнистых), вытянутые вдоль оси b [1]. Отмечался кристалл размером $0.6 \times 0.1 \times 0.04$ мм – оригинал структурного исследования [3].

Физ. св. [1]. Сп. совершенная по (100). Тв. ~ 3,5. Уд.в. 3,38 (вычисл. 3,394). Цв. светло-розовый до розовато-коричневого. Черта белая.

В ИК-спектре [3] имеются полосы 575, 636, 678 и 746 см⁻¹, характерные для силикатов с четырехчленными цепочками тетраэдров SiO₄, а также полосы 1571, 1725 см⁻¹ и в области 3000 см⁻¹ обусловленные наличием сильных водородных связей.

Микр. [1]. Плеохроизм слабый, от бесцветного до светло-розового. Двуосный (опт.знак и ориентировка не определены). Ng = b, Np = a. $n_g = 1,715$, $n_p = 1,649$. Заметно волокнистое или перистое сложение с волнистым агрегатным погасанием.

Хим. Теор. состав $Sr_3TiO[Si_2O_6]_2 \cdot 2,5H_2O$: SrO – 46,67; TiO₂ – 10,49; SiO₂ – 36,08; H₂O – 6,76. Ti⁴⁺ частично замещается атомами Fe³⁺.

Анализ (микрозонд.): SrO – 47,37; Fe₂O₃ – 0,20; Ti₂O₃ – 10,27; SiO₂ – 34,79; H₂O⁺ – 6,68^{*}; H₂O⁻ – 0,00^{**}; сумма 99,31 [1].

*Потеря веса выше 110°.

**Потеря веса при 110°.

Повед. при нагр. Дегидратируется в широком температурном интервале (250-600°) [3].

Нахожд. [1]. Встречен в районе Оми, преф. Ниигата (Япония), в магнезиорибекит-кварц-флогопит-альбитовых дайках, секущих серпентиниты. В виде тонковолокнистых агрегатов выполняет промежутки между кристаллами альбита в ассоциации с бенитоитом, лейкосфенитом, нанекевеитом (=бариоортоджоакиниту).

Межплоскостные расстояния омилита из района Оми, преф. Нингата (Япония) [1]
СиКа-излучение, Ni-фильтр. Дифрактометр

hkl	1	d (Å)	hkl	I	<i>d</i> (Å)	hkl	I	d (Å)
100	70	10,83	112	17	3,125	322	5 ш	2,326
001	8	7,68	221	80	3,037	231	2 ш	2,284
101	30	6,91	302	2	2,912	313	34	2,204
200	77	5,39	202	34	2,875	123	2	2,158
ī11	14	5,17	311	54	2,831	023	11	2,138
201	27	4,87	221	8	2,812	330	42	2,105
111	100	4,62	122	57	2,730	213	42	2,087
002	90	3,83	212	5	2,698	502	11	2,046
211	22	3,596	103	90	2,600	402	42	2,031
301	14	3,523	122	40 ш	2,560	412	14	1,965
021	42	3,471	203	25	2,502	040	8	1,947
102	40	3,409	113	8	2,466	204	37	1,925
310	85	3,264	401; 302	42	2,406	_	8	1,889
220	37	3,152	321	28	2,388	-	11	1,862

Литература

1. Komatsu M., Chihara K., Mizota T. // Miner J. Jap. 1973. Vol. 7, N 3. P. 298.

2. Mizota T., Komatsu M., Chihara K. // Ibid. P. 302.

3. Mizota T., Komatsu M., Chihara K. // Amer. Miner. 1983. Vol. 68, N 7/8. P. 811.

СИЛИКАТЫ С ЦЕПОЧКАМИ ПЯТИЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА РОДОНИТА

ГРУППА РОДОНИТА

В группе описаны (т. Ш, вып. 2, с. 533): родонит, бабингтонит, намбулит и марстурит.

	Сингония	<i>a</i> 0	b 0	<i>c</i> 0	α	β	γ	Уд.в.
Натронамбулит (Na, Li) × ×(Mp, Ca) (Si-O., (OH))	Трикл.	7,620	11,762	6,737	92,81°	94,55°	106,87°	3,51
Λ (VIII, Ca)4[350]4(OII)] Литиомарстурит LiCaoMno[SicO.4(OH)]	"	7,652	12,119	6,805	85,41	94,42	111,51	3,32
Сантаклараит	-	10,273	11,910	12,001	105,77	110,64	87,13	3,31
2+								

CaMn₄²⁺[Si₅O₁₄(OH)](OH) ·

· H₂O

Отнесены к группе родонита на основании структурных данных.

Натронамбулнт Natronambulite (Na, Li)(Mn, Ca)₄[Si₅O₁₄(OH)]

Назван по аналогии с намбулитом и высокому содержанию Na [1]. Образует изоморфный ряд с намбулитом (Li, Na)Mn₄[Si₅O₁₄](OH) при одновременном замещении Li на Na и Mn на Ca.

Характ. выдел. Крупнозернистые агрегаты (зерна до 7 мм).

Структ. и морф. крист. Трикл. с. C_1^1 -P1 или C_i^1 -P1. $a_0 = 7,620, b_0 = 11,762, c_0 = 6,737$ Å; $\alpha = 92,81, \beta = 94,55, \gamma = 106,87^\circ; a_0 : b_0 : c_0 = 0,6478 : 1 : 0,5727; Z = 2.$ Изоструктурен с намбулитом.

Физ. св. Сп. совершенная по (100) и (001). Тв. 5,5-6. Уд. в. 3,51 (вычисл. 3,50). Цв. розовато-оранжевый. Черта почти белая со слабым оранжевым оттенком. Бл. стеклянный. Прозрачен.

Микр. Бледно-желтый. Цвуосный (+); $n_g = 1,730$, $n_m = 1,710$, $n_p = 1,706$; $n_g - n_p = 0,024$; 2V около 45°. Дисперсия слабая, r > v.

Хим. Анализы (2-микрозонд.):

	1	2	3		1	2	3
Li ₂ O	0,43	0,44*	0,98	SiO ₂	50,39	49,20	48,97
Na ₂ O	3,55	4,14	3,12	TiO ₂	0,03	_	_
MgO	1,24	1,11	2,16	H₂O⁺	1,46	1,48*	1,50
CaO	3,66	3,42	2,87	H₂O⁻	0,54	_	0,20
MnO	38,94	39,46	40,30	Сумма	100,55	99,36	100,25
FeO	0,31	0,11	0,15				

* Рассчитаны на основе (Na + Li) = 1 и H = 1.

1, 2 – из месторождения Танохата (Япония) [1]; 3 – в оригинале назван намбулитом, из Комбат (Намибия, Юго-Западная Африка) [2].

Эмпирические формулы (на 15 атомов О):

 $1 - (Na_{0,69}Li_{0,17})_{0,86}(Mn_{3,32}Ca_{0,39}Mg_{0,19}Fe_{0,03})_{3,93}[Si_{5,07}O_{14,02}](OH)_{0,98};$

 $2-(Na_{0,82}Li_{0,18})_{1,00}(Mn_{3,41}Ca_{0,37}Mg_{0,17}Fe_{0,01})_{3,96}[Si_{5,02}O_{14,00}](OH)_{1,00};$

 $3-(Na_{0,61}Li_{0,40})_{1,01}(Mn_{3,45}Mg_{0,33}Ca_{0,31}Fe_{0,01})_{4,10}[Si_{4,95}O_{13,99}](OH)_{1,01}.$

Нахожд. Обнаружен в отвалах термально-метаморфизованных руд Мп-месторождения Танохата, преф. Ивате, Япония. Встречается в виде зернистых агрегатов, имеющих полосчатую текстуру вследствие разного размера слагающих их зерен. Находится в ассоциации с Мп-эгирином, Мп-арфведсонитом, кварцем, родонитом, альбитом, микроклином и серандитом [1]. В месторождении Комбат (Намибия, Юго-Западная Африка) натронамбулит (в оригинале намбулит) находится в ассоциации с гипсом, реже с баритом и кальцитом [2].

Межплоскостные расстояння натронамбулята из месторождения Таиохята (Япоиня) [1]

Си-Ni-излучение. Дифрактометр

hkl	1	d(Å)	hkl	1	d(Å)	1	d(Å)
T 10	47	7,13	112; 220	15	2,709	6	1,859
001	44	6,70	212; 221	15	2,618	4	1,823
ī20; ī01	1	5,21	222; 320	38	2,506	2	1,777
111	7	4,77	311	1	2,435	5	1,763
021; 121; 121	1	4,15	321	1	2,402	1	1.740
120	2	3,94	222; 330	15	2,373	2	1,697
210	2	3,80	142; 231; 050; 042	1	2,245	2	1,686
220; 121	100	3,559	310	1	2,230	20	1,673
131:002:201	40	3,348	0T1	6	2,221	4	1,637
012	1	3,280				1	1,594

hkl	I	d (Å)	hkl	I	d(Å)	1	d(Å)
10 2; 031	20	3,164	301; 103	23	2,198	10	1,585
221	45	3,078	T 13	3	2,169	3	1,545
112	2	3,007	322	2	2,081	2	1,532
022; 112	34	2,972	213; 203	4	1,995	4	1,515
140; 102	5	2,917		3	1,931	1	1,483
122; 122	1	2,829		2	1,889	3	1,478
022	1	2,778		2	1,879	15	1,423

Литература

1. Matsubara S., Kato A., Tiba T. // Mineral, J. Jap. 1985. Vol. 12, N 7. P. 332.

2. Knorring O., Sahama Th.G., Törnroos R. // Neues Jb. Miner. Monatsh. 1978. H. 8. S. 346.

Литиомарстурит Lithiomarsturite LiCa₂Mn₂[Si₅O₁₄(OH)]

Назван по близости состава к марстуриту [1].

Характ. выдел. Кристаллы (1-3 мм), неправильные агрегаты, друзы.

Структ. и морф. крист. Трикл. с. $C_i^1 - P\overline{1}$. $a_0 = 7,652$, $b_0 = 12,119$, $c_0 = 6,805$; $\alpha = 85,41$, $\beta = 94,42$, $\gamma = 111,51^\circ$; $a_0 : b_0 : c_0 = 0,631 : 1 : 0,562$; Z = 2 [1].

В структуре [1] цепочки из пяти соединенных вершинами [SiO₄]-тетраэдров соединены лентами [Mn²⁺O₆]-октаэдров и Са-полиэдров. Атомы Са занимают позицию M(4) и частично M(2), атомы Mn – M(1), M(3), частично M(2), Li находится в позиции M(5) между октаэдрическими лентами. Аналогично распределение атомов по позициям (с учетом замещения Li \rightarrow Na) в намбулите, натронамбулите и марстурите, с которыми литиомарстурит изоструктурен [2–4]. Синтетические структурные аналоги: литиогидрородонит – LiMn₄[Si₅O₁₄(OH)] и литиевый марстурит – LiMn₃Ca[Si₅O₁₄(OH)] [5].

Кристаллы изометричные до псевдопризматических.

Физ. св. Сп. по (100) и (001) хорошая. Тв. около 6. Уд. в. 3,32 (вычисл. 3,27). Цв. от светло-розовато-бурого до светло-желтого. Бл. стеклянный на свежем сколе. Хрупок. Не люминесцирует в ультрафиолетовых лучах.

Микр. $Np \approx b$, $Nm \approx a$, $Ng \approx c$. Двуосный (-). $n_g = 1,666$, $n_m = 1,660$, $n_p = 1,645$ (Na-свет). $2V = 59,98^{\circ}$ (вычисл. 64°). Дисперсия средняя, r > v.

Хим. Teop. состав LiCa₂Mn₂[Si₅O₁₄(OH)]: Li₂O – 2,38; CaO – 17,85; MnO – 22,58; SiO₂ – 55,76; H₂O – 1,43.

Fe²⁺ и небольшое количество Mg замещают Mn.

Анализ (микрозонд.) [1]: Li₂O – 2,6; MgO – 0,7; CaO – 19,1; MnO – 16,4; FeO – 6,9; SiO₂ – 51,6; H₂O (вычисл.) – 1,55; сумма 98,9.

Эмпирическая формула (на 5 Si и 15 атомов О): Li_{1,01}Ca_{1,98}Mn_{1,35}Fe_{0,56}× × Mg_{0,10}H_{1,00}Si_{5,00}O₁₅.

Нахожд. Встречен на месторождении Фут в горах Кингс, шт. Северная Каролина (США), в небольших пустотках в пегматите, сложенном кристаллами микроклина и зернистым кварцем. Ассоциирует с тетравикманитом, бреннокитом и парсеттенситом [1].

Искусств. Среди синтетических Li-пироксенов, полученных Ито [5], особенно близка к литиомарстуриту фаза LiMn₃CaSi₅O₁₄(OH).

Отл. От марстурита отличается отсутствием в составе Na, меньшим количеством Mn, хорошей спайностью и оптическими свойствами.

			u j				
hkl	I	d(Å)	hkl	1	d(Å)	1	d(Å)
100	10	7,05	131	10	2,659	5	1,776
001	20	6,79	241	20	2,635	2	1,752
110	2	5,25	122	2	2,539	20	1,710
111	2	4,47	202	5	2,510	2	1,692
111	2	4,16	132	10	2,475	5	1,681
210	2	3,79	232	2	2,451	10	1,609
131	10ш	3,55	340	20	2,262	10	1,596
211	5	3,39	131	50	2,220	2	1,573
121	5	3,31		5	2,102	2	1,556
211	90	3,19		10	2,089	2	1,542
221	50	3,08		2щ	2,012	5	1,515
231	100	3,01		2щ	1,943	5	1,492
130	90	2,913		5ш	1,894	10	1,446
112	20	2,811		5щ	1,833	20	1,428
240	60	2,744		2	1,805	5	1,394
131	2	2.710					

Межплоскостные расстояння литиомарстурита из Северной Каролины [1] FeK--излучение. D = 114.6 мм

Литература

1. Peacor D.R., Dunn P.J., White J.S., Jr., Grice J.D., Chi P H. // Amer. Miner. 1990. Vol. 75, N 3/4. P. 409.

2. Peacor D.R., Dunn P.J., Sturman B.D. // Ibid. 1978. Vol. 63, N 11/12. P. 1187.

3. Yoshii M., Aoki Y.T., Maeda K. // Miner, J. Jap. 1972. Vol. 7, N 1. P. 29. 4. Matsubara S., Kato A., Tiba T. // Ibid. 1985. Vol. 12, N 7. P. 332.

4. Maisubara S., Kalo A., 100 1. 11 Iola. 1765. Vol. 12, N 7. F

5. Ito J.// Ibid. 1972. Vol. 7, N 4. P. 359.

Саитаклараит Santaclaraite

$CaMn_4^{2+}[Si_5O_{14}(OH)](OH) \cdot H_2O$

Назван по месту находки в округе Санта-Клара, шт. Калифорния (США) [1, 2].

Первоначально кратко описан в 1978 г. [3] как новый пироксеионд, близкий родониту, намбулиту и марстуриту.

Характ. выдел. Радиально-пластинчатые агрегаты кристаллов, сферолиты (диаметром около 1 мм).

Структ. и морф. крист. Трикл. с. $C_i^1 - \vec{I1}$. $a_0 = 10,273$, $b_0 = 11,910$, $c_0 = 12,001$ Å; $\alpha = 105,77$, $\beta = 110,64$, $\gamma = 87,13^\circ$; $a_0 : b_0 : c_0 = 0,862 : 1 : 1,008$; V = 1317,0 Å; Z = 4 [2].

Выделены [2] также ячейки B1 и P1 с соответствующими параметрами:

	<i>a</i> ₀ (Å)	b_0	c_0	α	β	γ	V	Ζ
вī	15,633	7,603	12,003	109 ,7 1°	88,61°	99,95°	1322,03	4
P1	9,738	9,970	7,603	109,77	93,95	104,97	661,01	2
Ma7	грица тра 1 1	нсляции Г	ячейки	<i>В</i> 1 в <i>П</i>	[121/12	1/001],	ячейки <i>В</i> Т	в Р

 $\left[-\frac{1}{2}0\frac{1}{2}/\frac{1}{2}0\frac{1}{2}/010\right].$

Структура состоит из чередующихся тетраэдрических и октаэдрических слоев, вытянутых в направлении оси *с* (фиг. 89) [1]. Тетраэдрический слой представлен цепочками SiO₄-тетраэдров с периодом повторяемости в пять тетраэдров. Октаэдрический слой включает ряд из десяти Са- и Мп-октаэдров, образующий со смежными октаэдрическими рядами ленты шириной в два или три октаэдра. Тетраэд-

Фиг. 89. Структура сантаклараита в проекции на плоскость bc (по Оаши и Фингеру) Позиции атомов кислорода: A, C – в тетраэдрах, B – в OH-группах, D – в H₂O

рическая цепочка и октаэдрическая лента подобны таковым родонита. Отличие состоит в том, что две соседние тетраэдрические цепочки в сантаклараите смещены на 1/2с, а октаэдрические ленты повернуты на пол-оборота по отношению к соседним тетраэдрическим слоям. Эта особенность связана с тем, что атомы Н играют троякую роль в структуре: H(1) участвует в образовании H-связи в Si-O-радикале, H(2) входит в OH-группу, связанную с M(1)-октаэдром, H(3) и H(4) – в молекулы H₂O.

Три октаэдрические позиции M(1), M(2) и M(3) заняты только атомами Mn; атомы Ca расположены в M(5). Позиция M(4) занята на 0,91 Mn и 0,09 Ca. Полиэдры M(1), M(2) и M(3) – слегка искаженные октаэдры; средние межатомные расстояния M–O = 2,204, 2,199 и 2,205 соответственно. Октаэдр M(4) искажен сильнее: M–O = 2,062–2,349. Октаэдр M(5) является семикоординационным полиэдром, Ca(7)–O = 2,599. Средние межатомные расстояния (в Å): Si–O в пяти независимых тетраэдрах: 1,618, 1,623, 1,624, 1,650, 1,630.

Кристаллы тонкопризматические до почти волокнистых по [001]. Главные формы: *a*(100), *b*(010), *m*(110), *f*(101), *g*(301), *h*(401). Двойники по (100) [2].

Физ. св. Сп. по (110) хорошая. Тв. 6,5. Уд. в. 3,31 (вычисл. 3,398). Цв. светлорозовый до красновато-оранжевого. Прозрачный. Бл. стеклянный. Черта светлорозовая. Не люминесцирует [2].

Микр. Плеохроизм слабый: по Ng – светло-красновато-коричневый, по Nm – светло-красный, по Np – еще более светло-красный. Ng > Nm > Np. $cNg = 2^{\circ}$, $bNm = 21^{\circ}$ – на (100); $cNg = 16^{\circ}$, $aNm = 14,5^{\circ}$ – на (010). Двуосный (–). $n_g = 1,708$, $n_m = 1,696$, $n_p = 1,681$ (Na-свет). $2V = 83^{\circ}$. Дисперсия средняя, r > v [2].

Хим. По составу – гидратированный родонит.

Анализ (микрозонд.) [2]: Na₂O – 0,12; MgO – 0,31; CaO – 7,24; MnO – 41,26; FeO – 0,09; NiO – 0,06; CoO – 0,06; Al₂O₃ – 0,12; SiO₂ – 44,74; H₂O – 5,28; сумма 99,28 (H₂O определена микрокалориметрически).

Эмпирическая формула (на 17 атомов О): $(Ca_{0,87}Na_{0,03})(Mn_{3,94}^{2+}Mg_{0,05}Fe_{0,01}^{2+}Ni_{0,01}\times Co_{0,01})[(Si_{5,04}Al_{0,02})O_{14,03}(OH)_{0,97}](OH) \cdot H_2O.$

Диагн. исп. Нерастворим или очень слабо растворим в горячих конц. кислотах. В закр. тр. выделяет воду и становится светло-бурым. При сильном нагревании (около 1000°) становится белым и почти непрозрачным [2].

Повед. при нагр. Дегидратируется постепенно до 550°. На кривой нагревания (на воздухе) отмечена одна эндотермическая реакция при 550° – превращение в Мп-бустамит.

Нахожд. Известен [2] в породах Францисканской формации на территории округов Санта-Клара и Станислаус, шт. Калифорния (США). В округе Санта-Клара встречается в кремнистых сланцах в виде неправильных скоплений (до 1 см в поперечнике) и тонких секущих прожилков волокнистого сложения (длиной до 9 см и мощностью до 9 см) вместе с фриделитом, Мп-кутногоритом, велинитом, гагеитом, родохрозитом, браунитом, а также с кальцитом, баритом и редкими халькопиритом, гармотомом, самородной медью. В округе Станислаус найден в кремнистом сланце и в жильном кварце в виде розовых призматических кристаллов (до 3 мм длиной) вместе с родохрозитом, фриделитоподобным минералом, браунитом, халькопиритом.

Литература

^{1.} Ohashi Y., Finger L.W. // Amer. Miner. 1981. Vol. 66, N 1/2. P. 154.

^{2.} Erd R.C., Ohashi Y. // Ibid. 1984. Vol. 69, N 1/2. P. 200.

^{3.} Ohashi Y., Erd R.C. // Geol. Soc. Amer. Abstr. Progr. 1978. Vol. 10. P. 465.

СТРУКТУРА ТИПА КЬЯВЕННИТА

	Сингония	a_0	b_0	c_0	Уд. в.
Кьявеннит	Ромб.	8,729	31,326	4,903	2,64
CaMpBea[SizOur(OH)a] · 2HaO					

 $aMnBe_2[Si_5O_{13}(OH)_2] \cdot 2H_2C$

Кьявеннит Chiavennite

 $CaMnBe_2[Si_5O_{13}(OH)_2] \cdot 2H_2O$

Назван по месту находки вблизи г. Кьявенна (Италия) [1].

Характ. выдел. Кристаллы (от долей микрометров до 0,4 мм) и их агрегаты – корочки, сферолиты (2 мм) [1, 2].

Структ. и морф. крист. Ромб. с. $C_{2\nu}^5$ -*Pca*2₁. *Z* = 4 [1]. *V* = 1340,69 [1], 1330,12 [2], 1327.90 Å³ [3].

b_0	<i>c</i> ₀	$a_0: b_0: c_0$	Местонахождение	Ссылка
31,326	4,903	0,2786 : 1 : 0,1565	Кьявениа, Италия	[1]
31,34	4,787	0,2828 : 1 : 0,1527	Ланганген, Норвегия	[2]
31,229	4,775	0,2851 : 1 : 0,1529	О-в Уте, Швеция	[3]
	<i>b</i> ₀ 31,326 31,34 31,229	b_0 c_0 31,3264,90331,344,78731,2294,775	b_0 c_0 $a_0: b_0: c_0$ 31,3264,9030,2786: 1:0,156531,344,7870,2828: 1:0,152731,2294,7750,2851: 1:0,1529	b ₀ c ₀ a ₀ : b ₀ : c ₀ Местонахождение 31,326 4,903 0,2786: 1: 0,1565 Кьявениа, Италия 31,34 4,787 0,2828: 1: 0,1527 Ланганген, Норвегия 31,229 4,775 0,2851: 1: 0,1529 О-в Утё, Швеция

Основу структуры [4] составляют зигзагообразные цепочки из пяти Si-тетраэдров, соединенные посредством Ве-тетраэдров в трехмерный каркас. Для атомов Са к.ч. = 8. Для Mn к.ч. = 6. Каркас содержит каналы (размером 3,9 × 4,3 Å) вдоль [001].

Кристаллы из Норвегии [2] клиновидные, уплощенные по (010) и вытянутые вдоль (100), с гранями (010) и (161), из Италии [1] - плоские, псевдогексагонального облика.

Физ. св. Сп. по (100), (010) и (001) совершенная [2]. Тв. около З. Уд. в. 2,64 (Италия) и 2,56 (Норвегия) (вычисл. 2,65). Цв. у итальянского образца светлооранжево-желтый, у норвежского красновато-оранжевый. Кристаллы часто имеют зональную окраску. Черта белая [1], светло-охристая [2]. Бл. стеклянный до перламутрового. Просвечивающий. В ультрафиолетовых лучах не флюоресцирует.

ИК-спектр сходен с таковым бавенита, хотя более сложный в деталях. Характеризуется полосами [1]: 3500-3400 и 1640 см⁻¹ (валентные и деформационные колебания молекул H₂O), 3590 см⁻¹ (валентные колебания групп OH), 2360 и 2330 см⁻¹ (наличие CO₂). Отнесение [1] полос в диапазоне 2300-2900 см⁻¹ к группам ОН вызывает сомнение: появление их обусловлено, скорее всего, загрязнением препарата при подготовке к анализу.

Микр. Плеохроизм: по Ng - желто-оранжевый, по Np - бесцветный до светложелтого. В краевых частях некоторых зерен наблюдаются четкие зоны темнооранжевого цвета, что предположительно связывается с изоморфной примесью Fe (Италия) [1]. В образцах из Норвегии плеохроизм слабый, в светлых желтоватокоричневых тонах [2]. Ng > Np. Двуосный (+). Пл. опт. осей (010). Ng = c, Nm = b, Np = a [1, 2].

ng	n _p	2V	Местонахождение	Ссылка
1,600	1,581	Не опр.	Кьявенна	[1]
1,613	1,594	50° (вычисл.)	Ланганген	[2]

Хим. Анализы (1 и 3 – микрозонд., среднее из 4 и 12 соответственно):

	1	2	3		1	2	3
Na ₂ O	0,3	0,68	0,39	SiO ₂	52,5	50.0	53.99
K ₂ O	Не опр.	0,04	0,02	H ₂ O	11,3	10,4	10,202*
MgO	•	0,14	0,07	CO2	Не опр.	0,83	Не опр.
CaO	10,2	9,69	10,81	F		0,21	
MnO	12,9	10,6	10,44	Сумма	100,1	100.08	101.45
FeO	Не обн.	2,01	2,38*	$-0 = F_2$	_	0.09	_
BeO	9,3	8,72	8,95	Сумма	100,1	100,08	101,45 ^{3*}
Al ₂ O ₃	3.6	6,76	3.17	-			•

* Fe₂O₃.

^{2*} Расчетная.

^{3*} В том числе В₂О₃ – 1,03.

1 – из комплекса Кьявенна (Италия), Ве определен спектрографическим методом, H₂O – по ТГА [1]; 2 – из Лангангена (Норвегия), анал. Дин [2]; 3 – из пегматитов Утё (Швеция), В и Ве определены иа ионном микрозонде [3].

Эмпирические формулы (на 9 катионов):

 $1 - (Ca_{0,97}Na_{0,05})_{1,02}Mn_{0,97}(Be_{1,98}Al_{0,03})_{2,01}(Si_{4,65}Al_{0,35})_{5,00}O_{12,63}(OH)_{2,37} \cdot 2.16H_2O;$

 $2 - (Ca_{0,92}Na_{0,12})_{1,04}(Mn_{0.80}Fe_{0,15}Mg_{0,02})_{0,97}(Be_{1.86}Al_{0,14})_{2,0}(Si_{4,43}Al_{0.57})_{5,00}O_{12,45}(OH)_{2,49}F_{0,05}$

· 1,83H₂O (не учтена CO₂).

Si и Ве предположительно могут замещаться алюминием с компенсационным замещением О на ОН по следующим схемам: $(Si_{5-x}Al_x)O_{13-x}(OH)_{2+x}$ и $(Ca_{1-y}Na_y) \times (Be_{1-y}Al_y)$ [2]. Предполагается также изоморфизм B³⁺ + Al³⁺ \rightleftharpoons Be²⁺ + Si⁴⁺ [3].

Количественным спектрографическим анализом в другом (не анализировавшемся) образце из Кьявенны установлено FeO = 1,8, на основании чего предполагается замещение Mn железом [1].

Повед. при нагр. При нагревании фиксируется двухступенчатая потеря веса: постепенная до 575° (7,5%) у норвежского образца [2], до 640–650° (6,75%) у итальянского [1] и резкая при 950 и 1000° соответственно. Первая отвечает выделению H₂O, вторая – OH-групп. Общая потеря составляет 12,5 и 11,3%.

Диагн. исп. Не растворяется в конц. HCl, HNO₃ и H₂SO₄ [1].

Нахожд. Позднегидротермальный. Открыт одновременно в Италии [1] и Норвегии [2], позже в Швеции [3]. В Италии в альбит-кварц-микроклиновых пегматитах, секущих ультраосновные породы комплекса Кьявенна в Ретийских Альпах, слагает краевые части псевдоморфоз по бериллу, внутренние части которых представлены бавенитом.

В Норвегии в сиенитовых пегматитах в ларвикитах в районе Осло наблюдается в виде сферолитов вместе с другими бериллиевыми минералами: тведалитом, эвдидимитом, эпидидимитом, лейкофанитом среди анальцима и натролита.

В Швеции встречен в двух гранитных литиевых пегматитах на о-ве Утё (вблизи Стокгольма) вместе с бавенитом и миларитом в пустотах близ контакта аплитов с боковыми магнетитовыми скарнами и в альбитизироваиных участках в ассоциации с гельвин-генттельвином, миларитом и бавенитом.

Межплоскостные расстояния кьявенинта из Кьявенны (Италия)* [1]

Мп-фильтр, D = 114,6 мм

hkl	1	d(Å)	hkl	I	d(Å)	hkl	1	d(Å)
020	100ш	15,7	0.10.0	10	3,13	142	12	2,270
040	20	7,8	251; 181	100	2,903	0.14.0; 1.12.1	10	2,235
140	20	5,84	091	5	2,846	1.14.0	20	2,171
011	5	4,85	261	5	2,779	2.14.0	20	1,991

hkl	1	d(Å)	h ki	1	d(Å)	hki	1	d(Å)
031	5	4,45	191	5	2,705	3.12.0	30	1,944
041	30	4,15	0.10.1	15	2.645	1.10.2	5	1,884
080	30ш	3.93	360; 1.10.1	20	2,538	2.14.1	5	1,833
240	30	3,82	032	12	2,394	352; 4.10.0	20	1.796
201	75	3,28	042	10	2,347	0.18.1	5	1,638

Оригинал анализа 1.

Литература

1. Bondi M., Griffin W.L., Mattioli V., Mottana A. // Amer. Miner. 1983. Vol. 68, N 5/6. P. 623.

2. Raade G., Åmli R., Mladeck M.H., Din V.K., Larsen A.O., Åsheim A. // Ibid. P. 628.

3. Langhot J., Holtstam D // Abstr. 16th Gen. Meet. of Intern. Miner. Assoc. Pisa, 1994. P. 232.

4. Larsen A.O., Åsheim A., Raade G., Taft I H. // Amer. Miner. 1992. Vol. 77, N 3/4. P. 438.

СИЛИКАТЫ С ЦЕПОЧКАМИ ШЕСТИЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА ГЕЙДОННЕИТА

ГРУППА ГЕЙДОННЕИТА

Ранее со структурой такого типа был описан лишь гейдоннеит (т. III, вып. 2, с. 556).

	Сингония	a ₀	b_0	<i>c</i> 0	Уд. в.
Джорджчаоит NaKZr[Si₃O₀] · 2H₃O	Ромб.	11,836	12,94 0	6,735	2,70

Изоструктурен с гейдоннеитом Na₂Zr[Si₃O₉] · 2H₂O.

Джорджчаонт Georgechaoite NaKZr[Si₃O₉] · 2H₂O

Назван по имени профессора Джорджа Чао из Карлтонского университета в Оттаве в знак признания его работ по циркониевым силикатам [1].

Синон. Калиевый гейдоннеит – potassian gaidonnayite [2]; К-гейдонент (Семенов, 1991); джорджшаунт (Либау, 1988).

Характ. выдел. Кристаллы (0,25-1 мм) [1].

Структ. и морф. крист. Ромб. с. $C_{2v}^9 - P2_1 nb. a_0 = 11,836, b_0 = 12,940, c_0 = 6,735$ Å; $a_0: b_0: c_0 = 0,915: 1: 0,520; Z = 4.$

В отличие от гейдоннеита Na₂Zr[Si₃O₉] · 2H₂O одна из двух позиций натрия – Na(1) – занята К. Для структуры характерны зигзагообразные цепочки из шестичленных групп SiO₄-тетраэдров, вытянутые вдоль [101] и [101] (фиг. 90) [3]. В каждой цепочке имеются три независимых SiO₄-тетраэдра. Цепочки связаны в каркас почти правильными ZrO₆-октаэдрами и искаженными NaO₄(H₂O)₂- и KO₄(H₂O)₂октаэдрами. Конфигурация последних разная.

Средние межатомные расстояния (в Å): Si(1)-O = 1,624; Si(2)-O = 1,632; Si(3)-O = 1,623; Zr-O = 2,092; Na-O = 2,557; K-O = 2,752; O-H = 0,98-1,02; углы: Si-O-Si = 137,0, 135,5 и 132,6; H-O-H = 108 и 110; O-H-O = 142-164°.

На кристаллах обнаружены грани: a(100), $\overline{a(100)}$, b(010), n(120), s(011), h(101), $\overline{h(101)}$. Обычны двойники прорастания: один индивид повернут относительно другого на 180° вокруг оси [023] [1].

Фиг. 90. Структура джорджчаюита в проекцни вдоль оси с (по Гоузу и Такуру)

Физ. св. Сп. отсутствует. Тв. 3. Уд. в. 2,70 (вычисл. 2,69). Цв. белый, в тонких осколках бесцветный [1]. Бл. перламутровый [4]. Не флюоресцирует в ультрафиолетовых лучах [1].

ИК-спектр близок таковому гейдоннеита, но в области 400–1100 см⁻¹ полосы поглощения более диффузные и менее интенсивные; в области деформационных колебаний H₂O вместо одной полосы появляются две – 1675 и 1645 см⁻¹ [4].

Микр. Np = a, Nm = b, Ng = c. Двуосный (-). $n_g = 1,606$, $n_m = 1,597$, $n_p = 1,578$; $n_g - n_p = 0,028$; $2V = 67^{\circ}$ (вычисл. 68°) [1]. По [4]: $n_g = 1,611$, $n_p = 1,591$.

Хим. Теор. состав: Na₂O - 7,42; K₂O - 11,28; SiO₂ - 43,17; ZrO₂ - 29,51; H₂O - 8,62.

Анализы (микрозонд.):

	1	2	3		1	2	3
Na ₂ O	7,54	6,72	9,4	TıO ₂	0,11	Не обн.	_
K ₂ O	10,75	10,90	6,1	Zr O ₂	29,03	28,09	29,7
SrO	-	0,34	_	HfO ₂	_	1,90	_
BaO	-	0,56	_	H ₂ O	9,24*	Не опр.	10,1*
FeO	0,15	_	_	Сумма	100,00	91,72	100,0**
SiO ₂	43.18	43,21	42,6	•			

* По разности. ** В том числе CaO – 2,1.

1 – из нефелнновых сиенитов Уннд Маунтин, шт. Нью-Мексико (США) [1]; 2 – из карбонатитов Вуориярвн (Кольский п-ов) [4]; 3 – калиевый гейдоннент из сиенитового комплекса Кипава, Квебек (Канада) [2].

Эмпирические формулы (на 9 атомоа О):

 $1 - Na_{1,02}K_{0,96}Zr_{0,99}Ti_{0,01}Fe_{0,01}Si_{3,01}O_9 \cdot 2,14 H_2O;$

 $2 - Na_{0.91}K_{0.97}Sr_{0.01}Ba_{0.02}Zr_{0.96}Hf_{0.04}Si_{3,02}O_9$ (6e3 yueta H₂O);

 $3 - Na_{1,27}K_{0.54}Ca_{0.15}Zr_{1,01}Si_{2.96}O_9$ (6e3 yuera H₂O).

Гейдоннеит из Нарсарсука (Гренландия) [5] имеет состав, близкий к анализу 3 (Na₂O – 9,9, K₂O – 6,1).

Нахожд. Встречен [1] в миароловых пустотах в нефелиновых сиенитах Уинд Маунтин, округ Отеро, шт. Нью-Мексико (США), с микроклином, нефелином, анальцимом, эгирином, хлоритом, катаплеитом и монацитом.

В карбонатитах Вуориярви (Кольский п-ов) обнаружен [4] в виде псевдоморфоз по призматическим кристаллам гейдоннеита. Псевдоморфозы представляют собой агрегаты разноориентированных тонкопластинчатых индивидов джорджчаоита, нередко с включениями барита.

Калиевый гейдоннеит найден в богатых эвдиалитом пегматитовых жилах в регионально метаморфизованном сиенитовом комплексе Кипава, Квебек (Канада), с власовитом и апофиллитом [2].

Отл. От гейдоннеита отличается отсутствием флюоресценции в ультрафиолетовых лучах.

Межплоскостные расстояння джорджчаонта нз Уинд Маунтин, шт. Нью-Мексико (США) [1] СиК_а-излучение. Дифрактометр

hkl	1	d(Å)	hkl	I	d(Å)	hkl	1	d(Å)
020	73	6,46	40 0	14	2,950	060	16	2,151
011	70	5,95	122	19	2,894	160; 023	11	2,119
200; 101	32	5,83	240	2 2	2,829	123; 441	8	2,089
120	52	5,67	031	8	2,656	213	6	2,067
021	6	4,52	241; 132	8	2,604	061; 052	19	2,049
220; 121	16	4,34	312	5	2,576	161	10	2,023
221; 031	14	3,63	232; 051	10	2,417	303	8	1,951
131	14	3,45	332; 511	21	2,201	323	10	1,866
012; 040	16	3,24	113	8	2,164	153; 343	16	1,675
112; 140	100	3.12						

Литература

1. Boggs R.C., Ghose S. // Canad. Miner, 1985. Vol. 23, pt 1. P. 1.

- 2. Roberts A.C., Bonardi M.II Canad. Geol. Surv. Pap. 1981. N 83-1A. P. 480.
- 3. Ghose S., Thakur P. // Canad. Miner. 1985. Vol. 23, pt 1. P. 5.
- 4. Волошин А.В., Субботин В.В., Пахомовский Я.А., Меньшиков Ю.П. // Новые данные о минералах. М.: Наука, 1989. Вып. 36. С. 3.
- 5. Mandarino J.A., Sturman B.D. // Canad. Miner. 1978. Vol. 16, pt 2. P. 195.

СТРУКТУРА ТИПА ЧКАЛОВИТА

	Сингония	a_0	b_0	c_0	Уд. в.
Чкаловит Na ₆ Be ₃ [Si ₆ O ₁₈]	Ромб.	21,129	6,881	21,188	2,66

Чкаловит Chkalovite Na₆Be₃[Si₆O₁₈]

Назван по фамнлии русского летчика В.П. Чкалова [1].

Характ. выдел. Неправильные зерна [1], кристаллы [2, 3], массивные скопления [3–5].

Структ. и морф. крист. Ромб. с. $C_{2\nu}^{19}$ -*Fdd2*. $a_0 = 21,129$, $b_0 = 6,881$, $c_0 = 21,188$ Å; $a_0: b_0: c_0 = 3,071: 1: 3,079$; V = 3080,45 Å³; Z = 24 [6].

В структуре [6] (фиг. 91) атомы Si и Be находятся в почти правильных тетраэд-

Фиг. 91. Структура чкаловита в проекции ас (по Симонову и др.). Цифры - высота вдоль оси у

рах. Si-тетраэдры образуют изолированные зигзагообразные цепочки пироксенового типа с периодичностью [Si₆O₁₈], лежащие в плоскости *ab*. На элементарную ячейку в направлении оси *с* приходятся четыре такие цепочки, которые объединяются посредством изолированных Ве-тетраэдров в трехмерный каркас типа β -кристобалита. Если Ве рассматривать как имитатор Si, как было принято в [7], то чкаловит попадает в подкласс каркасных силикатов.

Средние межатомные расстояния (в Å): в Si-тетраэдрах Si(1)–O = 1,626, O–O = = 2,654, Si(2)–O = 1,630, O–O = 2,659, Si(3)–O = 1,624, O–O = 2,650, Si(4)–O = 1,629, O–O = 2,656; в Ве-тетраэдрах Be(1)–O = 1,636, O–O = 2,670, Be(2)–O = = 1,634, O–O = 2,666 [6].

Изоструктурен синтетическим соединениям: $Na_2Zn[Si_2O_6]$ [8] и $CaNa_2(Zn, Cd) \times$ × $[Si_2O_6]$ [9].

Ромбо-пирамид. кл. *L*₂2*p* [2]. Формы:

	ф (среднее)	р (среднее)		ф (среднее)	р (среднее)
<i>c</i> 001	-	0°00′	q 331	44°45′	76°31′
d 101	89°54′	44 28	1 269	18 30	34 24
p 223	45 02	42 40	s 133	18 21	46 01
r 111	45 00	54 00			

Псевдопирамидальные кристаллы псевдотетрагонального облика. Кристаллы сохраняются очень редко, чаще – их отпечатки [2].

Физ. св. Сп. по (001) хорошая, по (111) менее выраженная [2]. Изл. от неровного до раковистого. Тв. 6. Микротвердость 764–849 (средняя 804) кгс/мм² [10], 784–800 (средняя 822) кгс/мм² на плоскости сп. (100) [11]. Уд. в. 2,66. Цв. белый [1]. Бл. стеклянный [1], жирноватый [3]. Полупрозрачный [1]. Обладает пьезооптическими свойствами [12]. На ИК-спектре четко проявлены валентные и деформационные колебания связей в тетраэдрах [SiO₄] и [BeO₄]: 486–465, 540, 607–675, 714–774, 952–925, 1050–1120 см⁻¹ [13, 14].

Микр. Бесцветен. Двуосный (+) [1]. Пл. опт. осей (001). Дисперсия слабая [2].

	1	2	3	4
n _g	1,549	1,549	1,551	1,552
n _m	-	1,543	1,549	1,550
n _p	1,544	1,540	1,547	1,548
2V, °	78	78	80	81

1 – гора Пункаруайв, Ловозеро [1]; 2 – гора Сенгисчорр, Ловозеро [2]; 3 – гора Расвумчорр, Хибины [3]; 4 – Тугтупагтакорфиа, Илимаусак, Южная Гренландия [5].

Плохо выраженная спайность заметна лишь под микроскопом, угол между трещинами спайности – 68–76° (средний 72°). Положение полюса спайности по отношению к осям индикатрисы: $PNg = 75^\circ$, $PNm = 57^\circ$, $PNp = 35^\circ$ [1].

Кристаллы чкаловита из массива Илимаусак (Южная Гренландия) содержат обильные кристалло-газовые, существенно газовые и многофазные жидкие первичные включения [15].

Хим. [1]. Теор. состав $Na_2BeSi_2O_6$: $Na_2O - 29,95$; BeO - 12,08; SiO₂ - 57,97. Спектроскопически определено незначительное содержание Mn.

Анализы:

	1	2	3		1	2	3
Na ₂ O	28,93	29,49	29,20	SiO ₂	56,81	57,08	57,78
K ₂ O	0,13	-	0,09	H ₂ O	0,23	0,38	0,02
MgO	_	_	0,16	$S + SO_3$	0,22	_	0,17
BeO	12,67	12,78	12,56	Cl	-	~	0,14
CaO	0,37	-	_	$-0 = S, Cl_2$	-	_	0,11
FeO	0,12	-	-	Сумма	99,78*	99,73	100,01
Fe ₂ O ₂	0 30	_	-	•			

* Кроме того, Al₂O₃ - 0,75, анал. Нестерова.

1 – гора Пункаруайв, Ловозеро, анал. Переверзева [1]; 2 – гора Сенгисчорр, Ловозеро, анал. Молева [4]; 3 – Тугтупагтакорфиа, Илимаусак, Южная Гренландия, анал. Моуритцен [5].

Диаги. исп. [1]. В разб. HCl и HNO₃ растворяется легко без нагревания с выделением хлопьевидной кремнекислоты, в H₂SO₄ – очень плохо.

П.п.тр. легко плавится в прозрачный бесцветный шарик. Перл буры и фосфатнокислой соли в окислительном и восстановительном пламени бесцветный.

Нахожд. Характерный бериллиевый минерал агпаитовых пегматитов, генетически связанных с пойкилитовыми содалитовыми сиенитами. Приконтактовую зону этих пегматитов слагают содалит, нефелин, эвдиалит, рамзаит-лоренценит, арфведсонит; центральную – преимущественно уссингит. Находится в массе уссингита в ассоциации с шизолитом, нептунитом, мурманитом, стенструпином, нордитом

11. Минералы т. IV, вып. 3

и беловитом. В подобной ассоциации обнаружен в пегматитах Ловозерского массива (горы Пункаруайв, Сенгисчорр, Карнасурт и Непха) [1, 2, 4].

В Хибинах встречен в апатитовом руднике Расвумчорр на участках, сложенных уртитами в виде жилообразных скоплений (до 10 × 30 × 33 см) пектолит-чкаловитвиллиомитового состава или неправильной формы гнезд (до 5–10 см) совместно с виллиомитом. Находится в ассоциации с натролитом, пектолитом, виллиомитом, сфалеритом, термонатритом, баритолампрофиллитом, гейдоннеитом, рамзаитом, вадеитом.

В Южной Гренландии широко распространен в щелочном массиве Илимаусак: в маломощных (около 10 см) высокотемпературных пегматитовых жилах чкаловитсодалитового состава, секущих науяиты, ассоциирует с микроклином, арфведсонитом, стенструпином, эгирином и эвдиалитом; в низкотемпературных уссингитовых и анальцимовых жилах (горы Накалак, Куанефельд) и в альбититах (гора Куанефельд) в ассоциации с уссингитом, анальцимом, шизолитом, ненадкевичитом [16].

Изм. При низкотемпературной цеолитизации замещается мелкокристаллическим агрегатом эпидидимита и сферобертрандита [2, 4], при гидротермальных процессах – тугтупитом [4, 17]; в результате гипергенных преобразований на поверхности чкаловита и по трещинам развиваются бериллит и неизвестный тонкочешуйчатый минерал – предположительно новый водный силикат бериллия [4, 17].

Искусств. Получен плавлением смеси Na₂CO₃, BeO и SiO₂ при 1100–1150° [18]. Синтезирован в гидротермальных условиях в системе BeO–SiO₂–NaOH–H₂O [18]; из Be(NO₃)₂, Be(OH)₂ с аморфным SiO₂ в растворах NaOH и NaCl в интервале температур 400–630° в течение 240–360 ч [19]; из смеси BeO, SiO₂ и GeO₂ в 10–15%-ных растворах NaOH при 400–500° в течение 100–200 ч (вместе с Ge-аналогом) [20]. Получен в процессе разложения берилла в растворах NaOH в автоклавах при 400–600° и P = 700 атм в течение 120 ч [21].

Отл. Макроскопически похож на натролит, отличается менее выраженной спайностью [1].

		Fe-нзлучение, I	D = 57,3 мм		
hkl	1	d (Å)	hkl	1	d (Å)
400; 040	10	5,29	602; 062	30	2.462
311; 131	1	4,80	622; 262	2	2,396
331	100	4,04	840; 480	1	2,367
440	1	3,74	751; 571	5	2,315
511; 151	8	3,55	642; 462	4	2,231
620; 260	30	3,34	931; 391	2	2,118
202; 022	30	3,27	333; 10.20; 2.10.0	5	2,080
531; 351	1	3,21	822; 282	8	2,056
422; 242	30	2,782	622	5	2,022
711; 551; 171	7	2,748	513; 153	4	2,007
800; 080	8	2,646	951; 591	1	1,969
731; 371	5	2,575	842; 482	2	1,947
660	60	2,493	11.1.1; 1.11.1	2	1,845

Межплоскостные расстояния чкаловита,	, гора Расвумчорр	(Хибниы) [3]
--------------------------------------	-------------------	--------------

Литература

1. Герасимовский В.И. // ДАН СССР. 1939. Т. 22, № 5. С. 263.

2. Яковлевская Т.А., Семенов Е.И. // Тр. Минерал. музея АН СССР. 1963. Вып. 14. С. 265.

3. Хомяков А.П., Степанов В.И. // ДАН СССР. 1979. Т. 248, № 3. С. 727.

4. Семенов Е.И. Минералогия Ловозерского щелочного массива. М.: Наука, 1972. 307 с.

5. Семенов Е.И. Минералогия щелочного массива Илимаусак (Южная Гренландия). М.: Наука, 1969. 165 с.

- 6. Симонов М.А., Егоров-Тисменко Ю.К., Белов Н.В. // ДАН СССР. 1975. Т. 225, № 6. С. 1319.
- 7. Пятенко Ю А, Бокий Г Б., Белов Н.В. // Там же. 1956. Т. 108, № 6. С. 1077.
- Белоконева Е.Л., Егоров-Тисменко Ю.К., Симонов М.А., Белов Н.В. // Кристаллография. 1969. Т. 14, № 6. С. 1060.
- 9. Симонов М.А., Белов Н.В. // ДАН СССР. 1965. Т. 164, № 2. С. 406.
- 10. Лебедева С.И. Микротвердость минералов. М.: Недра, 1977. 118 с.
- 11. Поваренных А.С., Лебедева А.Д. // Конституция и свойства минералов. Киев: Наук. думка, 1972. Вып. 6. С. 117.
- 12. Микульская Е.К. // Изв. АН СССР. Сер. геол. 1970. № 2. С. 99.
- 13. Поваренных А.С., Нефедов Е.И. // Геол. журн. АН УССР. 1971. Т. 31, вып. 5. С. 13.
- 14. Плюснина И.И. // Геохнмия. 1963. № 2. С. 158.
- Sobolev V.S., Bazarova T.Y., Shugurova N.A., Bazarov L.Sh., Dolgov Yu.A., Sørensen H. // Medd. Grønland. 1970. Vol. 181, N 11. P. 9.
- 16. Sørensen H. // Ibid. 1962. Vol. 167, N 1. P. 251.
- 17. Семенов Е.И., Быкова А.В. // ДАН СССР. 1960. Т. 133, № 5. С. 1191.
- 18. Горячев А.А., Игнатьев О.С., Рогачев Д.Л. // Там же. 1962. Т. 146, № 5. С. 1179.
- 19. Букин Г.В. // Геология и геофизика. 1968. № 1. С. 124.
- 20. Соболев Б.П., Демьянец Л.Н., Диков Ю.П., Илюхин В.В., Белов Н.В. // Геохимия. 1966. № 6. С. 634.
- 21. Бауэр Я., Рыкл Д. // Кристаллография. 1972. Т. 17, № 3. С. 695.

СТРУКТУРА ТИПА ЭНИГМАТИТА

ГРУППА ЭНИГМАТИТА

Ранее в группе описаны (т. III, вып. 2, с. 561): энигматит, рёнит, криновит, велшит, серендебит, сапфирин-1А, сапфирин-2М и условно – суринамит (по структурным данным [1] – ортосиликат).

Ниже наряду с описанием новых минералов приведены данные по расшифровке структуры рёнита [2] и уточнению структуры криновита [3]. К группе отнесены структурно близкие минералы, в том числе те, в которых атомы Al³⁺ или Fe³⁺ в Si–O-радикалах преобладают над Si: доррит (Al³⁺ > Si) [4] и его разновидность малаховит (Fe³⁺ > Si) [5], близкий по составу искусственному Fe-дорриту [6].

	Син- гония	a ₀	<i>b</i> 0	<i>с</i> 0	α	β	γ	V	Уд.в. (вы- числ.)
Уилкинсонит Na (Fe ²⁺ Fe ³⁺) (Si - O 1 O.	Трикл	10,355	10,812	8.806	105.05°	96,61°	125,20°	741,07	3,89
$M_{2}(O_{4} + O_{2} + N_{2}O_{18}) O_{18} O_{2}$ Макарочкинит (Ca,Na) ₂ (Fe ²⁺ , Fe ³⁺ ,Ti) ₆ × × [(Si,Be,Al) ₆ O ₁₈] O ₂	14	10,392	10,744	8,864	105,73	96,16	124,91	733,9	3,92
Доррит $Ca_2Mg_2Fe_4^{3+}$ ×	"	10,505	10,897	9,019	106,26	95,16	124,75	772,5	3,959
× $[Al_4Si_2O_{18}] O_2$ Pëhut [*] Ca ₂ (Mg,Fe ²⁺) ₄ Fe ³⁺ Ti ⁴⁺ ×	u	10,428	10,807	8,925	105,913	96,134	124,802	748,84	3,64
$\sim 133 \sim 183 \circ 02$ Криновит [*] Na ₂ Mg ₄ Cr ₂ ³⁺ × $\times [Si_6 \circ 0_{18}] \circ 0_2$		10,238	10,642	8 ,78 0	105,15	96,50	125,15	-	~

Макарочкиниту идентичен хёгтуваит, опнсанный как новый минерал в 1994 г. [7]. Открытый ранее (1986) макарочкинит не был утвержден КНМ ММА в связн с недостаточностью структурных данных, но название нспользовалось в русскоязычной литературе. В 1990 г. расшифрована структура макарочкинита [8]. Авторы хёгтуваита позднее [7] отметили идентичность обеих структур. Название макарочкинит используется здесь как имеющее приоритет, хёгтуваит – как синоннм. М. Флейшер и Д. Мандарино (Fleischer, Mandarino, 1995) указывают оба минерала как самостоятельные виды.

Фиг. 92. "Шпинелевый" (ш) и "пироксеновый" (n) фрагменты в структуре рёнита (по Бонаккорси н др.)

В группе объединены силикаты с общей формулой $A_2M_6[T_6O_{18}]O_2$, где A – Na, Ca; M – Fe³⁺, Fe²⁺, Mg, Ti, Al, Cr³⁺, Sb⁵⁺; T – Si, Al, B, Be, Fe³⁺. Основной элемент их структур – открыто-разветвленная цепочка тетраэдров $[T_6O_{18}]_{\infty}$ с периодом повторяемости в шесть тетраэдров; дополнительные тетраэдры присоединены к каждому второму звену основной пироксеновой цепочки. Кремнекислородные цепочки скрепляют октаэдрические стенки шириной в 3 или 4 октаэдра, заполненные катионами M.

Минералы группы различаются заселенностью отдельных позиций: тетраэдрических T(1)-T(7), октаэдрических M(1)-M(7), семикоординационных A [2-4, 8-10].

Известны [4, 7, 8] изоморфные ряды: энигматит $Na_2(Fe_5^{2+}Ti^{4+})$ [Si₆O₁₈] O₂ – с уилкинсонитом; рёнит – с дорритом и макарочкинитом.

По [2], структуры минералов данной группы формируются из двух различных фрагментов: пироксенового и шпинелевого (фиг. 92), что позволяет рассматривать их как члены полисоматической серии с конечными фазами пироксена и шпинели Это согласуется с характерными для этих минералов ассоциациями.

Литература

- 1. Moore P.B., Araki T. // Amer. Miner. 1983. Vol. 68, № 7/8. P. 804.
- 2. Bonaccorsi E., Merlino S., Pasero M. // Europ. J. Miner. 1990. Vol. 2, № 2. P. 203.
- 3. Bonaccorsi E., Merlino S., Pasero M. // Ztschr. Kristallogr. 1989. Bd. 187, H. 1/2. S. 133.
- 4. Cosca M., Rouse R., Essene E. // Amer. Miner. 1988. Vol. 73, № 11/12. P. 1440.
- 5. Чесноков Б.В., Вилисов В.А., Бушмакин А.Ф., Котляров В.А., Белогуб Е.В. // Урал. минерал. сб. 1994. № 3. С. 2.
- 6. Mumme W.G. // Neues Jb. Miner. Monatsh. 1988. H. 8. S. 359.
- 7. Grauch R.I., Lindahl I., Evans H.T., Jr., Burt M., Fitzpatrick J.J., Ford E.E., Graff P.R., Hysingjord J. Canad. Miner. 1994. Vol. 32, pt 2. P. 439.
- 8. Якубович О.В., Малиновский Ю.А., Поляков В.О. // Кристаллография. 1990. Т. 35, № 6. С. 1388.
- 9. Luggan M. // Amer. Miner. 1990. Vol. 76, No 5/6. P. 694.
- 10. Пущаровский Д.Ю. Структурная минералогия силикатов. М.: Недра, 1986. 159 с.
Уилкинсонит Wilkinsonite

 $Na_2(Fe_4^{2+}Fe_2^{3+})$ [Si₆O₁₈] O₂

Назван по фамилии австралийского минералога и петрографа Дж. Ф.Дж. Уилкинсона [1].

Характ. выдел. Неправильные зерна (до 5 мкм) [1].

Структ. и морф. крист. [1]. Трикл. с. Пр. гр. не установлена. $a_0 = 10,355, b_0 = 10,812, c_0 = 8,906$ Å; $\alpha = 105,05, \beta = 90,63, \gamma = 125,20^\circ$; $a_0:b_0:c_0 = 0,9577:1:0,8600; V = 741,07$ Å³; Z = 2.

Предполагается изоморфизм с энигматитом по схеме $Fe^{2+} + Ti \Leftrightarrow 2Fe^{3+}$. Большая часть Fe^{3+} заселяет октаэдрическую позицию M(7), занятую в структуре энигматита Ti, а оставшаяся часть Fe^{3+} – места Ti в позициях M(1)–M(6), где в энигматите преобладает Fe^{2+} .

Физ. св. [1]. Изл. раковистый. Хрупкий. Тв. около 5. Уд.в. 3,89 (вычисл.). Цв. черный. Черта бурая. Бл. стеклянный.

Микр. [1]. Плеохроизм: по Ng – темно-бурый, по Nm – серовато-бурый, по Np – оливково-зеленый. Ng > Nm > Np. При содержании $TiO_2 \approx 3\%$ плеохроизм с красноватым оттенком.

Оптическое изучение затрудняется густой окраской и сильной абсорбцией. Двуосный (+). $n_g = 1,90$, $n_m = n_p = 1,79$ (при $\lambda = 589$ нм); $2V < 10^\circ$ (вычисл.). Хим. Теор. состав: Na₂O - 7,13; FeO - 33,05; Fe₂O₃ - 18,36; SiO₂ - 41,46. В

Хим. Теор. состав: Na₂O – 7,13; FeO – 33,05; Fe₂O₃ – 18,36; SiO₂ – 41,46. В отличие от энигматита характеризуется низким содержанием TiO₂ (до 4,01). В небольших количествах отмечаются Al, Mn, Ca, Zr. Содержание Nb₂O₅ иногда достигает 4%. Состав минерала из Эфиопии (анализ 9), описанного как уилкинсонит [2], отличается низким содержанием Si, более высоким – Fe и Mg (другими методами не исследовался).

Анализы (микрозонд.):

	1	2	3	4	5	6	7	8	9
Na ₂ O	7,27	6,95	7,15	7,12	7,14	7,08	7,22	6,94	5,94
K ₂ O	0,09	<0,02	0.07	<0,02	0,02	0,02	0,08	0,08	0,75
MgO	<0,02	<0,02	0,03	0,08	0,08	0,08	0,18	0,03	5,50
CaO	0,21	0,40	0,40	0,29	0,42	0,25	0,18	0,08	0,68
MnO	1,26	1,20	1,20	1,18	0,84	1,64	1,35	1,59	2,07
FeO [*]	46,42	45,40	45,98	45,35	45,57	44,10	43,24	47,35	~
Al ₂ O ₃	0.76	1,49	0,91	0,69	0,98	0,30	0,57	0,20	0,06
SiO ₂	40,58	38 ,9 7	40,07	40,63	38,85	39,81	41,30	42,95	29,29
TiO2	0,02	1,26	1,50	1,73	4,01	3,38	1,68	0,16	0,04
ZrO ₂	0,52	0,57	0,34	0,49	0,17	0,11	0,42	0,11	Не опр.
Nb ₂ O ₅	1,11	1,81	0,75	0,71	0,28	0,42	1,32	Не опр.	
Сумма	98,24	98,05	98,40	98,27	98,33	97,19	97,54	99,49	_
$Fe_2O_3^{2*}$	17,15	14,14	15,94	13,79	14,85	12,98	11,04	13,67	41,53
FeO	30,99	32,40	31,63	32,94	32,21	32,42	33,31	35,13	14,34
Сумма ^{3*}	99,64	99,49	99,99	99,65	99,82	98,49	98,65	-	100.414*

* Общее.

^{2*} Расчет на окисное и закисное железо, исходя нз формулы энигматита (14 катионов и 20 атомов О).

^{3*} Количества < 0,02 в суммы не включены.

^{4*} В том числе Cr₂O₃ – 0.06 и NiO – 0,15.

1-6 – вулкан Уоррумбаиджл (Австралия) [1]: 1 – из содалитовых трахитов, 2 – из анальцимовых трахитов, 3 – из нефелиновых трахитов, 4, 5 – нз трахитов, 6 – из кварцевых трахитов; 7 – из фонолитов вулкана Данедин (Новая Зеландия) [1]; 8 – из продуктов распада энигматита из нордмаркитпегматита, Халдзан-Бурэгтэгский массив (Моигольский Алтай) (данные П.М. Карташова); 9 – из пирокластов сиенитового состава вулкана Уончи (Эфнопия) [2].

		пересч	ет анализо	ов на 20 ач	юмов О, а	н. 9 — на 14	катионов	:	
	1	2	3	4	5	6	7	8	9
Na	2,04	1,97	2,01	2,00	2,01	2,01	2,04	1,93	1,68
К	0,02	-	0,01	-	0,00	0,00	0,02	0,02	0,14
Mg	-	-	0,01	0,02	0,02	0,02	0,04	0,01	1,20
Ca	0,03	0,06	0,06	0,05	0,07	0,04	0,03	0,01	0,10
Мп	0,16	0,15	0,15	0,15	0,10	0,21	0,17	0,19	0,26
Fe ²⁺	3,76	3,97	3,83	4,00	3,91	3,98	4,07	4,21	1,75
Al	0,13	0,26	0,16	0,12	0,17	0,05	0,10	0,03	0,01
Fe ³⁺	1,87	1,59	1,74	1,51	1,62	1,43	1.21	1.47	4,56
Si	5.88	5,70	5,80	5,85	5,64	5,84	6,03	6,15	4,27
Ti	-	0,14	0,16	0,19	0,44	0,37	0,18	0,02	0,004
Zr	0,04	0,04	0,02	0,04	0,01	0,01	0,03	0,01	-
Nb	0,07	0,12	0,05	0,05	0,02	0,03	0,09	-	-
Cr	-	-	-	-	-	-	-	-	0,01
Ni	-	-	-	-	-	-	-	-	0,02

Нахожд. Породообразующий. Впервые установлен [1] в тонкозернистых недосыщенных SiO₂ трахитах вулкана Уоррумбанджл в центральной части Нового Южного Уэльса (Австралия). Наблюдается полный твердый раствор серии минералов от беститанового уилкинсонита до Ті-дефицитного энигматита. Ассоциирует с анортоклазом, эгирин-геденбергитом, содалитом, анальцимом, изредка с эвдиалитом и арфведсонитом. Отмечается [1] в фонолитах вулкана Данедин (Новая Зеландия). Предполагают, что образование происходило в узких температурных пределах при фугитивности кислорода, ограниченной фаялит-магнетит-кварцевым буфером.

Найден в продуктах распада энигматита в нордмаркит-пегматитах рудопроявления Цахирин-Худук на северной оконечности Халдзан-Бурэгтэгского массива (Монгольский Алтай) (устное сообщение П.М. Карташова). Наблюдается в неполных псевдоморфозах по уплощенным призматическим кристаллам энигматита (размером $10 \times 2 \times 0.2$ см) вместе с новообразованным энигматитом, двумя ближе не определенными силикатами, ильменитом и магнетитом. По-видимому, распад энигматита связан с прогревом пегматита при внедрении последующих интрузивных фаз в условиях повышенного потенциала кислорода.

Искусств. Синтезирован [3] Fe-аналог энигматита, не содержащий Ті, - $Na_4Fe_7^{2+}Fe_6^{3+}(Si_2O_7)_6.$

		Межплоскос	тные расстои	ния унлы	инсонита из А	встралин [1]					
	FeK_{α} -излучение, $D = 114,6$ мм										
hk!	I	d (Å)	hk!	1	d (Å)	hkl	1	d (Å)			
001	100	8,10	300	10	2,657	315	40	1,623			
011	20	7,41	213	10	2,577	235	10	1,613			
111	20	6,38	420	80	2,533	163	20	1,589			
011	30	4,82	142	<10	2,457	623	10	1,551			
012	10	4,39	022	10	2,418	643	20	1,511			
221	30	4,18	440	20	2,338		30	1,494			
122	20	3,770	301	20	2.304		50	1,481			
002	40	3,702	333	70	2,115		30	1,465			
230	20	3,474	411	30	2,070		10	1,374			
121	10	3,221	230	20	2,005		10	1,347			
012	100	3,149	132	20	1,965		20	1,333			

hkl	1	d(Å)	hkl	I	d (Å)	1	d(Å)
031	60	2,935	302	10	1,941	10	1,325
331	10	2,844	023	20	1,917	10	1,223
122	20	2,808	213	20	1,734	10	1,210
311	30	2,750	354	10	1,683		
030	80	2,696	414	10	1,636		

Литература

1. Duggan M. // Amer. Miner. 1990. Vol. 75, № 5/6. P. 694.

2. Gaeta M., Mottana A. // Miner. Mag. 1991. Vol. 55, № 4. P. 529.

3. Ernst W.G. // J. Geol. Chicago, 1962. Vol. 70, № 6. P. 689.

Макарочкииит Makarochkinite

 $(Ca,Na)_2(Fe^{2+},Fe^{3+},Ti)_6[(Si,Be,Al)_6O_{18}]O_2$

Назван по фамилии уральского минералога Б.А. Макарочкина [1-3]. Синои. Хёгтуваит Høgtuvaite. Назван по месту находки (см. Введение к группе [4]).

Характ. выдел. Кристаллы (до 4 см в длину) и их радиальные агрегаты из трех или четырех индивидов [4], изометричные выделения (до 5–50 мм) [1–3].

Структ. и морф. крист. Трикл. с. $C_i^{I} - P\overline{1}$. Z = 2 [3, 4].

a ₀ (Å)	<i>b</i> 0	<i>c</i> 0	α	β	γ	$a_0 b_0 c_0$	V(Å ³)	Местонахож- дение
10,392	10,744	8,864	105.73°	96,16°	124,91°	0,9635:1:0,8250	733,9	Ильмены, Урал [3]
10,317	10,724	8,855	105,77	96,21	124,77	0,9620:1:0,8257	730,4	Гора Хёгтува, Норвегия [4]

Структурное исследование [3] проведено на несдвойникованном монокристалле, поэтому результаты более прецизионные, чем для других минералов группы.

В отличие от энигматита атомы Si в тетраэдрических цепочках частично замещены на Al и Be (фиг. 93); наблюдается небольшой разворот тетраэдров (на 1-4°). Заполнение октаэдрических позиций M и позиций A отличается от такового в энигматите.

Распределение катионов по позициям в кристаллической структуре макарочкинита [3]

(М – октаэдрические позиции, Т – тетраэдрические позиции, А – позиции в центрах семивершинника)

Позиция		Ka	тион		Пози- ция	Катион			Позн- ция	хэн- Катион я	
	Fe ³⁺	Fe ²⁺	T1 ⁴⁺	Mg ²⁺		Si ⁴⁺	Be ²⁺	Al ³⁺	1	Ca ²⁺	Na ⁺
M(1)	0,80		0,10	0,10	T(1)	0,4	0,5	0,1	A(1)	0,9	0,1
M(2)	0,90		0,10		T(2)	0,8		0,2	A(2)	0,85	0,15
M(3)		0,95		0,05	T(3)	0,7		0,3			
M(4)		0,95		0,05	T(4)	0,5		0,5			
M(5)		0,9		0,1	T(5)	1,0					
M(6)		1,0			T(6)	1,0					
M(7)				0,5							

Модель структуры отвечает формуле (Ca_{1,75}Na_{0,25}) (Fe²⁺_{3,80} $F^{3+}_{1,35}Ti^{4+}_{0,60}Mg^{2+}_{0,25}$) (Si_{4,4}Al_{0,6}Be_{1,0}) × × O₁₈O₂ [3].

Позиция M(4) почти полностью занята атомами Fe²⁺ (в энигматите – на 3/4); в M(3)-M(6) наряду с Fe²⁺ присутствует небольшое количество атомов Са, основная часть которого заполняет позицию А. В энигматите позиция А заселена атомами Na. Заполнение аналогичных позиций в рёните, образующем изоморфный ряд с макарочкинитом, см. с. 334.

	М-октаэдри	ы		Т-тетраэдр	ы	А-семивершини		
N	1-0	0-0	1	T-O		A-O	0-0	
M(I)	2.073	2,931	T(1)	1,648	2,688	A(1) 2,442	3,202	
M(2)	2,090	2,954	T(2)	1.648	2,688	A(2) 2.458	3,282	
M(3)	2,114	2,980	T(3)	1,684	2,743			
M(4)	2,123	2,994	T(4)	1,634	2,666			
M(5)	2,101	2,965	T(5)	1,664	2,683			
M(6)	2,136	3,017	T(6)	1,645	2,680			
M(7)	2.028	2,872						

Средние межатомные расстоянии в структуре макарочкинита (в Å) [3]

Кристаллы призматические, обычны полисинтетические двойники [4].

Физ. св. Сп. несовершенная по (110) и (101) [1, 3], у норвежского – хорошая по двум направлениям под углом около 55° [4]. Изл. раковистый. Хрупкий. Тв. 5,5–6. Уд.в. 3,87 (вычисл. 3,88 [1], 3,92 [3]), норвежского 3,85 (вычисл. 3,98) [4]. Цвет черный, в тонких скалах просвечивает зеленым цветом. Черта зеленовато-черная. Бл. стеклянный [1], почти алмазный [4]. Не люминесцирует [4].

Микр. Оптическое изучение затрудняется густой окраской. В иммерсионных препаратах зеленый. В обычных шлифах плеохроирует слабо [1], в ультратонких очень сильный плеохроизм: по Ng - бронзовый, по Np - зеленый [4]. Двуосный (-). n_e = 1,82 [4], 1,86 [1]; n_p = 1,78 и 1,799. 2V большой.

Хим. Теор. состав: Na₂O – 1,53; CaO – 9,71; MgO – 1,00; BeO – 2,47; FeO – 27,01; Fe₂O₃ – 21,33; Al₂O₃ – 6,05; SiO₂ – 26,16; TiO₂ – 4,74 по структурной формуле.

Изоморфные замещения: Са на Na и K; Fe²⁺ на Mn, возможно Ca; Fe³⁺ на Ti⁴⁺, Mg; Si на Al и Be [3]. Отношение Fe³⁺/Fe²⁺ = 0,61 [4].

Анализы:

	1	2		1	2
Na ₂ O	1,35	1,52	SiO ₂	30,09	31,60
K ₂ O	0,30	-	TiO ₂	6,02	2,77
CaO	13,38	10,44	SnO ₂	Не опр.	0.53
MnO	1,26	0,27	Nb ₂ O ₅	Не обн.	Не опр.
MgO	2,74	0,42	H₂O⁺	0,35	Не обн.
BeO	2,32	2,65	H ₂ O-	0,18	•
FeO	26,91	28,06	П.п.	0,22	
Fe ₂ O ₃	11,12	19,03	Сумма	100,28	99,93
Al ₁ O ₁	3.55	2.64	•		

1 - макарочкинит из гранитного пегматита (копь 400), Ильменский заповедник (Урал), анал. Черепивская [1, 3]; 2 - хёгтуваит из гнейсов Нордленда (Норвегия) [4]. Методом ИСП в хёгтуваите обнаружены следы (в ppm): В – 95; Ва – 10; Се – 350; Со – 5; Сг – 5; Cu - 26; Eu - 1,5; Ho - 44; La - 145; Li - 50; Nb - 1,110; Nd - 165; Ni - 10; Pb - 170; Sc - 5; Sr - 35; Th - 570; U - 205; V - 23; Y - 1,250; Yb - 410; Zn - 570 [4]. Эмпирические формулы (рассчитаны по п.э.я.):

 $1 - (Ca_{2,066}Na_{0,376}K_{0,05}) (Fe_{3,245}^{2+} Fe_{1,206}^{3+} Ti_{0,652}Mg_{0,294}Mn_{0,153}) (Si_{4,338}Be_{0,803}Al_{0,603}) O_{39,276};$

2 - (Ca_{1,629}Na_{0,428}) (Fe²⁺_{3,418} Fe³⁺_{2,085} Ti_{0,302}Mg_{0,09}Mn_{0.034}Sn_{0,034}) (Si_{4,603}Be_{0,927}Al_{0,45}) O_{39,920}.

Фиг. 93. Структура макарочкинита в проекции на плоскость ab (по Якубович и др.)

Диагн. исп. П.п.тр. сплавляется в черный магнитный шарик [1]. Медленно без вскипания разлагается в HF; в других кислотах, а также в основаниях не растворяется [4].

Повед. при нагр. При нагревании до 100° теряет в весе около 0,25% (абсорбционная вода), небольшое увеличение в весе (окисление Fe) фиксируется около 800° [4].

Нахожд. Впервые найден как акцессорный минерал в гранитном пегматите (копь 400) в Ильменском заповеднике на Урале. Ассоциирует с ортитом (= алланиту), самарскитом-Ү, колумбитом, гельвином, фенакитом, гадолинитом, цирконом [1, 2]. Хёгтуваит встречен в качестве позднего метаморфического минерала (содержание до 15%) в гнейсах, слагающих одно из нескольких крупных докембрийских тектонических окон в норвежских каледонидах в окрестностях горы Хёгтува в Нордленде (Норвегия) [4]. Наблюдается совместно с кварцем, альбитом, микро-клином, биотитом, ирконом, цирконом, флюоритом, кальцитом, хлоритом, магнетитом, пирофанитом, изредка с касситеритом, с незначительными количествами гадолинита, даналита, гентгельвина, алланита. В этом же районе обнаружен как второстепенный минерал в метаморфизованных мафических пегматитах.

Практ. знач. Используется как поисковый признак на бериллиевую руду [4].

Отл. Макроскопически похож на шпинель [1], роговую обманку. По оптическим свойствам близок к рёниту [4].

Межплоскостные расстояния макарочкинита (хёгтуванта) из района Нордленд [4] СтК.-излучение. Камера Гинье

			~ •		•			
hki	1	d(Å)	hkl	1	d (Å)	hki	1	d (Å)
010;001	90	8,048	322	10	2,7118	411	47	2,0747
011	15	7,388	241;203	48	2,6761	400;422	3	1,9973
111	13	6,353	300	18	2,6646	250;214	26	1,9829
011	28	4,739	340	9	2,5468	520	3	1,9678

hkl	1	d (Å)	hkl	I	d(Å)	hkl	1	d (Å)
021;012	3	4,385	242:420:213	100	2,5993	232;234	6	1,9472
201;221	13	3,178	113	7	2,5157	442	10	1,9391
122	15	3,762	322	6	2,5052	231;224	4	1,9035
022	19	3,695	033	14	2,4640	451;433	6	1,8759
230;212	17	3,435	211;202	9	2,4551	531	2	1,8426
111	8	3,345	221;223	20	2,4106	401;412	8	1,8029
311	2	3,247	022	5	2,3951	230;362	8	1,7704
121	2	3,222	313	8	2,3442	344	3	1,7560
102	3	3,188	140	6	2,3251	234;254	13	1,7349
211;222	4	3,176	440;422	3	2,3206	031	8	1,7163
021;012	46	3,125	410;421	13	2,3068	140	5	1,7118
122	7	3,057	042;024	3	2,1914	640	2	1,7070
212;232	1	2,9847	441:432	3	2,1804	124	2	1,7005
331	5	2,9732	041;014	2	2,1686	222;213; 3 24	8	1,6741
031;013	59	2,9247	331	3	2,1394	650;632	3	1,6547
331	3	2,8084	104	5	2,1227	034;045	33	1,6191
122	10	2,7704	251;204	63	2,0979			
311	22	2,7550	402;442	10	2,0871			

Литература

1. Поляков В.О., Черепивская Г.Е., Щербакова Е.П. // Новые и малоизученные минералы и минеральные ассоциации Урала. Свердловск: УНЦ АН СССР, 1986. С. 108.

2. Pekov I.V. // World Stones. 1994. Nº 4. P. 10.

3. Якубович В.О., Малиновский Ю.А., Поляков В.О. // Кристаллография. 1990. Т. 35, № 6. С. 1388.

4. Grauch R I., Lindahl I., Evans H.T., Jr., Burt D.M., Fitzpatrick J.J., Foord E.E., Graff P.R., Hysingjord J. // Canad. Miner. 1994. Vol. 32, pt 2. P. 439.

Доррит Dorrite Ca₂Mg₂Fe₄³⁺[Al₄Si₂O₁₈] O₂

Назван в честь американского геолога профессора Дж. Дорра [1]. Предполагается [1], что описанные ранее [2] "минерал X₁" из Исландии и 'Fe³⁺-мелилит" из бухитов (шт. Вайомииг, США) [3] идентичны дорриту.

Разнов. Малаховит, близок искусственному Fe-дорриту [4, 5].

Характ. выдел. Неправильные зерна и призматические кристаллы (до 0,4 мм в длину).

Структ. и морф. крист. Трикл. с. (псевдомонокл.). Пр.гр. для природного образца не установлена [1], у искусственного – C_{1}^{1} – $P\overline{1}$ [4]. Z = 2.

	a ₀ (Å)	<i>b</i> 0	<i>c</i> 0	α	β	γ	V(Å ³)	Местона- хождение	Ссыл- ка
Доррит	10,505	10,897	9,019	106,26°	95,16°	124,75°	772,5	Бассейн Поудер- Ривер (США)	[1]
	10,487	10,798	8,962	106,05	94,49	124,59	765,58	Челябин- ская обл. (Урал)	[5]
Малахо- вит	10,58	10,90	9,10	107,08	95,02	124,45	783,22	Там же	[5]
Fe ³⁺ -дор-	10,546	10,920	9,061	106,31	95,65	124,38	-	Искусств.	[4]

Фиг. 94. Структура искусственного Fe-доррита (СFCA) (по Мамме) *a* – октаэдрическая стенка; *б* – цепочки Si, Al- и Fe, Al-тетраэдров

Незначительное увеличение параметров ячейки обусловлено увеличением содержания Fe³⁺ [4].

Изоструктурен искусственному Fe³⁺-дорриту, основу структуры которого [4] составляют тетраэдрические Т-О-цепочки, аналогичные энигматитовым, но с иным заполнением тетраэдров. Часть Т занимают атомы Fe, Al, часть – Al, Si (фиг. 94). Цепочки расположены слоями, чередующимися с октаэдрическими стенками (лентами) Са, Fe- и Al-октаэдров, такими же, как в структуре сапфирина.

Главные формы (в псевдомонокл. установке) [5]: b(010), m(110), $M(1\overline{10})$, k(111), $K(1\overline{11})$, $R(\overline{111})$, r(111). На кристаллах малаховита, кроме того, отмечалась a(100). На гранях кристаллов четкая двойниковая штриховка. Обычны двойники по (010). Кристаллы таблитчатые.

Физ. св. Сп. совершенная по (010) и (001) [1], у уральских образцов не обнаружена [5]. Тв. 5–5,5. Хрупкий. Уд.в. (вычисл.) 3,959 [1], 3,600 [5], 4,096 [5] – у малаховита. Цв. уральского доррита густой коричнево-красный до красновато-черного, малаховита – черный с побежалостью [5]. Черта серая [1], коричневато-желтая, красновато-коричневая [5]. Бл. полуметаллический, смолистый [1, 5]. Прозрачен только в очень тонких кристаллах (< 15 мкм) [1]. Мелкие частицы малаховита в иммерсии просвечивают коричневато-красным цветом [5].

Микр. [1]. В обычных шлифах почти непрозрачен. Обладает высоким рельефом. В ультратонких шлифах наблюдается очень сильный плеохроизм: по Ng – зеленовато-бурый, по Nm – желтовато-бурый, по Np – красно-оранжевый до бурого. Двуосный (–). $n_g = 1,86$, $n_m = 1,84$, $n_p = 1,82$; $2V \sim 90^\circ$. Очень сильная абсорбция.

Малаховит в полир. шлифах серый, $R \approx 14\%$. В скрещенных николях слабо анизотропен. Редко наблюдаются коричнево-красные внутренние рефлексы [5].

Хим. Теор. состав: $1 - Ca_2(Mg_2Fe_4^{3+})$ (Al₄Si₂) O₂₀; $2 - Ca_2(Fe_2^{2+}Fe_4^{3+})$ ($Fe_4^{3+}Si_2$) O₂₀.

	CaO	MgO	FeO	Fe ₂ O ₃	Al ₂ O ₃	SiO ₂
1	13,41	9, 64	-	38,20	24,38	14,37
2	11,05	-	4,16	62,95	-	11,84

В отличие от рёнита, с которым образует изоморфный ряд, характеризуется отсутствием Ті и доминирующим содержанием Fe³⁺. Характерны изоморфные замещения Mg \leftarrow Fe²⁺, Al \leftarrow Fe³⁺. Состав зерен, обогащенных Fe, близок к идеальной формуле Ca₂(Fe²⁺₂Fe³⁺₄) (Fe³⁺₄Si₂) O₂₀ [1].

Анализы (микрозонд.):

	1	2	3	4	5	6	7	8	9
Na ₂ O	0,23	Не опр.	0,22	0,43	0,36	0,26	0,42	Не опр.	Не опр.
K ₂ O	0,03		_	-	-	-	-		•
MgO	4,59	12,34	9,57	6,65	7,90	8,16	7,77	5,91	2,67
CaO	12,08	14,20	12,79	12,63	12,60	12,79	12,73	12,33	13,70
MnO	0,22	0,41	0,31	0,49	0,40	0,39	0,52	0,35	-
FeO	3,42*	-	-	-	-	-	-	_	-
Fe ₂ O ₃	55,50*	35,01	42,39	51,87	47,26	47,19	48,11	60,09	69,73
Cr ₂ O ₃	0,01	Не опр.	0,16	0,00	0,05	0,09	0,02	0,00	_
Al ₂ O ₃	13,33	20,17	15,98	13,27	14,57	14,52	13,40	11,85	6,85
SiO ₂	10,44	17,75	15,22	11,78	13,50	12,78	13,45	9,36	8,13
TiO ₂	0,41	0,78	2,84	2,96	2,83	3,48	2,99	0,57	0,39
Сумма	100,26	100,66	99,48	100,08	99,47	99,6 6	99,41	100,48**	101,47

* Рассчитано, исходя из формулы.

^{**} В том числе NiO₂ – 0,02.

1 – из паралавы бассейна Поудер-Ривер (оригинал структуриого изучения) [1]; 2 – из переплавлеиных пород горелого отвала Коркинского разреза [5]; 3–7 – "минерал Х₁" из зоны контакта базальтовых потоков с коралловыми рифами, Исландия (в оригинале суммы: 4 – 99,82; 7 – 99,60) [2]; 8 – "Fe³⁺-мелилит" из бухитов, Баффало (в оригинале сумма 100,50) [3]; 9 – малаховит из переплавленных пород горелого отвала Коркинского разреза [5].

Эмпирические формулы (1 - на 14 катионов, 2 и 9 - на 20 атомов О):

$$1 - (Ca_{1,92}Na_{0,07}K_{0,01})_{2,00}(Fe_{4,38}^{3+}Fe_{0,44}^{2+}Mg_{1,05}Ca_{0,05}Mn_{0,03}Ti_{0,05})_{6,00}(Fe_{2,00}^{2+}Al_{2,40}Si_{1,60})_{6,00}O_{20};$$

$$2 - Ca_{2,00}(Fe_{3,26}^{3+}Mg_{2,52}Ca_{0,09}Mn_{0,05}Ti_{0,08})_{6,00}(Al_{3,26}Si_{2,44}Fe_{0,35}^{3+}))_{6,05}O_{20}$$

$$9 - Ca_{2\,00}(Fe_{5,00}^{3+}Mg_{0,63}Ca_{0,32}Ti_{0,05})_{6,00}(Fe_{3,31}^{3+}Si_{1,29}Al_{1,28})_{5,87}O_{20,0}$$

В работе [1] приведены профильные анализы зерен доррита из ассоциаций с клинопироксеном и мелилитом.

Искусств. Образуется в шлаках при плавлении железных руд с известковым флюсом [4].

Нахожд. Впервые [1] обнаружен в прирометаморфических плавленных породах (паралавах) бассейна Поудер-Ривер (шт. Вайоминт, США). Ассоциирует с эссенеитом, титановым андрадитом, плагиоклазом, геленит-экерманитом, магнетит-магнезиоферрит-шпинелевым твердым раствором. Часто находится в тесном срастании с клинопироксеном и образует по нему псевдоморфозы. Содержит включения первичного магнетита. Изредка встречается в анортите, иногда в виде скоплений на стенках пустот. Скелетные кристаллы и воронкообразные зерна наблюдаются в других минералах и стекле, в котором часто присутствуют апатит и мелкие кристаллы калиевого полевого шпата. В ассоциации с титановым андрадитом обогащается железом. Образовался при высоких температурах и низком давлении в условиях повышенного потенциала кислорода.

В плавленных осадочных породах (бухитах), образовавшихся в результате близповерхностного пожара каменноугольного пласта Хили вблизи Баффало (шт. Вайоминг, США), встречен [3] вместе с эссенеитом, мелилитом, стеклом, описан как необычный Fe-мелилит.

Вместе с фассаитом, мелилитом и рёнитом найден (минерал X₁) в коралловых септах в зоне контакта коралловых рифов с потоком порфиритовых базальтов щелочной дифференцированной серии Питон-де-Неж в районе Сен-Ло, на о-ве Реюньон (Исландия). Кристаллизовался при $t \approx 1000^\circ$, давлении, близком атмосферному, и высокой фугитивности CO₂ [2].

В переплавленных породах (парабазальтах) горелого отвала Челябинского угольного бассейна (вблизи Копейска) типичен для пузыристых силикатных масс, окаймляющих ксенолиты карбонатных пород. Образует кристаллы (до 0,04 мм) на стенках газовых пузырей и в мелилитовой массе между пузырями вместе с эссенеитом, мелилитом, фторфлогопитом, Мg-ферритом, магнетитом и псевдобрукитом [5, 6].

Разнов. Малаховит – malakhovite, Ca₂(Fe³⁺, Mg, Ca)₆(Fe³⁺, Si, Al)₆O₂₀.

Назван в память об уральском геологе профессоре А.Е. Малахове (1899–1989) [5].

По составу близок искусственному Fe³⁺-дорриту – Ca_{2,3}Mg_{0,8}Fe_{8,3}Al_{1,5}Si_{1,1}O₂₀ [4]. Найден в переплавленных породах горелого отвала Челябинского угольного бассейна в парагенезисе, аналогичном дорриту.

		1.6	кα-излучение	$D = \Pi^{2}$	1,0 MM		
hkl	I	d (Å)	hkl	I	d(Å)	1	d (Å)
001	20	8,1	213	80	2,558	10	1,695
011	20	7,5	202	80	2,515	15	1,626
ជា	5	6,4	221	5	2,453	20	1,613
111	10	4,87	140	10	2,349	20	1,544
221	5	4,39	241	5	2,257	30	1,511
102	5	4,22	310	5	2,205	30	1,482
212	10	3,46	442	60	2,125	5	1,456
120	100	2,971	540	20	2,035	5	1,432
113	5	2,895		5	1,842		
122	5	2,815		20	1,737		

Межплоскостные расстояния доррита из Поудер-Ривер [1] FeK₀-излучение, D = 114,6 мм

Литература

- 1. Coscu M., Rouse R., Essene E. // Amer. Miner. 1988. Vol. 73, № 11/12. P. 1440.
- 2. Havette A., Clocchiatti R., Nativel P., Montaggioni L. // Bull. minér. 1982. Vol. 105, № 4. P. 364.
- 3. Foit F., Hooper R., Rosenberg P. // Amer. Miner. 1987. Vol. 72, № 1/2. P. 137.
- 4. Mumme W.G. // Neues Jb. Miner. Monatsh. 1988. H. 8. S. 359.
- 5. Чесноков Б.В., Вилисов В А., Баженова Л.Ф., Бушмакин А.Ф., Котляров В.А. // Урал. минерал. сб. 1993. № 2. С. 26.
- 6. Чесноков Б.В., Вилисов В.А., Бушмакин А.Ф., Котляров В.А., Белогуб Е.В. // Там же. 1994. № 3. С. 3.

Рёнит^{*} Rhönite Ca₂(Mg,Fe²⁺)₄Fe³⁺Ti⁴⁺[Si₃Al₃O₁₈] O₂

Описание рёнита без структурных данных см. т. Ш, вып. 2, с. 570.

	<i>a</i> ₀ (Å)	b ₀	<i>c</i> 0	α	β	γ	V(Å ³)
1	10,428	10,807	8,925	105,91°	96,13°	124,80°	748,84
2	10,367	10,756	8,895	105,98	96,04	124,72	739,40

1 - из вулканической брекчии Шарнхаузен (Германия) [1]; 2 - из метеорита Альенде [1].

От энигматита отличается составом кремнекислородной цепочки $[T_6O_{18}]_{\infty}$, где половина атомов Si замещена на Al, а также заполнением позиций M(8) и M(9) ионами Ca с к.ч. = 6 (правильный октаэдр) [1]. В энигматите все позиции T заполнены атомами Si, M(8)–M(9) – ионами Na с к.ч. = 8 (искаженные антипризмы). Предполагается ограниченный гетеровалентный изоморфизм CaAl \leftrightarrows SiAl.

Средние длины связей М--О и Т-О (в Å) и состав катионов [1]:

		В окта	эдрах		В тетр	раздрах
	M(8),M(9)	M(5),M(6)	M(1)M(4)	M(7)	T(1)-T(4)	T(5),T(6)
1*	2,523	2,110	2,076	2,001	1,	708
	(Ca _{1,9} Na _{0,1})	$(Mg_{1,4}Fe_{0,6}^{2+})$	$(Mg_{1,9}Fe_{1,1}^{3+})$	Ti ⁴⁺	(Si3	Al ₃)
2	2,511	2,100	2,0	34	1,700	1,740
	Ca ₂	$(Mg_{1,7}Fe_{0,3}^{2+})$	(Mg _{1,2} Al _{0,5} V ₀	$_{3}\text{Ti}_{0.8}^{3+}\text{Ti}_{12}^{4+}$	(Si ₂ Al ₂)	Al ₂

* Номера соответствуют таблице параметров ячейки.

В рёните из брекчии Шарнхаузен с помощью электронной микроскопии высокого разрешения выявлен [1] новый восьмислойный политип на участке шириной 200 Å (рёнит 8 Å, последовательность слоев $t_1t_1t_2t_1t_1t_1t_2$).

Состав рёнита из метеорита Альенде [1] близок к таковому искусственной фазы "байковит", в которой аналитически подтверждено присутствие Ti³⁺ и Ti⁴⁺ [2].

Литература

1. Bonaccorsi E., Merlino S., Pasero M. // Europ. J. Miner. 1990. Vol. 2, № 2. Р. 203. 2. Аракчеева А.В. // Кристаллография. 1995. Т. 40, № 2. С. 245.

Криновит^{*} Krinovite Na₂Mg₄Cr $_2^{3+}$ [Si₆O₁₈]O₂

Описание криновита см. т. III, вып. 2, с. 573.

В результате структурных исследований [1] установлена пр.гр. $C_i^1 - P \overline{1}$. $a_0 = 10,238$, $b_0 = 10,642$, $c_0 = 8,780$ Å; $\alpha = 105,15$, $\beta = 96,50$, $\gamma = 125,15^\circ$.

Структура характеризуется стенками, построенными MgO₆- и CrO₆-октаэдрами и NaO₈-антипризмами, скрепленными открыто разветвленными цепочками из Si-тетраэдров. Отличие от энигматита – в заполнении октаэдров MO₆, образующих стенку между цепочками [Si₆O₁₈].

М-октаэдры							М-г	юлиэдры		Si-тет	раэдры
М	-0	C	Состав катионов М-О		-0	Состав катионов		Si–O			
M(1)	2,00	Cr	100			M(8)	2,513	Na	100	Si(1)	1,625
M(2)	2,013	Cr	100			M(9)	2,525	Na	100	Si(2)	1,629
M(3)	2,093	Mg	92,	Fe	8					Si(3)	1,640
M(4)	2,084	Mg	94,	Fe	6					Si(4)	1,616
M(5)	2,116	Mg	96,	Fe	4					Si(5)	1,640
M(6)	2,093	Mg	98,	Fe	2					Si(6)	1,640
M(7)	1,999	Cr	100							. ,	

Средние длины связей М-О и Т-О (в Å) и состав катионов (в %):

Литература

1. Bonaccorsi E., Merlino S., Pasero M. // Ztschr. Kristallogr. 1989. Bd. 187, H. 1/2. S. 133.

СТРУКТУРА ТИПА ТОБЕРМОРИТА

ГРУППА ТОБЕРМОРИТА

Ранее группа включала: тоберморит, пломбьерит, риверсайдит и условнотахеренит, окенит, некоит и относилась к ленточным силикатам (см. т. Ш, вып. 3, с. 322). Однако среди трех структурно исследованных минералов в тоберморите основу структуры составляют цепочки $[Si_6O_{16}(OH)_2]$, а в окените и некоите – слои $[Si_6O_{15}]$.

	Сингония	a_0	b_0	c_0	β	Уд.в.
Клинотоберморит $Ca_5[Si_6(O, OH)_{18} + 5 H_2O$	Монокл.	11,331	7,353	22,67	96 ,59 °	2,58
[Оелит] Ca ₁₀ [Si ₈ B ₂ O ₂₉] · 12,5 H ₂ O	Ромб.	11,23	7,24	20,46	-	2,62

Оелит отнесен к группе на основании близости параметров элементарной ячейки.

Клинотоберморит Clinotobermorite $Ca_5[Si_6(O, OH)_{18}] \cdot 5 H_2O$

Название отражает моноклинность и связь с тоберморитом [1]. Синон. Моноклинный 11Å-тоберморит [2].

Характ. выдел. Кристаллы (до 5 мм) и их агрегаты [1].

Структ. и морф. крист. Монокл. с. C_s^4 -*Cc* или C_{2h}^4 -*P*2/*c*. $a_0 = 11,331$, $b_0 = 7,353$, $c_0 = 22,67$ Å; $\beta = 96,59^\circ$; $a_0 : b_0 : c_0 = 1,541 : 1 : 3,069$; V = 1876,6 Å³[2].

Моноклинный полиморф ромбического тоберморита [1]. Элементарная ячейка выводится из тоберморитовой путем попеременного смещения слоев (001) на 0 и на 1/2 a, т.е. удвоения по оси c [1, 2].

Микродвойникование по (001) [2]. Кристаллы таблитчатые по (001) или игольчатые вдоль оси *b*.

Физ. св. Сп. весьма совершенная по (001) и несовершенная по (100). Тв. 4,5; микротвердость 174–251 кгс/мм² при нагрузке 25 г. Уд.в. 2,58 (вычисл. 2,69). Цв. бесцветный или белый. Бл. стеклянный [1, 2].

ИК-спектр сходен с таковым тоберморита; полосы поглощения при 3450 и 1630 см⁻¹ связаны с колебаниями ОН-групп [1].

Микр. Бесцветный. Двуосный. $n_g = 1,585$, $n_m = 1,580$, $n_p = 1,575$; $n_g - n_p = 0,010$. 2V не измерен из-за микродвойникования [1, 2].

Хим. Состав близок тоберморитовому; отличается лишь более низким содержанием Al и несколько повышенным содержанием Ca. Изоморфизм: Ca замещается на Mg и K; Si – на Al и B; OH – на F.

Анализ (микрозонд. и химические определения F, B и H₂O) [1, 2]: Na₂O – 0,02; K₂O – 0,10; MgO – 0,11; CaO – 39,04; MnO – 0,06; Al₂O₃ – 0,36; Fe₂O₃ – 0,01; B₂O₃ – 0,23; SiO₂ – 46,55; TiO₂ – 0,01; H₂O – 13,75; F – 0,18; –O = F₂ – 0,08; сумма 100,34.

Эмпирическая формула (на Si + Al + B = 6): $(Ca_{5,29}Mg_{0,02}K_{0,02})_{5,33} \times (Si_{5,90}Al_{0,05}B_{0,05})_{6,00}(O_{16,54}OH_{1,39}F_{0,07})_{18,00} \cdot 5,1 H_2O.$

Повед. при иагр. Теряет молекулярную H_2O при нагревании до 300° на воздухе, при этом межплоскостное расстояние d(002) уменьшается от 11,3 до 9,3 Å [1, 2].

Нахожд. Низкотемпературный минерал прожилков (1–2 см), секущих геленитспёрритовые скарны, которые развиты на контакте кварц-монцонитовых даек с известняками в районе Фука (преф. Окаяма, Япония) [1, 2]. Тесно ассоциирует с кальцитом, тоберморитом, пломбьеритом и апофиллитом, образующими прожилки по трещинам в контаминированной породе (эндоскарн), состоящей главным образом из полевого шпата, граната и пироксена. Выделяется позже тоберморита и рассматривается как его низкотемпературная модификация [1, 2].

Межплоскостные расстояния клинотоберморита из Фука [2]*

hk!	I	d(Å)	hkl	Ι	d (Å)	1	d(Å)
002	100	11,25	008;400;402	41	2,811	10ш	2,005
004;200;112	20	5,60	223;117	60	2,794	16ш	1,917
202;112	20	5,27	208;404	27	2,641	13	1,875
202	10	4,782	118	11	2,495	14	1,837
204;006;115	36	3,745	027;208	12	2,414	14ш	1,748
206;023	51	3,304	130;131;406	20	2,394	10	1,712
22 <u>1</u>	45	3,068	316	15	2,380	17	1,670
221	60	3,034	00.10;421	27	2,248	12ш	1,647
314	37	3,012	423;134	13	2,190	10	1,604
206;313	25	2,950	511;408	8	2,117	17ш	1,593
223	23	2,910	425;11.10;512	20ш	2,075		

* Условия съемки не указаны.

Литература

1. Henmi C., Kusachi I. // Miner. Mag. 1992. Vol. 56, N 3. P. 353-348.

2. Henmi C., Kusachi I. // J. Miner., Petrol., Econ. Geol. 1989. Vol. 84, N 10. Р. 374. На яп. яз., рез. англ.

Оелит Oyelite Ca₁₀[Si₈B₂O₂₉] · 12,5 H₂O

Назван в честь японского минералога, проф. университета Окаямы Д. Ое [1]. Снион. 10Å-тоберморит [2]; 10Å-гидрат (т. III, вып. 3, с. 326).

Характ. выдел. Параллельные сростки игольчатых кристаллов длиной 1-3 мм [1].

Структ. и морф. крист. Ромб.с. $a_0 = 11,23$, $b_0 = 7,24$, $c_0 = 20,42$ Å; $a_0: b_0: c_0 = 1,551: 1:2,820$; V = 1660 Å³ [3]; $a_0 = 11,25$, $b_0 = 7,25$, $c_0 = 20,46$ Å [1].

Сходен с тоберморитом, но отличается базальным межплоскостным расстоянием d(002), равным ~10,3 Å (у тоберморита 11,3 Å) [1]. Дегидратированные продукты обоих минералов имеют почти одинаковые d(002) (~9 Å) и дифракционные картины [1].

Физ. св. Тв. 5. Уд.в. 2,62. Цв. белый. Бл. стеклянный [1].

В ИК-спектре проявляются сильные полосы поглощения при 463, 857, 965, 1440, 3000–3500 см⁻¹ [3].

Микр. Бесцветный. Двуосный. $n_g = 1,613$, $n_m = 1,606$, $n_p = 1,602$; $n_g - n_p = 0,011$ [1].

Хим. Теор. состав: CaO – 42,25; B₂O₃ – 5,25; SiO₂ – 36,21; H₂O – 16,29.

Изоморфизм незначительный: В замещается на Al; Ca – на Mg, Na, K. Содержание B_2O_3 колеблется от 4,4 до 4,8%. Отношение Ca/Si = 1,2. Количество молекул H_2O на формульную единицу изменяется от 9,5 до 12,5.

Анализы:

	1	2	3		1	2	3
Na _z O	0,01	0,01	0,1	SiO ₂	35,76	36,06	35,3
K ₂ O	0,01	0,01	_	H ₂ O ⁺	16,53	16,78	16,7
MgO	00,02	0,02	-	H ₂ O ⁻			0,7
CaO	41,60	41,82	41,2	CO2			0,4
B ₂ O ₃	4,44	4,55	4,8	Сумма	99,58	100,00	99,5
Al ₂ O ₃	1,21	0,75	0,3	Уд.в.	-	-	2,62

1, 2 – из Суйсё (преф. Миэ, Япония) [3]: 1 – с примесью 2% гидрогроссуляра, 2 – за вычетом примеси; 3 – из Фука (преф. Окаяма, Япония) [1, 2].

Эмпирическая формула (на 29 атомов О) [3]:

 $2 - Ca_{10,01}B_{1,74}Al_{0,19}Si_{8,05}O_{29} \cdot 12,25 H_2O.$

Повед. при иагр. [3]. На кривой ДТА оелита из Суйсё наблюдается эндотермический пик при 200° и экзотермический пик при 801°; главная потеря массы происходит около 200°. При нагревании в течение 1 ч при 300° превращается в 9,3Åтоберморит; при 1000° – в волластонит; на ИК-спектре после нагревания до 300° проявляются полосы поглощения при 3600–3400, 1390, 970 и 475 см⁻¹ [3].

Нахожд. В геленит-спёрритовом скарне в районе Фука [1] (преф. Окаяма, Япония) является главным компонентом жилы видимой протяженностью около 2 м и мощностью 1–3 см, секущей спёрритовую зону скарна (первоначально описан [2] как "10Å-тоберморит"). Ассоциирует с бултфонтейнитом, скоутитом, ксонотлитом и кальцитом. Оелит и скоутит – первичные минералы трещин заполнения, бултфонтейнит и ксонотлит – продукты изменения скоутита [1].

В серпентинитовом теле в долине Суйсё (преф. Миэ, Япония) [3] образует белые массивные агрегаты в родингитовой породе, развитой по габброидному пегматиту. Тесно ассоциирует с гидрогроссуляром, тоберморитом, бултфонтейнитом, эттрингитоподобным минералом, апофиллитом и кальцитом. Формирование его связывается с воздействием гидротермальных, богатых BF₃ растворов в позднюю стадию родингитизации (кальциевого метасоматоза).

В Крестморе (шт. Калифорния, США) наблюдался в прорастании с тоберморитом, пломбьеритом и вилькеитом (описан как "10Å-гидрат", см. т. Ш, вып. 3, с. 326).

Отл. От тоберморита отличается по содержанию бора, более высокому отношению Ca/Si.

Межилоскостные расстояния оелита из Суйсё, Япония [3] СиК_о-излучение, Ni-фильтр. Дифрактометр

hk!	1	d (Å)	hki	1	<i>d</i> (Å)	hkl	I	d(Å)
002	90	10,29	006	15	3,41	208	3	2,325
012	4	5,92	220	50	3,06	422;232;406	5	2,168
200	4	5,63	222;206	100	2,917	00.10;424	20	2,043
004	3	5,12	400	40	2,812	426	10	1,869
202	20	4,92	008	20	2,558	040	15	1,813
204	20	3,78	404	3	2,463			

Литература

1. Kusachi I., Henmi C., Henmi K. // J. Jap. Assoc. Miner., Petrol., Econ. Geol. 1984. Vol. 79, N 7. P. 267.

2. Kusachi I., Henmi C., Henmi K. // J. Miner. Soc. Jap. 1980. Vol. 14. Р. 314. На яп. яз.

3. Minakawa T., Inaba S., Noto S. // J. Jap. Assoc. Miner., Petrol., Econ. Geol. 1986. Vol. 81, N 4. P. 138.

СТРУКТУРА ТИПА ПЕЛЛИИТА

	Сингония	<i>a</i> ₀	b_0	<i>c</i> ₀	Уд.в.
Пеллиит Ba ₂ Ca(Fe, Mg) ₂ [Si ₆ O ₁₇]	Ромб.	15,611-15,690	7,1427,156	14,201-14,238	3,51-3,56

Пеллиит Pellyite $Ba_2Ca(Fe, Mg)_2[Si_6O_{17}]$

Назван по местонахождению в верховьях реки Пелли (Канада) [1].

Характ. выдел. Зернистые массы (зерна до 2 мм), кристаллы.

Структ. и морф. крист. Ромб. с. D_{2h}^{17} -Стст. $a_0 = 15,611-15,690, b_0 = 7,142-7,156, c_0 = 14,201-14,238$ Å; V = 1580-1598 Å³; Z = 4 [1-3].

Кремнекислородный радикал $[Si_6O_{17}]_{\infty}$ – циклически разветвленная цепочка из шестичленных колец, вытянутая вдоль оси с. Тетраэдры двух сортов: Si(2) связывают кольца в цепочку посредством общего атома (OH); Si(1) имеют по два общих атома O с Fe-тетраэдрами, объединяющими кремнекислородные радикалы в слои, параллельные плоскости *ac* (фиг. 95). Крупные катионы Ва и Са располагаются в слоях, чередующихся в направлении *c*: Ва – в десятивершинниках на уровне центров колец в плоскости симметрии, Са – в октаэдрах, в одном слое с Si(2)- и Fe-тетраэдрами [3].

Межатомные расстояния (в Å): Si(1)-O = 1,622; Si(2)-O = 1,609 (среднее); Fe-O = 1,949-2,070; Ca-O = 2,321-2,410; Ba-O = 2,756-3,242.

Различия в длинах связей Si(1)-O и Si(2)-O вызвано, по-видимому, аномально высоким значением тепловых колебаний атома O(1), что приводит также к существенному отклонению валентного угла Si(2)-O(1)-Si(2) от 180° (он равен 167,9°) [3].

Кристаллы таблитчатые до 1 см в диаметре и около 1 мм толщиной [3].

Физ. св. Сп. слабо выражена, заметна лишь в шлифах. Изл. раковистый. Тв. 6. Уд.в. 3,51–3,56 [1, 3] (вычисл. 3,48) [1]. Бесцветный до светло-желтого. Бл. стеклянный.

Микр. Двуосный (+). Np = h, Nm = a, Ng = c. $2V = 53-61^{\circ}$. $n_g = 1,641-1,649$, $n_m = 1,629-1,645$; $n_p = 1,627-1,643$; $n_g - n_p = 0,014-0,018$. Дисперсия очень сильная, r > v [1, 3].

Фнг. 95. Структура пеллиита в проекции вдоль оси b (по Пабсту и Харрису)

Хим. Теор. состав: BaO – 35,38; CaO – 6,47; FeO – 16,57; SiO₂ – 41,58. Fe частично замещается на Mn, Zn, Mg, Al. Большая часть Al замещает кремний в Si(1)-тетраздрах и распределяется в пределах зерен неравномерно.

Анализы (2-6 – микрозонд.):

	1	2	3	4	5	6
MgO	1,46	0,98	0,91	0,76	0,95	1,55
CaO	6,25	6,62	6,32	6,0 6	6,39	6,04
BaO	34,16	36,00	36,04	34,10	35,63	37,25
FeO	12,46	12,18	12,29	12,23	12,47	10,04
ZnO	1,05	1,20	0,24	0,20	0,16	0,61
MnO	0,57	1,54	1,36	1,44	1,39	2,91
Al ₂ O ₃	3,53	0.28	0,01	3,59	0,23	0,45
SiO ₂	40,50	40,86	41,47	41,03	41,88	42,44
Сумма	99,98	99,66	98,64	99,41	99,10	101,29
		Пересчет а	нализов иа 68	атомов О:		
Si	22,73	23,70	24,14	23,05	24,04	23,98
Al ^{IV}	2,10	0,19	-	1,37	_	0,02
Al ^{VI}	0,23	-	0,01	1,00	0,16	0,28
Fe ²⁺	5,85	5,91	5,98	5,79	5,99	4,74
Zn	0,43	0,51	0,10	0,08	0,26	0,25
Mn	0,27	0,76	0,67	0,68	0.68	1.39
Mg	1,22	0,85	0,79	0,63	0,82	1,30
Ba	7,51	8,18	8,22	7,55	8,01	8,24
Ca	3,76	4,11	3,94	3,64	3,70	3,66

1 – из скарнов в верховьях рек Пелли и Росс, Юкон (Канада), спектрально определены следы S, Sr, Na, B, Be, Ti и Zr [1]; 2 – верховья рек Пелли и Росс, Юкон [3]; 3 – пик Трамбл, округ Марипоса, Калифорния (США) [3]; 4, 5 – Биг Крик, округ Фресно, Калифорния (США) [3]; 6 – рудник Мадрелена, северное побережье Калифорнийского залнва, шт. Нью-Мексико (США) [3].

Диагн. исп. Медленно разлагается в разб. HCl с образованием белого осадка [1].

Повед. при нагр. При медленном нагревании до 385° не изменяется, затем постепенно темнеет. В интервале температур 385–680° показатели преломления возрастают: n_g – на 0,091, n_m – на 0,063, n_p – на 0,055, a_0 увеличивается на 0,27 Å, b_0 и c_0 уменьшаются на 0,15 и 0,18 Å соответственно; V увеличивается на 840 Å³. При нагревании до 850° постепенно становится рентгеноаморфным и при 900° плавится с образованием коричневого стекла (n = 1,68).

Нахожд. Встречается в контактово-метаморфических породах, обогащенных барием. Впервые был обнаружен [1] в верховьях рек Пелли и Росс (Юкон, Канада) в скарнах на контакте кварц-монцонитов и известняков. Скарны представлены кристаллическими джиллеспит-санборнитовыми породами, содержащими кварц, диопсид-салит, андрадит, цельзиан, тарамеллит, мюирит, витерит, барит, халькопирит. Позже найден в горах Сьерра-Невада на пике Трамбл в округе Марипоса (анализ 3) и в районе Биг Крик в округе Фресно (Калифорния, США), а также в руднике Мадрелена на северном побережье Калифорнийского залива (шт. Нью-Мексико). В этих месторождениях пеллиитсодержащие кварц-джиллеспит-санборнитовые породы слагают линзы и полосы в кварцитах (до нескольких метров протяженностью) вблизи контактов с крупными телами гранитов и гранодиоритов. Обычно содержится в небольших количествах наряду с тарамеллитом, витеритом, цельзианом, мюиритом, алфорситом, диопсид-салитом, тремолит-актинолитом, пиритом и пирротином, но в некоторых образцах является одним из основных минералов с размером зерен до 1 см [1, 3].

Межплоскостные расстояния пеллиита, Юкон (Канада) [1]

Си-излучение, Ni-фильтр. Дифрактометр

hkl	I	d(Å)	hki	I	d(Å)	hkl	1	d (Å)
200	30	7,83	114	20	3,12	424	50	2,117
002	10	7,10	222	10	2,955	711	30	2,112
110	10	6,51	023	30	2,856	604	5	2,099
111	40	5,91	314	5	2,717	332	20	2,074
310	40	4,22	223	5	2,682	712	15	2,048
400	25	3,92	512	25	2,661	406;622;515	20	2,022
113	50	3,83	420	40	2,643	800	25	1,955
021	55	3,46	404	20	2,629	713	10	1,950
402	100	3,43	610;115;421	25	2,598	623	5	1,926
204	20	3,25	513;602	10	2,456	334	10	1,852
022	65	3,19	130;315	20	2,356	516	10	1,829
221	45	3,17	423	6 0	2,308	008	10	1,774
313	45	3,15	132;514	30	2,237			

Литература

1. Montgomery J.H., Thompson R.M., Meagher E.P. // Canad. Miner. 1972. Vol. 11, pt 2. P. 444.

2. Meagher E P. // Amer. Miner. 1976. Vol. 61, N 1/2. P. 67.

3. Pabst A., Harris G. // Canad. Miner. 1984. Vol. 22, pt 4. P. 653.

СТРУКТУРА ТИПА ДЖОНИННЕСИТА

Сингония b c_0 ß Уд.в. an Джониннесит Трикл. 10.485 11.065 9.654 107.11° 81.17° 111.869 4.48 $Na_2Mn_9(Mg, Mn)_7 \times$ \times [Si₆O₁₇]₂(AsO₄)₂ \times \times (OH)₈

Джониниесит Johninnesite

 $Na_2Mn_9(Mg, Mn)_7[Si_6O_{17}]_2(AsO_4)_2(OH)_8$

Назван по имени Джона Иннеса, главного минералога корпорации Тсумеба, внесшего большой вклад в изучение минералогии месторождений Комбат и Тсумеб [1].

Характ. выдел. [1]. Волокнистые агрегаты (до 2, редко до 4,5 см в длину).

Структ. и морф. крист. Трикл. с. $C_i^1 - P \overline{1}$. $a_0 = 10,485$, $b_0 = 11,065$, $c_0 = 9,654$ Å; $\alpha = 107,11$, $\beta = 81,17$, $\gamma = 111,86^\circ$; Z = 1 [2]. $a_0 = 10,44$, $b_0 = 11,064$, $c_0 = 9,62$ Å; $\alpha = 107,43$, $\beta = 82,7$; $\gamma = 111,6^\circ$; V = 894 Å³; Z = 1 [1].

Цепочечный силикат [2] с дополнительными тетраэдрическими анионами $(AsO_4)^{3^-}$ и группами ОН⁻. Кремнекислородные анионы – циклически разветвленные цепочки из шестичленных колец $[Si_6O_{17}]_{\infty}$, вытянутые вдоль оси *с* (фиг. 96, *a*). Катионы Mn³⁺ и Mg²⁺ в октаэдрах из атомов О, часть которых принадлежит ОНгруппам; ионы Na⁺ – в сильно искаженных кубах из атомов О. Структура описывается как упаковка чередующихся слоев трех типов: тетраэдрических (T), где расположены Si–O-цепи и AsO₄-тетраэдры; октаэдрических (O) из связанных по ребру октаэдров [(Mn, Mg)O₆]; октаэдрических (O'), в которых находятся изолированные цепочки [MnO₆]-октаэдров, разделенных Na-полиэдрами (см. фиг. 96, *b*). Слои параллельны плоскости *bc* с чередованием вдоль оси *a* по типу …OTO'T.

Структура не имеет аналогов среди 13 известных арсеносиликатов, но по типу Si-O-цепей и характеру упаковки слоев из Si-O-тетраэдров и MO₆-октаэд-

Фиг. 96. Структура джониннесита (по Грис и др.)

а – проекция на плоскость *bc*: тетраэдрический слой из Si–O-цепей и As-тетраэдров; *б* – проекция на плоскость *ab*: слои из тетраэдров и октаэдров, параллельные *bc*

ров сходна со структурой хаунита Na(Mn, Fe)₁₂[Si₆O₁₇]₂(O, OH)₁₀, не содержащего As [1].

Средние межатомные расстояния (в Å): в шести независимых тетраэдрах Si-O = 1,624–1,644; As-O = 1,710; Mn-O(OH) = 2,158–2,230; Mg-(O, OH) = 2,114–2,137; Na-O (индивидуальные) = 2,394–3,254.

На кристалле (20×50×450 мкм) установлены грани (100) и (010), последняя плохо развита.

Физ. св. [1]. Сп. хорошая по (100), плохая по (010). Тв. не определена вследствие волокнистости агрегатов. Уд.в. 3,48 (вычисл. 3,51). Цв. светлый желтоватокоричневый. Черта коричневато-желтая. Бл. стеклянный.

Микр. [1]. Двуосный (-). $n_g = 1,699$, $n_m = 1,6968$, $n_p = 1,6742$; $n_g - n_p = 0,025$; $2V = 41,9^{\circ}$ (вычисл. 40,9°). Дисперсия ясная, r > v.

Хим. [1]. Анализ (микрозонд.): Na₂O – 3,1; MgO – 8,2; MnO – 40,7; FeO – 0,1; As₂O₅ – 10,6; H₂O – 2,6 (определена из отдельной навески); сумма 100,8.

Нахожд. [1]. Встречается на месторождении Комбат (Намибия) в толще слабо метаморфизованных пород в гидротермальных жилах, содержащих намбулит, манганит, серандит, барит, кальцит, гипс, в ассоциации с родонитом, кентролитом и рихтеритом.

Межплоскостные расстояния джониннесита из месторождения Комбат (Намибия) [1]

FeK_α-излучение, D = 114,6 мм. Камера Гандольфи

hkl	1	d(Å)	1	d(Å)	1	d (Å)
010	60	9,8	20	2,892	10	1,701
001	1	9,2	20	2,842	2	1,623
01Ī	2	7,8	100	2,676	30ш	1,606
0ī1	5	7,3	2	2,630	40ш	1,539
110	40	5,99	10ш	2,571	2	1,498
121	10	5,26	40	2,479	10	1,441
02 <u>1</u>	10ш	4,91	30	2,436	5	1,427
111	1	4,63	20	2,354	2	1,402
221	10	4,39	10	2,288	2	1,386
220	2	4,24	20	2,228	5	1,365
122	30	4,06	10	2,190	2	1,359
122	30ш	3,89	5	2,147	2	1,348
211	30	3,67	20	2,044	2	1,301
130	30	3,48	1	1,994	5	1,279
03ī	40	3,38	30	1,866	2	1,262
320	60	3,23	20	1,796	5	1,214
301	10	3,05	1	1,772		
	20	2,965	10	1,726		

Литература

1. Dunn P.J., Peacor D.R., Su S.C., Nelen J.A., Knorring O. // Miner. Mag. 1986. Vol. 50, pt 4. P. 667. 2. Grice I.D., Dunn P.J. // Amer. Miner. 1994. Vol. 79, N 9/10. P. 991.

СТРУКТУРА ТИПА ХАУИИТА

ГРУППА ХАУИИТА

Ранее группа, включавшая хауиит и дирит, рассматривалась среди силикатов с лентами кремнекислородных тетраэдров (т. III, вып. 3, с. 339).

Сингония a_0 b_0 c_0 α β Уд.в. γ Танеямалит Трикл. 10,198 9.820 9,485 90°30' 70°32' 108°34' 3,30 (Na,Ca) × \times (Mn²⁺,Mg,Fe³⁺, $AI_{12}[Si_6O_{17}]_2 \times$ \times (O,OH)₁₀

В структуре хауиита и дирита установлены цепочки [Si₆O₁₇] и ленты MO₆октаэдров. Танеямалит изоструктурен с хауиитом.

Танеямалит Taneyamalite (Na, Ca)(Mn²⁺, Mg, Fe³⁺, Al)₁₂[Si₆O₁₇]₂(O, OH)₁₀

Назван по месту первой находки на месторождении Танеяма (преф. Кумамото, Япония) [1]. Ранее описан как хауиитоподобный марганцевый минерал [2].

Характ. выдел. Скопления тонких изогнутых чешуек, слагающих прослойки (до 1 см в поперечнике) и прожилки [1].

Структ. и морф. крист. [1]. Трикл. с. C_1^1 -Р1 или C_i^1 -Р1. $a_0 = 10,198, b_0 = 9,820, c_0 = 9,485$ Å; $\alpha = 90^{\circ}30', \beta = 70^{\circ}32', \gamma = 108^{\circ}34'; a_0 : b_0 : c_0 = 1,038 : 1 : 0,966; Z = 1.$

В структуре Mn²⁺ занимает октаэдрические позиции.

Физ. св. Сп. весьма совершенная по (010). Тв. агрегатов около 5. Уд.в. 3,30 (вычисл.). Цв. зеленовато-серо-желтый. Черта светло-желтая. Бл. стеклянный [1].

Микр. Плеохроизм сильный: по Ng – светло-желтый, по Np = Nm – почти бесцветный. $Np \approx Nm < Ng$. Двуосный (–). Погасание почти прямое. Удлинение (+). $n_g = 1,676$, $n_m = 1,664$, $n_p = 1,646$; $n_g - n_p = 0,030$; $2V = 70^{\circ}$ [1].

Хим. Марганцевый аналог хауиита с Na > Ca, Mn^{2+} > (Mg, Fe³⁺, Al) и O > > (OH) [1].

Анализ образца из Ивайзава (микрозонд.) [1]: Na₂O – 1,80; MgO – 6,25; CaO – 0,02; MnO^{*} – 30,97; Al₂O₃ – 1,25; Fe₂O ^{**}₃ – 6,39; SiO₂ – 43,42; TiO₂ – 0,75; H₂O – 7,61 (вычисл.); сумма 98,46.

* Общий.

** Общее.

Эмпирическая формула (на Si = 12 и O + OH = 44): $(Na_{0.96}Ca_{0.01})_{0.97} \times (Mn_{7.20}^{2+}Mg_{2.58}Fe_{1.33}^{3+}Al_{0.41}Ti_{0.16})_{11.67}Si_{12}(O_{29.98}OH_{14.02})_{44}$.

По М. Флейшеру и Д. Мандарино (Fleischer, Mandarino, 1995) и А. Кларку (Clark, 1993) формула: Na(Mn²⁺, Mg, Fe²⁺)₁₂Si₁₂(O, OH)₄₄.

Нахожд. Впервые отмечен как хауиитоподобный минерал с доминирующим Мп на месторождении Танеяма (преф. Кумамото, Япония) [2]. Позже найден и детально охарактеризован [1] в образцах из отвалов Мп-Fe руд месторождения Ивайзава (преф. Сайтама, Япония), приуроченного к триасовым слабо метаморфизованным роговикам. Образует небольшие прослойки (до 1 см в поперечнике) в массе кариопилита и прожилки, секущие кварц-гематитовые агрегаты. Содержит включения баннистерита. В отвалах месторождения встречаются также браунит, родохрозит. кальцит, альбит, киноварь и пирит.

Некоторые образцы хауиита из Югославии [3] и Калифорнии (США) [4] по составу, вероятно, соответствуют танеямалиту.

Межилоскостные расстояния танеямалита из месторождения Ивайзава (Япония) [1]

			ге-тип-излучет	ние. диф	рактометр			
hkl	1	d (Å)	hki	1	d(Å)	hki	1	d (Å)
010	80	9,29	Ī30	100	3,273	014;423	35	2,216
Ī10	35	7,99	321	10	3,151	342	5	2,129
ī20	15	4,84	131	50	3,081	314	12	2,071
020	50	4,62	022	15	3,049	512	8	2,018
012	8	4,18	322	8	2,900	622;044	20	1,698
ī21	5	4,11	212;031	12	2,833	261;160	8	1,612
2 20	25	3,99	231	35	2,790	523;601	6	1,583
211;211	10	3,77	032	22	2,678	135	5	1,569
120	40	3,65	023	28	2,630	245	5	1,450
210;112	12ш	3,60	132	5	2,514	516;653	10ш	1,431
212	12	3,39	2 40;401	8ш	2,408			
222	20	3,35	023	10	2,380			

Литература

1. Matsubara S. // Miner. Mag. 1981. Vol. 44, N 333. P. 51.

2. Aoki Y., Isono K. // J. Geol. Soc. Jap. 1968. Vol. 74, N 2. Р. 136. На яп. яз.

3. Schreyer W., Abraham K. // Neues Jb. Miner. Abh. 1977. Bd. 130, H. 1/2. S. 114.

4. Wood M.R. // Miner. Mag. 1979 Vol. 43, N 327. P. 363.

СТРУКТУРА ТИПА САНЕРОИТА

	Синго- ния	a_0	<i>b</i> ₀	<i>c</i> ₀	α	β	γ	Уд.в.
Санероит Na ₂ (Mn ²⁺ , Mn ³⁺) ₁₀ [(Si ₁₁ V)O ₃₄ × × (OH) ₂](OH) ₂	Трикл.	9,741	9,974	9,108	92,70°	117,11°	105,30°	3,47

Санероит Saneroite Na₂(Mn²⁺, Mn³⁺)₁₀[(Si₁₁V)O₃₄(OH)₂](OH)₂

Назван по имени Е. Саиеро, профессора минералогии в университете Генуи (Италия) [1]. Первое описание и расшифровка структуры былн даны для минерала без названия [2, 3].

Характ. выдел. Кристаллы, образующие компактные агрегаты [2].

Структ. и морф. крист. Трикл. с. $C_i^{I} - P\overline{1}$. $a_0 = 9,741$, $b_0 = 9,974$, $c_0 = 9,108$ Å; $\alpha = 92,70$, $\beta = 117,11$, $\gamma = 105,39^{\circ}$; $a_0:b_0:c_0 = 0,976:1:0,913$; V = 745,1 Å³; Z = 1 [2].

Основными структурными элементами являются одинарные открыто разветвленные цепочки SiO₄-тетраэдров, вытянутые в направлении (110), и ленты из соединенных ребрами MnO₆-октаэдров (фиг. 97) [3]. Цепочка состоит из шести повторяющихся тетраэдров, T(1)-T(5) заселены только атомами Si, примыкающий к T(4) тетраэдр T(6) заселен на 50% атомами Si и на 50% атомами V. Тетраэдрические цепочки образуют слой, параллельный (111), который связан со слоями из MnO₆-октаэдров. Пять кристаллографически независимых MnO₆-

а – проекция вдоль [101]; б – проекция вдоль [110]

октаэдров образуют ленту в направлении [110], которая, повторяясь, создает слой с бесконечными каналами, занятыми атомами Na.

Средние межатомные расстояния (в Å) [3]: T(1-5)-O = 1,621-1,629; T(6)-O = 1,682; Mn-O = 1,196-2,256; Na-O = 2,492-2,616; H-O = 0,91 и 2,07; углы: O-T-O = 109,22-109,43; O-Mn-O = 64,24-81,14 и 168,01-178,66; O-H-O = 146°. Кристаллы таблитчатые, реже призматические до шестоватых [2].

Физ. св. Сп. совершенная в двух направлениях. Уд.в. 3,47 (вычисл. 3,51). Цв. от светло- до темно-желтого. Часто зонален. Бл. смоляной на гранях кристаллов и на сколах [1]. Значение точки Кюри (C = 3,97) указывает на присутствие Mn в двух валентных состояниях (Mn²⁺ и Mn³⁺) [1].

Микр. Плеохроизм: по Ng - желтовато-оранжевый, по Nm - лимонно-желтый, по Np – темно-оранжевый. Удлинение (+). Угол угасания около 15°. Двуосный (-). $n_g = 1,745 - 1,750, n_m = 1,740 - 1,745, n_p = 1,720; n_g - n_p = 0,025 - 0,030.$ $2V = 40 - 48^{\circ}$ [2].

Хим. Анализ (микрозонд., среднее для двух различно окрашенных зон [1, 2]): Na₂O - 4,53; CaO - 0,25; MnO - 40,13; Fe₂O₃ - 0,36 (общее); SiO₂ - 39,33; V₂O₅ -6,60; As₂O₅ - 0,29; H₂O - 5,00 (термогравиметрически); сумма 96,49.

Эмпирическая формула (на Si + V + As = 12): Na_{2 40} (Mn²⁺_{9 32}Fe³⁺_{0 07}Ca_{0 07})_{9 46} × $\times (Si_{10,77}V_{1,19}^{5+}As_{0,04}^{5+})_{12}O_{35,30} \cdot 4,57 H_2O.$

Анализ баланса электростатических валентностей показал отношение Mn²⁺/Mn³⁺ = 9,29/0,71, что соответствует содержанию 37,28% MnO и 3,17% Mn₂O₃, или в форм. ед.: Mn_{8.66}Mn_{0.66}²⁺.

По данным изучения термического поведения магнитной восприимчивости Mn²⁺/Mn³⁺ = 8,2/1,8, что отвечает содержанию 32,90% MnO и 8,04% Mn₂O₃, или в форм. ед.: $Mn_{7.64}^{2+}Mn_{1.98}^{3+}$ [1]. Содержание V_2O_5 в различно окрашенных зернах: 5,6% (в темных) и 7,6% (в светлых) [1].

Повед. при нагр. Потеря веса при 760° – 2,5% (дегидратация) и при 970° – 2,5% (удаление ОН). Допускается, что вода, выделяющаяся при 760°, связана с атомами Na в каналах структуры [1, 2].

Нахожд. Встречен [2] в Валь-Гравеллия, область Лигурия, Северные Апеннины (Италия), в виде тонких (1-2 мм) прожилков, секущих метаморфизованную марганцевую руду, в состав которой входят рансьеит, браунит, кариопилит, родонит, инезит, ганофиллит, Mn-аксинит, тиценит, сурсассит, карфолит, пьемонтит, тефроит, неотокит, родохрозит, Са-кутногорит, суссексит, саркинит. Найден в ассоциации с кварцем, баритом, кариопилитом и ганофиллитом. Образовался в связи с гидротермальным выполнением трещин в условиях пренит-пумпеллиитовой фации метаморфизма [1].

Межплоскостные расстояния санеронта из Италия [2] МоК _α -излучение. Дифрактометр								
hki	1	d (Å)	hkl	1	d (Å)	hkl	1	d (Å)
001	Средн.	7.90	4 11	Средн.	2,37	503;532;421	Слаб.	1,847
Ĩ10	•	7,44	113	Оч.	2,31	514	Слаб.	1,777
ī11	Слаб.	6,58		слаб.		520;312	•	1,734
021		3,74	221	Слаб.	2,97	450	Средн.	1.682
131;221	Сильн.	3,06	042;214	w	2,23	4 33		1.678
321	Средн.	3,01	341	Средн.	2.20	534;425	Слаб.	1.651
231	•	2,98	340	Слаб.	2,13	316;206;	•	1,490
213	Сильн.	2,83	342;124	Среди,	2,09	643;254;		
220;112		2,70	311	Слаб.	2,06	535		
303	Средн.	2,65	4 30;433	Оч.	2,02	630;105;605	Средн.	1.433
2 32		2,62		слаб.			• ···	•
013	•	2.43						

Литература

1. Lucchetti G., Penco A.M., Rinaldi R. // Neues Jb. Miner. Monatsh. 1981. H. 4. S. 161.

2. Cortesogno L., Lucchetti G., Penco A.M. // Rend. Soc. ital. miner. e. petrol. 1979. Vol. 35, fasc. 1. P. 151. 3. Basso R., Della Giusta A.D. // Neues. Jb. Miner. Abh. 1980. Bd. 138, H. 3. S. 333.

СИЛИКАТЫ С ЦЕПОЧКАМИ ДЕВЯТИЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА ЛИБАУИТА

	Сингония	<i>a</i> ₀	b 0	c_0	β
Либауит Са ₃ Cu ²⁺ ×	Монокл.	10,160	10,001	19,972	91,56°

× [Si₉O₂₆]

Либауит Liebauite Ca₃Cu₁₀[Si₉O₂₆]

Назван по имени известного кристаллохимика проф. Ф. Либау [1].

Характ. выдел. Очень мелкие кристаллы (до 0,03 мм).

Структ. и морф. крист. [1]. Монокл. с. $C_{2h}^6 - C2 / c. a_0 = 10,160, b_0 = 10,001, c_0 = 19,972$ Å; $\beta = 91,56^\circ$; V = 2028,7 Å³; Z = 4.

Либауит – первый пример среди природных силикатов, где обнаружены девятизвенные циклически разветвленные цепочечные SiO₄-анионы. Основу структуры составляют изолированные цепочечные анионы [Si₉O₂₆], построенные из шестичленных колец, связанных тремя мостиковыми SiO₄- группами (фиг. 98, *a*, *б*). Цепи вытянуты вдоль [10 $\overline{1}$] и содержат по два циклических разветвления в единичном фрагменте из 18 Si–O₄-тетраэдров.

Существенную роль в стабилизации структуры играют катионы Cu^{2+} , расположенные между атомами кислорода цепочечных SiO_4 -анионов. Координационные полиэдры трех независимых Cu^{2+} неодинаковы: два катиона Cu^{2+} находятся в центрах квадратных сечений искаженных октаэдров из атомов кислорода (координация [4 + 2]), третий Cu^{2+} – в квадратном основании пирамиды (координация [4 + 1]).

Межатомные расстояния (в Å): Si-O = 1,569-1,677; кратчайшие Cu-O = 1,943, 1,972, 1,959. Валентные углы в SiO₄-анионе: O-Si-O = 101,8-119,0; Si-O-Si = 125,8-155,5°.

Физ. св. Тв. 5-6. Цв. голубовато-зеленый. Бл. стеклянный.

Микр. Плеохроизм не наблюдался. Двуосный (+). $n_g = 1,734$, $n_m = 1,723$, $n_p = 1,722$; $n_g - n_p = 0,012$. $2V = 72,8^{\circ}$ (вычисл.).

Хим. Анализ (микрозонд., среднее из 6 определений по 2 зернам) [1]: CaO – 15,0; CuO – 34,9; SiO₂ – 48,5; сумма 98,4.

Эмпирическая формула (на 26 атомов О): Ca2 99Cu4 91Si9.05O26.

Нахожд. Найден в пустотах и трещинах небольшого (длиной около 0,5 м) ксенолита термально метаморфизованной породы в шлаковом конусе в Саттельберге, вблизи Круфта (Эйфель, Германия) (четвертичное вулканическое поле Восточного Эйфеля). Трещины в ксенолите выполнены санидином, клинопироксеном, кристо-

балитом, иногда муллитом, кордиеритом, псевдобрукитом, гематитом. Си-минералы (тенорит, вольбортит, кальциовольбортит, купрориваит и либауит) очень редки.

Встречен также в ксенолитах в шлаковых конусах Никенихер Саттель (Восточный Эйфель) и Эммельберг (Западный Эйфель).

Межплоскостные расстояния либауита из Саттельберга (Германия) [1] D = 57,3 мм

hki	1	d (Å)	hki	I	d(Å)
	10	7,69*	310	40	3,20*
110	60	7,13	131	90	3,12
111	70	6,70	312	100	3.00*
112	10	5,82	224	10	2,94
020	30	4,96	313	10	2,84
20 <u>2</u>	30	4,56	314	10	2,73
114	20	4,10	117	10	2,66
220	40	3,58	226	60	2,45
22 <u>1</u>	30	3,40	226	70	2,41
222	20	3,33*	440	50	1,78*

^{*} Линии купрориваита.

Литература

1. Zöller M.H., Tillmanns E., Hentschel G. // Ztschr. Kristallogr. 1992. Bd. 200, H. 1. S. 115.

СИЛИКАТЫ С ЛЕНТАМИ КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Строение ленточных радикалов в силикатах определяется числом кремнекислородных цепочек, образующих ленты (2, 3 и более), и типом цепочек (простые, открыто-или циклически-разветвленные, по Либау, 1988). Ленты могут состоять как из одинаковых, так и из разных цепочек. Периодичность ленты определяется общим числом атомов в каждом звене. Соотношения Si/O могут быть разными, но отличаются от 1/3.

СИЛИКАТЫ С ЛЕНТАМИ ЧЕТЫРЕХЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа амфиболов
Группа роговых обманок
Высокоглиноземистые роговые обманки
Саданагаит (K, Na)Ca ₂ (Fe ²⁺ , Mg, Al, Fe ³⁺ , Ti) ₅ [(Si, Al) ₈ O ₂₂](OH) ₂
Магнезиосаданагаит (K, Na)Ca ₂ (Mg, Fe ²⁺ , Al, Fe ³⁺ , Ti) ₅ ×
\times [(Si, Al) ₈ O ₂₂](OH) ₂
Группа глаукофана
Нибёит NaNa ₂ Mg ₃ Al ₂ [Si ₇ AlO ₂₂](OH) ₂
Ликеит NaNa ₂ Mg ₂ Fe $_2^{3^+}$ Li[Si ₈ O ₂₂](OH) ₂
Корнит (K, Na)(Na, Li) ₂ (Mg ₂ Mn ³⁺ _{1,5} Fe ³⁺ _{0,5} Li) ₅ [Si ₈ O ₂₂](OH) ₂
Группа рихтерита
Калий-фтор-рихтерит К(Na, Ca)Mg5[Si8O22](F, OH)2
Фторрихтерит NaCaNa(Mg, Fe)5[Si8O22](F,OH)2
Структура типа ершовита
Ершовит Na ₄ K ₃ (Fe ²⁺ , Mn, Ti) ₂ [Si ₈ O ₂₀ (OH) ₂](OH) ₂ - 4H ₂ O
Структура типа нафертисита
Нафертисит Na ₃ (Fe ²⁺ , Fe ³⁺) ₆ Ti ₂ [Si ₁₂ O ₃₀]O ₄ (O, OH) ₇ · 2H ₂ O
Структура типа тинаксита
Группа тинаксита
Токкоит K ₂ Ca ₄ [Si ₇ O ₁₈ (OH)](F, OH)

. ..

СИЛИКАТЫ С ЛЕНТАМИ ШЕСТИЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа зорита Зорит Na₆Ti(Ti_{0.9}Nb_{0,1})₄[Si₆O₁₇]₂(O, OH)₅ · 11H₂O

СИЛИКАТЫ С ЛЕНТАМИ ВОСЬМИЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа фенаксита Группа фенаксита Манаксит Na₂K₂Mn₂[Si₈O₂₀] Структура типа ревдита Ревдит^{*} Na₁₆[Si₈O₁₅(OH)₆][Si₄O₆(OH)₅]₂(OH)₁₀ · 28H₂O

СИЛИКАТЫ С ЛЕНТАМИ ИЗ УТРОЕННЫХ ЧЕТЫРЕХЧЛЕННЫХ ЦЕПОЧЕК КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

Структура типа карлостуранита Карлостуранит (Mg, Fe, Ti)₂₁[(Si, Al)₁₂O₂₈(OH)₄](OH)₃₀ · H₂O

СИЛИКАТЫ С ЛЕНТАМИ ЧЕТЫРЕХЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА АМФИБОЛОВ

ГРУППА РОГОВЫХ ОБМАНОК

ВЫСОКОГЛИНОЗЕМИСТЫЕ РОГОВЫЕ ОБМАНКИ

Среди этого типа роговых обманок были описаны (т. Ш, вып. 3, с. 100): паргасит, чермакит, магнезиочермакит*, феррочермакит, гастингсит, феррогастингсит*. керсутит и феррокерсутит.

Согласно классификации амфиболов, принятой ММА (Leak, 1978), минеральными видами не являются. Выделенный в качестве минерального вида магнезиогастингсит считался синонимом паргасита.

R

	a_0	b_0	c_0	β	Уд.в.
Саданагаит (К, Na)Ca ₂ (Fe ²⁺ , Mg, Al, Fe ³⁺ ,	9,922	18,03	5,352	105,30°	3,30
$Ti_{5}[(Si, AI)_{8}O_{22}](OH)_{2}$	0.04	10.000	5 35 4	105.55	
Магнезиосаданагаит (K, Na)Ca ₂ (Mg, Fe ⁻¹ , Al, E_e^{3+} Ti) (/Si Al) O (/OH)	9,964	18,008	5,354	105,55	3,27
10^{1} , 10^{1}					

Фиг. 99. Положение саданагаита и магнезиосаданагаита в классификации кальциевых амфиболов (по Лику, 1978) при (Ca+Na)_B ≥1,34; Na_B < 0,67; (Na+K)_A ≥0,50; Ti < 0,50; Fe³⁺ ≤Al^{VI}

Саданагаит и магнезиосаданагаит относятся к кальциевым моноклинным амфиболам и изоструктурны с паргаситом [1]. Характеризуются наиболее высоким содержанием Al^{IV} – от 2,76 до 3,54 на 1 форм. ед. при расчете на 23 атома О и низким содержанием Si – менее 5 (фиг. 99). В их структурной формуле позиция В полностью занята двумя атомами Ca; позиция A – атомами K и Na при преобладании K над Na. Число катионов в позиции C близко 5,00.

Литература

1. Shimazaki H., Bunno M., Ozawa T. // Amer. Miner. 1984. Vol. 69, N 5/6. P. 465.

Саданагаит Sadanagaite (K, Na)Ca₂(Fe²⁺, Mg, Al, Fe³⁺, Ti)₅[(Si, Al)₈O₂₂](OH)₂

Назван в честь японского минералога Р. Саданага [1].

Разнов. Ферросаданагаит.

Характ. выдел. Кристаллы длиной до 1 мм, поликристаллические агрегаты.

Структ. и морф. крист. [1]. Монокл. с. $C_2^3 - C2$ или $C_s^3 - Cm$ и $C_{2h}^3 - C2/m$. $a_0 = 9,922, b_0 = 18,03, c_0 = 5,352$ Å; $\beta = 105,30^\circ$; $a_0:b_0:c_0 = 0,551:1:0,296$; Z = 2.

Кристаллы призматические.

Физ. св. [1]. Сп. совершенная по (110).

Тв. около 6. Уд.в. 3,30 (вычисл.). Цв. от темно-бурого до черного. Черта светло-бурая. Бл. стеклянный.

Микр. [1]. Плеохроизм: по Ng' – зеленовато-бурый, по Np' – светло-бурый. Двуосный (+). $cNg = 28^{\circ}$; $n_g = 1,697$, $n_m = 1,684$, $n_p = 1,673$; $n_g - n_p = 0,013$; $2V = 80-90^{\circ}$ (86° вычисл.).

Хим. Изоморфизм: К замещается на Na; Fe^{2+} – на Mg, Fe^{3+} , Al, Ti, Mn (при $Fe^{2+} > Mg$); Si – на Al.

Анализы (микрозонд.):

	1	2	3	4	5	6	7
Na ₂ O	1,0	0,6	0,6	1,2	1,04	1,26	1,40
K ₂ O	3,7	3,7	3,6	3,1	3,17	3,34	3,24
MgO	6,6	6,1	6,6	6,4	2,19	2,34	2,09
CaO	12,3	11,9	12,0	11,9	11,25	11,16	11,41
FeO	15,2	17,4	16,2	17,8	20,85	21,17	22,37
MnO	0,1	0,3	0,4	0,5	0,12	0,09	0,00
Al ₂ O ₃	24,8	22.6	22,5	19,7	25,77	25,42	24,75
SiO ₂	30,2	29,9	31,1	33,5	28,94	28,20	27,86
TiO ₂	4,0	4,3	4,5	2,1	4,09	4,76	4,59
Сумма	97,9	96,8	97,5	96,2	97,42	97,74	97,71

• Общее.

Пересчет хим. анализов (1-4 - на 23 атома О, 5-7 - на 13 катионов):

	1	2	3	4	5	6	7
Si Al ^{IV}	4,61 3,39 8,00	$\left. \begin{array}{c} 4.66\\ 3,34 \end{array} \right\} 8,00$	$\begin{array}{c} 4,77\\ 3,23 \end{array}$ 8,00	5,24 2,76 8,00	4,52	4,42	4,40

	1	2	3	4	5	6	7
AI ^{IV}	1,07	0,81]	0,85	0,88]	4,75	4,69	4,61
Ті	0,46	0,50	0,51	0.25	0,48	0,56	0,55
Fe ³⁺	0,40	0,63	0,48	0,39	0,53	0,55	0,55
Fe ²⁺	1,55	1,63	1,60	1,94	2,19	2,22	2,40
Mn	0,02	0,04	0,05	0.06	0,02	0,01	0,00
Mg	1,50	1,41	1,52	1,48	0,51	0,55	0,49
Ca	2,01	1,99	1,97	2.00	1,88	1,87	1,93
Na	0,29	0,17	0,19	0,37	0,32	0,38	0,43
к	0,71	0,74	0,69	0,62	0,63	0,67	0,65

Примечание. Соотношение Fe^{2+} и Fe^{3+} – по уравнению $Al^{IV} = Al^{VI} + Fe^{3+} + 2Ti + Na + K$ (анализы 1-4), с учетом формулы (анализы 5-7).

1-4 – нз скарнов о-ва Юге, Япония [1]; 5-7 – из роговиковоподобной породы среди мраморов, Западное Прибайкалье [2].

Нахожд. Встречен на о-ве Юге (Япония) в скарновых прослоях (до 50 см) среди известняков. Скарновые пласты имеют симметричное строение; от известняков к центру пластов выделяются зоны: волластонитовая, гранат-везувиановая и везувиан-саданагаитовая или везувиановая. Кристаллы (длиной до 1 мм), мелкокристаллические агрегаты саданагаита находятся в массе везувиана, сопровождаются небольшими количествами шпинели, титанита, ильменита и апатита. Считают, что скарны о-ва Юге образовались из богатых Аl, Fe и Ti осадков (возможно, латеритов), переслаивающихся с известняками, под воздействием гидротермальных растворов.

Разнов. Ферросаданагаит – ferrosadanagaite [2].

Характеризуется высоким содержанием Fe²⁺ (до 2,40 на форм. ед.) – см. хим. анализы 5–7.

 $a_0 = 9,945$, $b_0 = 17,998$, $c_0 = 5,355$ Å; $\beta = 105,41^{\circ}$; V = 924 Å³.

Неправильные зерна (до 0,75 мм) и их агретаты. Цв. темно-бурый до черного. Плеохроизм: по Ng – коричневый, по Nm – грязно-зеленый, по Np – коричневатожелтый. Окраска нередко неоднородная: коричневая в центре и зеленоватая по краям. $cNg = 16-18^{\circ}$; $n_g = 1,714-1,716$, $n_p - 1,964-1,696$; $n_g - n_p = 0,020-0,022$; $2V = 78-84^{\circ}$. Дисперсия, r > v.

Найден в линзе мелкозернистой роговиковоподобной породы среди мраморов, сложенной анортитом, магнетитом, шпинелью и саданагаитом (до 10%) и содержащей маргарит, биотит, клиноцоизит, корунд, рутил, титанит, кальцит, в Приольхонье (Западное Прибайкалье).

Межплоскостные расстояния ферросаданаганта из Приольхонья [2] FeK _q -излучение, D = 57,3 мм								
hkl	I	d (Å)	hki	I	d (Å)			
110	10	8,34	370	3	2,01			
111	4	4,95	2 62	1	1,952			
040	4	4,53	172	3	1,857			
150	5	3,38	0.10.0	1	1,798			
240	4	3,26	2.10.0	3	1,687			
201	5	3,12	333	5	1,651			
221	4	2,94	113	3	1,612			
151	10	2,70	153	6	1,595			

hkl	1	d(Å)	hkl	1	d (Å)
002	10	2,58	641	3ш	1,554
260	2	2,52	263	4	1,530
42 <u>1</u>	4	2,35	0.12.0	2	1,500
312	2	2,31	153	3	1,478
042	2	2,24	4.10. Ī	5	1,448
261	5	2,16	621	I	1,406
402	4	2,05	512	5	1,372

Литература

1. Shimazaki H., Bunno M., Ozawa T. // Amer. Miner. 1984. Vol. 69, N 5/6. P. 465.

2. Савельева В.Б., Кориковский С.П. // Докл. РАН. 1996. Т. 351.

Магнезиосаданагаит Magnesiosadanagaite

(K, Na)Ca₂(Mg, Fe²⁺, Al, Fe³⁺, Ti)₅[(Si, Al)₈O₂₂](OH)₂

Назван по близости к саданагаиту н содержанию Mg [1].

Характ. выдел. Кристаллы и зерна.

Структ. и морф. крист. Монокл. с. $C_2^3 - C2$ или $C_s^3 - Cm$ и $C_{2h}^3 - C2/m$. $a_0 = 9,964, b_0 = 18,008, c_0 = 5,354$ Å; $\beta = 105,55^\circ$; $a_0:b_0:c_0 = 0,553:1:0,297; Z = 2$.

Кристаллы короткопризматические.

Физ. св. Сп. совершенная по (110). Тв. около 6. Уд.в. 3,27 (вычисл.). Цв. от темно-бурого до черного. Черта светло-бурая. Бл. стеклянный.

Микр. Плеохроизм: по Ng' – буровато-желтый, по Np' – бесцветный. Двуосный (+). $cNg = 26^{\circ}$; $n_g = 1,699$, $n_m = 1,686$, $n_p = 1,674$; $n_g - n_p = 0,025$; $2V \simeq 90^{\circ}$ (88° вычисл.).

Хим. Изоморфизм: К замещается на Na; Mg – на Fe²⁺, Al, Fe³⁺, Ti, Mn (при Mg > Fe²⁺); Si – на Al.

Анализ (микрозонд.) из скарнов о-ва Миодзин: Na₂O – 0,7; K₂O – 3,8; MgO – 8,0; CaO – 12,5; FeO – 13,7; MnO – 0,1; Al₂O₃ – 22,0; SiO₂ – 32,1; TiO₂ – 3,2; сумма 96,1.

Эмпирическая формула (на 23 атома О): $(K_{0,75}Na_{0,22})_{0,97}(Mg_{1,84}Fe_{1,37}^{2+} \times Al_{0.94}^{V1}Fe_{0.39}^{3+}Ti_{0.38}Mn_{0.01})_{4,93}(Si_{4,95}Al_{3.05}^{IV})_{8,00}O_{23}$.

Нахожд. Установлен на о-ве Миодзин (Япония) в скарнах, образующих линзы и неправильные стяжения до нескольких десятков сантиметров в кристаллических известняках. Тесно ассоциирует с титанистым фассаитом (=Fe-Al-диопсиду или авгиту, главный минерал), шпинелью, везувианом, флогопитом и небольшими количествами титанита, ильменита, магнетита, пирротина, апатита и перовскита.

Отл. От саданагаита отличается цветами плеохроизма.

Межллоскостные расстояния магнезиосаданаганта, о-в Миодзин (Япония) [1] Дифрактометр

hki	I	d (Å)	hkl	1	d(Å)	hki	I	d (Å)
020	10	9,00	350	13	2,392	2 82	5	1,695
110	80	8,48	4 2ī	16	2,355	391	2	1,685
111	5	4,97	312	5	2,317	461	30	1,654
200	15	4.80	242	3	2,238	480	5	1,643
040	10	4,50	261	55	2,162	1.11.0	3	1,614
111	3	4,01	202	12	2,051	600	5	1,599
131	40	3,39	351	15	2,020	402	10	1,559

12. Минералы т. IV, вып. 3

hkl	I	d(Å)	hkl	I	d (Å)	hkl	I	d (Å)
2 40	100	3,28	370	5	2,004	263	3	1,529
310	70	3,15	510	10	1,909	551	6	1,507
221	50	2,951	46Ī	3	1,892	153	3	1,476
330	30	2,823	44 <u>2</u>	3	1,865	3.11.0	5	1.457
33Ī	45	2,766	530	5	1,829	66 ī	10	1,452
151	60	2,707	0.10.0	5	1,801	512	5	1,370
061	35	2,594	512	2	1,778			
202	15	2,578	332	2	1,715			

Литература

1. Shimazaki H., Bunno M., Ozawa T. // Amer. Miner. 1984. Vol. 69, N 5/6. P. 465.

ГРУППА ГЛАУКОФАНА

В группе ранее описаны (т. III, вып. 3, с. 207): глаукофан, рибекит, магнезиорибекит, арфведсонит, экерманнит, коцулит.

	Сингония	<i>a</i> 0	b_0	<i>c</i> ₀	β	Уд.в.
Нибёнт NaNa2Mg3Al2[Si7AlO22](OH)2	Монокл.	9,6 65	17,752	5,303	104,11°	_
Ликеит NaNa ₂ $Mg_2Fe_2^{3+}Li[Si_8O_{22}](OH)_2$		9,822	17,836	5,286	104,37	3,11
Корнит (K, Na)(Na, Li) ₂ ×	**	9,94	17,80	5,302	105,5	3,15
$\times (Mg_2Mn_{1.5}^{3+}Fe_{0.5}^{3+}Li)_5 \times$						
\times [Si ₈ O ₂₂](OH) ₂						

Нибёит включен в группу на основании структурных данных. В ликеите в отличие от литиевого моноклинного амфибола клинохолмквистита (Li, Ca)₂(Al, Mg, Fe)₃[Si₈O₂₂](OH, O, F)₂ Li локализован в октаэдре M(3), а не в центре восьмивершинника M(4); Al в M(3) отсутствует. Корнит структурно не изучен; отличается от ликеита высоким содержанием Mn. На основании пересчета анализа в корните Li находится как в позиции M(4), так и в M(3), но в последней преобладает.

Нибёит Nyböite

NaNa2Mg3Al2[Si7AlO22](OH)2

Назван по месту находки в Нибё (Норвегия) [1].

Синов. "Миясироит" (miyashiroite) – гипотетический конечный член натриевых моноклинных амфиболов [2].

Разиов. Ферронибёит.

Характ. выдел. Микроскопические таблитчатые зерна, порфиробластовые образования.

Структ. и морф. крист. Монокл. с. $C_{2h}^3 - C2/m$. $a_0 = 9,665$, $b_0 = 17,752$, $c_0 = 5,303$ Å; $\beta = 104,11^\circ$; $a_0:b_0:c_0 = 0,544:1:0,298$; V = 882,36 Å³; Z = 2 [1]. Отмечаются колебания (в Å): a_0 от 9,634 до 9,684, b_0 от 17,52 до 17,784, c_0 от 5,296 до 5,303 Å; β от 104,06 до 104,23°; V от 879,27 до 883,90 Å³.

В отличие от структуры экерманнита Al входит не только в октаэдрическую M(2), но и в тетраэдрическую позицию.

354

355

Катионное заполнение структурных позиций:

	Na	К	Mg	Fe ²⁺	Ca	Fe ³⁺	Tı	Si	Al
A	0,596 0,816	0,024							
M(1)			1,824-	0,042-					
M(2)			0,040-	0,176 до 0,20		0,040	0.017		1,400
M(3)			0,400 0,800	0.046-		0,170			1,510
(5)			1,000	0,200					
M(4)	1,512-				0,240-				
т	1,760				0,488			7 107	0 500
1								7,180-	0,390-
								7,390	0,814

Межатомные расстояния (среднее, в Å): T(1)-O = 1,642; T(2)-O = 1,629; M(1)-O = 2,079; M(2)-O = 1,965; M(3)-O = 2,097; M(4)-O = 2,498.

Микр. Плеохроизм: по Ng' – бесцветный, по Np' – светло-фиолетовый [3]; у ферронибёита – по Ng – пурпурный, по Nm – голубовато-зеленый, по Np – светложелтовато-зеленый (Np≪Nm≪Ng) [4].

Хим. Теор. состав: Na₂O – 10,83; MgO – 14,13; Al₂O₃ – 23,82; SiO₂ – 49,08; H₂O – 2,10.

Анализы (1,2 – микрозонд., 1 – среднее из 19; 3–8 – энергодисперсионный анализ):

	1	2	3	4	5	6	7	8
Na ₂ O	9,26	8,55	8,42	8,32	8.03	7,95	7,85	7,61
K ₂ O	0,14	0,11	0,27	0,29	0,33	0,37	0,50	0,58
MgO	14,21	13,12	12,42	12,38	6,59	7,47	5,61	6,42
CaO	2,33	2,75	2,93	3,71	2,84	2,93	3,60	3,88
MnO	0,02	0,08	0 ,0 7	He onp.	0,00	0,00	0,00	0,00
FeO [*]	5,03	5,75	9,76	10,64	18,97	17,28	20,06	19,55
NiO	0,11	0,11	-	-	-	_	-	_
Al ₂ O ₃	12,92	13,87	12,09	12,92	11,31.	11,18	12,86	13,68
SiO ₂	53,84	52,63	50,89	48,87	47,64	48,86	46,91	45,90
TiO ₂	0,16	0,15	0,08	He onp.	0,37	0,39	0,40	0,18
<u>C1</u>	0,01	0,02		-		-	-	_
Сумма	98,03	97,14	96,93	97,13	96,08	96,43	97,79	97,80

* Общее.

Пересчет анализов на 22 атома О + 2(ОН) и 13 катионов за вычетом Fe³⁺ в позиции М(4):

	1	2	2a [*]	3	4	5	6	7	8
Si	7,333	7,247	7,237	7,196	6,947	7,124	7,225	6,969	6,775
AI	2,075	2,252	2,191	2,015	2,165	1,993	1,948	2,252	2,380
Mg	2,884	2,692	2,944	2,618	2,624	1,469	1,647	1,243	1,413
Fe ²⁺	0,572	0,662	0,611	0,822	0,799	1,997	1,899	2,273	1,896
Fe ³⁺	-	_	-	0,332	0,466	0,375	0,238	0,219	0,517
Ti	0,016	0,016	0.017	0,009	-	0,042	0,043	0,045	0,020
Mn	0,002	0,009	-	0,008	_	-	_	_	_
Ni	0,012	0,012	-	-	-	_	-	_	_
Ca	0,340	0,406	0,326	0,444	0,565	0,455	0,464	0,573	0,614

	1	2	2a*	3	4	5	6	7	8
Na	2,445	2,283	2,390	2,308	2,293	2,328	2,279	2,261	2,178
к	0,024	0,019	0,024	0,049	0,053	0,063	0,070	0,095	0,109
Сумма	15,703	15,998	15,740	15,801	15,911	15,846	15,813	15,929	15,901
катионов									
H ₂ O	-	-	2,19						

* Расчет по ренттеноструктурным данным.

 2 – из эклогитов Нибё (Норвегия) [1]; 3, 4 – из ядер порфиробластов эклогита области Дуихай (пров. Цзянсу, Китай) [3]; 5–8 – пурпурный ферроннбёнт из жадеит-кварцевых (коэситовых) метаморфических фелсов мссива Дора-Майра (Западные Альпы, Италия) [4].

Нахожд. Установлен при кристаллохимическом изучении амфиболов в образце из расслоенной линзы эклогитов, залегающей среди гнейсов амфиболитовых фаций Нибё (о-в Нордфиорд, Норвегия) [1]. Связан с ранней генерацией амфиболов, представленных также винчитом и барруазитом, ассоциирующих с гранатом и жадеитом.

В коэситсодержащем эклогите Цзяньчан в области Дунхай (северо-восток пров. Цзянсу, Китай) обнаружен [3] в виде порфиробластов, которые окружены каемками тарамита и далее каемками симплектита из роговой обманки, эгирин-авгита и альбита. Тесно ассоциирует с жадеитовым клинопиркосеном, гранатом и эпидотом. Стабилен в условиях высоких температур (740°) и очень высоких давлений (более 28 кбар) [3].

Ферронибеит найден [4] в ультравысокобарических метаморфических фелсах в южной части массива Дора-Майра (Западные Альпы, Италия), первоначально сложенных жадеитом, гранатом, фенгитом и кварцем (коэситом). Формировался на ранней стадии ретроградного метаморфизма вместе с омфацитом, катофоритом и альбитом, образуя реакционные каемки вокруг альмандинового граната и идиобластические таблитчатые зерна в массе альбита, при температуре 500–570° и давлении 12–15 кбар.

Искусств. Высоконатриевый амфибол (~90 мол.%) – "миясироит" синтезирован при температуре 800–950° и давлении более 20 кбар [5]. Из смеси исходного валового состава Na₃Mg₃Al₃Si₇O₂₃ + H₂O при 600–900° и 19–32 кбар получен твердый раствор нибёнта-глаукофана-катофорита-экерманнита с содержанием первого до ~70 мол.% [6]; при тех же условиях из Na₃Mg₃Al₃Si₇O₂₃ + кварц образуется твердый раствор нибёита-глаукофана-катофорита с низким содержанием нибёита.

Синтезирован Sc-F-аналог нибёита [7] при температуре 1000° и давлении 1 бар путем плавления сухих смесей фтор-амфиболовой стехиометрии обычных реагентов. Параметры его элементарной ячейки: $a_0 = 9,8425$, $b_0 = 18,157$, $c_0 = 5,3381$ Å; $\beta = 103,979^\circ$; V = 925,72 Å³. Атом Sc занимает позиции M(2).

Разнов. Ферронибёит (ferro-nyböite) – см. текст; хим. анализы 5-8 [4].

Литература

- 1. Ungaretti L., Smith D.C., Rossi G. // Bull. minér., 1981. Vol. 104, N 4. P. 400.
- 2. Phillips R., Layton W. // Miner. Mag. 1964. Vol. 33, N 267. P. 1097.
- 3. Hirajima T., Zhang R., Li J., Cong B. // Ibid. 1992. Vol. 56, N I. P. 37.
- 4. Hirajima T., Compagnoni R. // Europ. J. Miner. 1993. Vol. 5, N 5. P. 943.
- 5. Carman J.H., Gilbert M.C. // Amer. J. Sci. 1983. Vol. 238-A. P. 414.
- 6. Pawley A.R. // Europ. J. Miner. 1992. Vol. 4, N 1. P. 171.
- 7. Raudsepp M., Turnock A.C., Hawthorne F.C. // Amer. Miner. 1987. Vol. 72, N 9/10. P. 959.

Ликент Leakeite NaNa₂Mg₂Fe $_2^{3+}$ Li[Si $_8O_{22}$](OH)₂

Назван в честь проф. университета Глазго в Шотландни Бериарда Е. Лика, известного своими работами по химии и классификации амфиболов [1].

Характ. выдел. Удлиненные призматические кристаллы до 1 мм в длину.

Структ. и морф. крист. Монокл. с. C_{2k}^3 -C2/m. $a_0 = 9,822$, $b_0 = 17,836$, $c_0 = 5,286$ Å; $\beta = 104,37^\circ$; $a_0: b_0: c_0 = 0,551: 1: 0,296$; V = 897,1 Å³; Z = 2.

Может быть выведен из ферриэкерманнита, в котором два из четырех атомов Mg замещены на Fe³⁺ и Li. Альтернативно может быть рассмотрен как магнезиорибекит с замещением ^ANa + ^{M(3)}Li \leftrightarrows ^A + ^{M(3)}Mg. В отличие от других литийсодержащих амфиболов атомы Li полностью упорядочены в позиции M(3). Распределение атомов по позициям: T(1) и T(2) = 1,00 Si, M(1) = 0,72 Mg + 0,28 (Fe + Mn), M(2) = 0,28 Mg + 0,72 (Fe + Mn), M(3) = 0,83 Li + 0,17 Mg, M(4) = 0,98 Na + + 0,02 Ca, A ≈ 0,85 Na.

Средние межатомные расстояния (в Å): T(1)-O = 1,621; T(2)-O = 1,631; M(1)-O = 2,049; M(2)-O = 2,035; M(3)-O = 2,123; M(4)-O = 2,551; A-O = 2,656-2,903.

Кристаллы призматические, вытянутые по оси с.

Физ. св. Сп. по (110) совершенная. Угол между плоскостями спайности (110) : и (110) около 56°. Тв. 6. Уд.в. 3,11 (3,107 вычисл.). Хрупкий. Цв. красный. Полупрозрачный. Бл. стеклянный.

Микр. Плеохроизм сильный: по Np и Nm – темно-лилово-красный, по Ng – светло-розово-красный; Np = Nm > Ng. Двуосный (–). Пл. опт. осей близка к (100). $cNp = 10^{\circ}$, $aNm = 4^{\circ}$, Ng = b; $n_g = 1,691$, $n_m = 1,675$, $n_p = 1,667$; $n_g - n_g = 0,024$ ($\lambda = 589,9$ нм); $2V = 59-71^{\circ}$ (72° вычисл.). Дисперсия опт. осей сильная, $r \ll v$.

Хим. Анализы (микрозонд., среднее из 6): $Li_2O^* - 1,42$; $Na_2O - 9,69$; $K_2O - 1,12$; MgO - 10,96; CaO - 0,50; $Al_2O_3 - 1,27$; $Fe_2O_3 - 12,23$; $Mn_2O_3 - 3,86$; $SiO_2 - 55,80$; $TiO_2 - 0,03$; $H_2O^{**} - 1,63$; F - 1,08; $-O \approx F_2 - 0,45$; сумма 99,14.

* Вычислен, нсходя из дефицита октаэдрических катионов в сумме коэффициентов в формуле (=5). ** H₂O вычислена как OH при OH + F = 2.

Эмпирическая формула (на 23 атома О): $(Na_{0,75}K_{0,20})_{0,85}(Na_{1,92}Ca_{0,08})_2 \times (Mg_{2,32}Fe_{1,31}^{3+}Mn_{0,42}^{3+}Al_{0,14}Li_{0,81})_5(Si_{7,93}Al_{0,07})_8O_{22}(OH_{1,49}F_{0,51})_2.$

Методом атомной абсорбции определено около 2% Li₂O.

Нахожд. Установлен в обогащенных марганцем метаосадках марганцевого рудника Каджлидонгри, шт. Мадхья-Прадеш (Индия), в ассоциации с альбитом, браунитом и биксбиитом. Образуется в поздних секущих жилах за счет разложения первичных марганцевых минералов.

Межплоскостные расстояния ликента из Каджлидонгри, Мадхья-Прадеш (Индия) [1]

СиК_а-излучение. Дифрактометр

hkl	1	d(Å)	hkl	I	<i>d</i> (Å)	hkl	1	<i>d</i> (Å)
020	4	8,926	201	100	3,122	261	9	2,154
110	56	8,399	221	6	2,9 49	202	3	2,055
130	6	5,049	330	48	2,798	351	3	2,013
200	5	4,759	151	15	2,696	510	9	1,891
040	13	4,461	061	5	2,573	4.10.1	10	1,431

hkl	1	<i>d</i> (Å)	hkl	1	<i>d</i> (Å)	hki	I	<i>d</i> (Å)
201	4	4,006	202	5	2,531	2.12.2	5	1,282
131	18	3,383	350	6	2,369			
240	20	3,254	171	4	2,274			

Литература

1. Hawthorne F.C., Oberti R., Ungaretti L., Grice J.D. // Amer. Miner. 1992. Vol. 77, N 9/10. P. 1112.

Корнит Kornite

(K, Na)(Na, Li)₂(Mg₂Mn $^{3+}_{1,5}$ Fe $^{3+}_{0,5}$ Li)₅[Si₈O₂₂](OH)₂

Назван в честь немецкого геолога Германа Кориа, изучавшего минералогию марганцевых месторождений в пустыне Намиб (Юго-Западная Африка) [1].

Характ. выдел. Пучки тонких волокон, часто изогнутых (длиной до 0,2 мм. 5–20 мкм в диаметре) [1].

Структ. и морф. крист. Монокл. с. *P* (пр.гр. не уточнена). $a_0 = 9,94$, $b_0 = 17,80$, $c_0 = 5,302$ Å; $\beta = 105,5^{\circ}$; $a_0 : b_0 : c_0 = 0,558 : 1 : 0,298$; V = 904 Å³; Z = 2 [1].

Физ. св. Волокна удлиненные по [001], расщепляются параллельно [001], хрупкие. Уд.в. 3,15 (вычисл.). Цв. темно-красный до коричневато-сиреневого. Бл. стеклянный. Прозрачный. Не флюоресцирует в ультрафиолетовом свете.

Микр. Плеохроизм сильный: по Ng – оранжево-красный, по Nm – темно-красный, по Np – ярко-розовый; Ng = Nm > Np. Двуосный (∓). Ng = b, $cNm = 60-65^{\circ}$, $cNp = 25-30^{\circ}$. Удлинение (-). $n_g = 1,696$, $n_m = 1,675$ (вычисл.), $n_p = 1,654$; $n_g - n_p = 0,042$; $2V = 88-92^{\circ}$.

Волокна нарастают на хенномартинит, занимают интерстиции между идиоморфными кристаллами сугилита и серандит-пектолита.

Хим. Анализ (микрозонд., среднее из 7) [1]: $Li_2O - 1,96$ (определено с помощью ионного зонда); $Na_2O - 7,61$; $K_2O - 3,56$; MgO - 10,03; $Mn_2O_3 - 13,17$; $Fe_2O_3^* - 4,93$; $SiO_2 - 56,06$; $H_2O - 2,68$ (по разности); сумма 100,0.

* Общее.

Эмпирическая формула (22O + 2(OH)): $(K_{0,65}Na_{0,31})_{0,96}(Na_{1,79}Li_{0,21})_{2,00} \times (Mg_{2,12}Mn_{1,43}^{3+}Fe_{0,52}^{3+}Li_{0,91})_{5,00}Si_8O_{22}(OH)_2.$

Нахожд. [1, 2]. В метаморфизованных и гидротермально измененных стратифицированных рудных залежах рудника Весселс марганцевой области Калахари (Южная Африка), где найден в ассоциации с хенномартинитом, сугилитом (70%), серандит-пектолитом (25%) в рудах, обогащенных В и Li и содержащих, кроме того, стурманит и годефрауит.

Отл. [1]. От экерманнита отличается цветом, более высокими показателями преломления.

hk!	1	d(Å)	hki	I	d(Å)	hkl	1	<i>d</i> (Å)
020	Средн.	8,890	151	Средн.	2,680	530	Слаб.	1,812
110	Средн.	8,427	002	Сильн.	2,553	082	Слаб.	1,689
130	Средн.	5,077	400	Средн.	2,391	600	Слаб.	1,594

Межплоскостные расстояния корнита из рудника Весселс (Южная Африка) [1]

hkl	1	<i>d</i> (Å)	hkl	I	<i>d</i> (Å)	hkl	I	d(Å)
200	Слаб.	4,756	350	Среди.	2,372	602	Средн.	1,558
040	Средн.	4,442	071	Слаб.	2,272	402	Средн.	1.558
131	Средн.	3,357	042	Слаб.	2,213	0.12.0	Слаб.	1.480
240	Сильн.	3,257	402	Средн.	2,038	0.12.2	Слаб.	1.283
310	Сильн.	3,132	202	Среди.	2,038	004	Слаб.	1.276
051	Слаб.	2,938	510	Средн.	1,900			-1
330	Сильн.	2,812	091	Слаб.	1.852			

Примечание. Таблица составлена на основании данных, полученных тремя методами: прецизионных рентгенограмм (МоК_α-излучение, Zr-фильтр), вейссенбергограммы (FeK_α-излучениеп, Мп-фильтр) и рентгенограммы вращения вокруг оси с (FeK_α-излучение).

Лит ература

1. Armbruster T., Oberhänsli R., Bermanec V., Dixon R. // Schweiz. miner. und petrogr. Mitt. 1993. Bd. 73, H. 3. S. 349.

2. Dixon R.D. // Trans. Geol. Soc. S. Afr. 1985. Vol. 88, N 1. P. 11.

ГРУППА РИХТЕРИТА

Ранее в группе описаны: рихтерит, винчит, катофорит, тарамит, барруазит, феррибарруазит (т. III, вып. 3, с. 187).

На основании классификации амфиболов, утвержденной КНМ ММА (Leake, 1978), в группе выделены как самостоятельные минералы крайние члены изоморфных рядов: рихтерит-феррорнктерит, винчит-ферровинчит, феррикатофорнт-алюминокатофорит, алюминокатофорит-магнезноалюминокатофорит, тарамит-магнезнотарамит, барруазит-ферробарруазит.

	Сингония	a_0	b_0	<i>c</i> 0	β	Уд.в.
Калий-фтор-рихтерит К(Na Ca)Mg-[Si-O1(F OH)-	Монокл.	9,978	17,991	5,269	104 ,9 0°	3,03
Φ TOPPHATEPHT NaCaNa(Mg, Fe) ₅ ×	"	9,828	18,040	5,195	103.17	2.974
×[Si ₈ O ₂₂](F, OH) ₂				-,	,	

Калий-фтор-рихтерит Potassium-fluor-richterite K(Na, Ca)Mg₅[Si₈O₂₂](F, OH)₂

Назван по составу н структурной близости к рнктериту [1, 2]. Сянон. Калнй-фторрнхтерит [2]; К-F-рнхтерит.

Характ. выдел. Призматические кристаллы (до 0,5 см длиной) или мелкие зерна [1, 2].

Структ. и морф. крист. Монокл. с. $C_{2h}^3 - C2/m$ [1-3], *I* 2/m [3].

a ₀ (Å)	<i>b</i> ₀	<i>c</i> ₀	β	<i>V</i> (Å ³)	Уд.в.	Местонахождение	Ссылка
9,978	17,991	5,269	104 ,9 0°	914,2	3,06	Монте Сомма (Италия)	[1, 2]
9,970	17,985	5,273	104,81	914,05	3,03	То же	[4]
10,020	18,026	5,282	104,96	921,82	3,07	Зап. Кимберли (Австралия)	[4]
10,022	18,029	5,284	105,01	922,19	3,07	То же	[4]
10,025	18,034	5,286	104,98	923,13	3,07	•	[4]
9,948	17,977	5,267	104,80	910,60		Искусственный	[5]

a ₀ (Å)	<i>b</i> 0	<i>c</i> ₀	β	V(Å ³)	Уд.в.	Местонахождение	Ссылка
9,953	17,981	5,264	104, 82°	910,78		Искусственный	[5]
9,944	17,972	5,260	104,79	908,90			[1-3]
9,985	17,984	5,267	104,85	914,30			[6]
9,992	17,972	5,260	105,80	908,90		*	[3]
				(пр.гр. I 2/m)			

*a*₀ : *b*₀ : *c*₀ = 0,555 : 1 : 0,293 (для образца из Италии [1, 2]); *Z* = 2.

Параметры элементарной ячейки для синтезированных образцов, нагретых до 400, 600 и 800°, см. [3].

Как и в рихтерите, в структуре [3, 4] двойные тетраэдрические Si-O-цепи, вытянутые вдоль оси с, состоят из тетраэдров T(1) с тремя мостиковыми и одним немостиковым атомами O и T(2) – с двумя мостиковыми и двумя немостиковыми атомами O. Тетраэдр T(1) имеет меньшие размеры и менее искажен, чем T(2). Широкие ленты из М-полиэдров вытянуты в том же направлении; они составлены M(1)-, M(2)-, M(3)-октаэдрами и M(4)-полиэдрами с к.ч. = 8; в октаэдры M(1) и M(3) входят 4 атома O и 2 (OH, F). Позиция A, расположенная между кольцами тетраэдрических цепей в большой полости, образованной 12 атомами O, занята атомами К неупорядоченно. Позиция заполнена целиком лишь при заселении атомами К; при наличии в ней Na – дефицитна. M(1)-(3)-октаэдры заняты Mg (Fe, частично Ti), M(4)^{VIII}-полиэдр – поровну Ca и Na. F располагается в позиции O(3).

Средние межатомные расстояния (в Å) [4]: T(1)-O = 1,622-1,623; T(2)-O = 1,639-1,646; M(1)-O = 2,059-2,062; M(2)-O = 2,087-2,095; M(3)-O = 2,051-2,055; A-O = 2,935-2,954; A(m)-O = 2,878-2,903.

Т-О-расстояния и угол O(5)-O(6)-O(5), а также средние М-О-расстояния в природных образцах К-F-рихтерита больше, чем в синтезированном.

Физ. св. Сп. совершенная по (110). Тв. ≈5,5. Уд.в. 3,03–3,07 (вычисл. 3,03). Цв. светло-серый. Черта белая. Бл. стеклянный. Прозрачный. Не флюоресцирует в ультрафиолетовых лучах [1, 4].

На ИК-спектре [1, 2, 6, 7] главная полоса 3710 см⁻¹ приписывается О–Н-диполю в позиции O(3), связанному с тремя октаэдрическими катионами Mg. Дублет 3734–3730 см⁻¹ на высокочастотной стороне полосы может быть вызван неупорядоченным распределением К по двум субпозициям A(4*i*). Слабый дублет 3673– 3668 см⁻¹ представляет расщепление полосы 3670 см⁻¹, предположительно связанной с частично вакантной А-позицией. Распавшаяся полоса низкой интенсивности 3743 см⁻¹ отмечена как в природных, так и в синтетических K-F-рихтеритах. Спектр несколько меняется в зависимости от содержания К и F [6].

Микр. Не плеохроирует. Двуосный (-). $n_g = 1,630$, $n_m = 1,623$, $n_p = 1,613$; $n_g - n_p = 0,017$; $2V = 79,4^{\circ}$ (вычисл.) [1]. Иногда содержит включения апатита [2].

Хим. Теор. состав (при F_{1,0}(OH)_{1,0} в формуле): K₂O – 5,63; Na₂O – 3,71; CaO – 6,70; MgO – 24,12; SiO₂ – 57,45; H₂O – 1,08; F – 2,27.

К К-F-рихтериту относят рихтерит с К/(К + Na) в позиции $A \ge 0,5$ и F/(F + OH) в позиции O(3) $\ge 0,5$ [2].

Анализы (микрозонд., среднее по 10-12 точкам):

	1	2	3	4	5
K₂O	3,75	4,09	5,46	5,51	5,50
Na ₂ O	4,63	4,36	3,51	3,31	3,39
CaO	7,34	7,39	6,69	6,73	6, 76
	1	2	3	4	5
--------------------------------	--------	----------	--------	--------	----------
MgO	24,02	24,83	21,99	21,95	21,93
MnO	0,02	0,03	0,05	0,06	0.06
FeO*	0,15	0,11	2,46	2,45	(2,55
Al ₂ O ₃	0,24	0,11	0,32	0,37	0,42
TiO ₂	0,07	0,02	3,01	3,73	3,98
SiO ₂	57,13	56,88	54,24	53,29	53,01
F	2,86	2,88	3,09	3,21	3,16
H ₂ O ^{2*}		0,80	0,65	0,59	0,56
Сумма	100,21	101,50	101,47	101,20	101,32
_O=F2	1,20	1,21	1,30	1,25	1,25
Сумма	99,01	100,293*	100,17	99,95	100,074*

* Общее.

^{2*} Вычисл.

^{3*} В оригинале 100,28.

^{4*} В оригинале 100,05.

1, 2 – Монте Сомма (Италня): 1 – [1, 2], 2 – [4]; 3–5– Зап. Кнмберлн (Австралия) [4].

Эмпирическая формула (ан. 1, на 16 катионов):

 $K_{0,67} Na_{1,25} Ca_{1,09} Mg_{4,98} Fe_{0,02} Si_{7,95} Al_{0\,04} Ti_{0,01} O_{22,40} F_{1,26}.$

Нахожд. Встречен в карьере Сан Вито (Италия), в метаморфизованных карбонатных выбросах вулкана Монте Сомма среди пирокластических осадочных отложений в ассоциации с диопсидом и кальцитом, а также гумитом и гранатами. Предполагаемые условия образования – давление 1–2 кбар, 500 < t < 700–800° [1, 2]. Отмечен также в Западном Кимберли (Австралия) [4].

Искусств. Синтезирован из солей КНСО₃, NaHCO₃, CaCO₃, MgCO₃, SiO₂ с добавлением CaF₂ при 1244–791 и 1132–843°, давлении 1 кбар в течение 9 дней [5]. При замещении ОН на F наблюдалось значительное уменьшение параметра a_0 и соответственно V, небольшое уменьшение b_0 и c_0 . Обратный эффект отмечен при замене Na на K [5]. На основании определения структурных параметров при 24° и нагревании до 400, 600 и 800° [3] выяснено, что тетраэдрические расстояния при нагревании не изменяются, октаэдрические же в M(1)–(3) значительно увеличиваются, но меньше, чем в M(4)^{VIII}. Средние коэффициенты температурного расширения увеличиваются в последовательности: T(1) = T(2) \ll M(3) < M(1) < M(2) \ll \ll M(4)^{VIII} < A^X. Различное расширение сопровождается выпрямлением тетраэдрических цепей и смещением их относительно друг друга.

	Межплоскостные расстояиня калий-фтор-рихтерита из Монте Сомма (Италия) [2]										
hki	I	d (Å)	h kl	I	d (Å)	hki	I	d (Å)			
110	95	8,490	061	3	2,583	0.10.0	4	1,799			
200	10	4,817	202	3	2,536	601					
040	7	4,498	350	13	2,395		5	1,659			
131	8	3,379	421			511					
240	80	3,288		7	2,345	2.10.1					
310	100	3,166	351				6	1,645			
221	7	2,950	261			480					
ī51	4	2,931		4	2,164	621	15	1,633			
			132			263					
			190	3	1,957		4	1,499			
						0.12.0					

hki	1	d (Å)	hki	1	d(Å)	hki	I	<i>d</i> (Å)
330	60	2,831	510	20	1,918	442		
331	4	2,754	172	6	1,840	_	4	1,452
151	9	2,701				661		

Литература

1. Della Ventura G., Parodi G.C., Maras A. // Rend. Fis. Accad. Lincei. Ser. 9. 1992. Vol. 3, N 3. P. 239.

2. Della Ventura G., Maras A., Parodi G.C. // Period. miner. 1983. Vol. 52, N 3. P. 617.

3. Cameron M., Sueno S., Papike J.J., Prewitt C.T. // Amer. Miner. 1983. Vol. 68, N 9/10. P. 924.

4. Oberti R., Ungaretti L., Cannillo E., Hawthorne F.C. // Europ. J. Miner. 1992. Vol. 4, N 3. P. 425.

5. Huebner J.S., Papike J.J. // Amer. Miner. 1970. Vol. 55, N 11/12. P. 1973.

6. Robert J.-L., Della Ventura G., Thauvin J.-L. // Europ. J. Miner. 1989. Vol. 1, N 2. P. 203.

7. Mottana A., Griffin W.L. // Amer. Miner. 1986. Vol. 71, N 11/12. P. 1426.

Фторрихтерит Ftorrichterite NaCaNa(Mg, Fe)₅[Si₈O₂₂](F, OH)₂

Назван по составу и близости к рихтериту [1].

Характ. выдел. Зерна (0,1-2 мм), кристаллы (до 10 см).

Структ. и морф. крист. [1]. Монокл. с. C_{2h}^3 -C2/m. $a_0 = 9,800-9,828, b_0 = 17,93-18,04, c_0 = 5,195-5,265$ Å; $\beta = 103,17-104,35^\circ$ (см. при хим. ан.).

В структуре позиция O(3) (в амфиболах заселяется F⁻, OH⁻, O²⁺) заселена F более чем на 50%, в конечном члене ряда рихтерит–фторрихтерит (анализ 4) – полностью F.

Кристаллы призматические, вытянутые вдоль оси c; хорошо развиты грани a(100), b(010), реже встречается m(110).

Физ. св. [1]. Сп. по (110) совершенная. Изл. занозистый. Хрупок. Тв. 5–6. Уд.в. 2,974 и 3,174 – для разных образцов (вычисл. 3,125 и 3,213). Цв. светло- и синезеленый. Черта белая. Бл. стеклянный. В сколах прозрачен.

ИК-спектр характеризуется полосами поглощения 1142, 1077, 972, 927, 744, 670, 515, 465, 410 см⁻¹, в области валентных колебаний гидроксильных групп – 3750, 3690–3720 и 3670 см⁻¹ (частоты на 30–50 см⁻¹ выше, чем у обычного рихтерита, что подтверждает наличие значительных количеств F в позиции O(3)).

Хим. Характеризуется преобладанием F над OH.

Анализы (4, 5 – микрозонд.):

	1	2	3	4	5
Na ₂ O	5,36	6,75	4,20	8,3	7,30
K ₂ O	2,43	1,35	1,11	1,2	0,36
MgO	17,27	19,85	18,31	20,9	26,10
CaO	7,06	4,64	8,23	3,7	5,50
FeO	6,94	2,30	5,35	0,44	0,17
MnO	0,37	0,41	0,68	0,05	0,00
Al ₂ O ₃	3,09	1,44	1,19	0,38	0,15
Fe ₂ O ₃	2,05	5,65	3,33	_	-
Cr ₂ O ₃	_	-	-	3,5	-
SiO ₂	50,46	54,6	53,98	57,2	57,90
TiO ₂	2,39	0,18	0,05	2,2	0,01
H ₂ O ⁺	0,66				
		0,78	0,99	_	-
H-O-	0.16				

	1	2	3	4	5
F	2,47	2,60	3,30	3,6	4,6
Сумма	100,71*	100,61	101,19	101,5	102,10
$-O = F_2$	1,00	1,09	1,91	1,5	1,90
Сумма	99,71	99,52	99,28	100,0	100,2
Уд.в.	-	2,974	-	-	_
ng	1,649	1,627	-	-	_
n _m	1,642	1,621	_	-	-
np	1,631	1,612	-	-	_
2V,°	76	72	-	-	_
<i>a</i> 0(Å)		9,828	9,800	9,812	9,767
b 0	_	18,040	-	17,924	17,966
<i>c</i> 0	_	5,195	-	5,269	5,253
β	_	103,17°	-	104°10'	103°55'

*В том числе Li₂O – 0,025, Rb₂O – 0,009.

I – из трахитоидного ийолита, гора Коашва, Хибинский массив [2]; 2 – из доломит-кальцитового карбонатита, Вишневые горы, Урал [1]; 3 – из апогипербазитового щелочного метасоматита, Ильменский заповедник, Урал [1];4 – из железного метеорита - октаэдрита Каньои Дьябло (США) [3]; 5 – из энстатитового хондрита Аби (Канада) [3].

Эмпирические формулы (1-3 - на 13 катионов, 4 - на основе О = 24 - F):

$$\begin{split} &I - (Na_{1,51}Ca_{1,10}K_{0,44})_{3,05}(Mg_{3,76}Fe^{2+}_{0,84}Mn_{0,03}Fe^{3+}_{0,11}Ti_{0,25})_{5,00}(Si_{7,37}Al_{0,51}Fe^{3+}_{0,12})_{8,00}O_{22}\times \\ &\times (F_{1,11}OH_{0,78}O_{0,11})_{2,00}; \end{split}$$

 $2-(Na_{1,84}Ca_{0,70}K_{0,21})_{2,75}(Mg_{4,16}Fe_{0,51}^{3+}Fe_{0,27}^{2+}Ti_{0,02})_{5,01}(Si_{7,67}Al_{0,27})_{7,94}(F_{1,15}OH_{0,73}O_{0,12})_{2,00};$

 $3-(Na_{1,17}Ca_{1,27}K_{0,20})_{2,64}(Mg_{3,93}Fe_{0,64}^{2+}Fe_{0,34}^{3+})_{4,91}(Si_{7,78}AI_{0,20})_{7,98}(F_{i,5}OH_{0,50})_{2,00};$

 $4 - (Na_{2,045}Ca_{0,847}K_{0,108})_{3,000}(Mg_{4,696}Ti_{0,159}Cr_{0,078}Fe_{0,059}^{2+})_{4,992}(Si_{8,130}Al_{0,666})_{8,796}(F_{1,023}O_{0,977})_{2,000};$

 $5 - (Na_{1,934}Ca_{0,805}K_{0,063})_{2,802}(Mg_{5,317}Ti_{0,024}Fe_{0,019}^{2+})_{5,360}(Si_{7,914}Al_{0,001})_{7,915}(F_{1,988}O_{0,012})_{2,000}.$

См. также хим. анализы в статье "Рихтерит" (т. III, вып. 3, с. 158) № 6 [4] и № 15-17 [5].

Нахожд. Описаны образцы с Урала: из фенитов Ильменских гор [1, 4] в ассоциации с микроклином, альбитом и флогопитом в виде мелких зерен (до 2 мм); из карбонатитов Вишневых гор [1, 6] и апогипербазитовых щелочных метасоматитов Ильменского заповедника [1], где ассоциирует с кальцитом, доломитом, флогопитом, магнетитом, пирохлором, цирконом, апатитом, пирротином, пиритом и ильменитом, образует крупные зерна и кристаллы размером до 10 см.

Известен в ийолит-уртитах и хибинитах Хибинского массива [2, 5]. Обнаружен в метеоритах [3] – в энстатитовом хондрите Аби (Канада), в железных метеоритахоктаэдритах Каньон Дьябло и Вичита Каунти (США).

Искусств. Фторрихтерит Na(Ca, Na)Mg₅(Si₄O₁₁)₂ F_2 с содержанием 4,62 и 4,74% F синтезирован из F-содержащих расплавов [7, 8].

Межплоскостные расстояния фторрихтерита из Ильменских гор (Южный Урал) [1]

СuК_α-излучение, Ni-фильтр

hkl	Ι	<i>d</i> (Å)	hkl	1	d(Å)	hkl	1	d(Å)
	20	10,9		10	2,99	510	40	1,90
	70	9,9	221	30	2,93	530	20	1,817
	20	9,2	330	70	2,82	461	30	1,650
020	10	8.7		20	2.77	481	20	1,636
110	5 0	8,4	331	20	2,73	1.11.0	20	1,611
	20	7,9	151	40	2,70	600	40	1 ,5 91

h kl	I	d (Å)	hk!	I	d (Å)	hkt	1	d (Å)
	10	6,7		30	2,66	620	20	1 534
040	20	4,5	061	20	2,58	551	30	1,505
220	20	4,2	202	20	2,53	0.12.0	30	1,499
111	10	4,0		50	2,50	3.11.0	10	1,451
	10	3,77	350	30	2,38	661	60	1,439
131	60	3,69	351	30	2,33		10	1,386
	20	3,52	421	10	2,29	512	20	1,369
	40	3,46	171	10	2,27	532	30	1,359
131	100	3,34	132	40	2,22	263	30	1,310
240	50	3,27	261	30	2,16	2.12.2	50	1,254
	60	3,18		20	2,10		20	1,193
310	90	3,13	202	10	2,07		30	1,126
	10	3,02	351	90	1,98		50	1,047

Литература

1. Баженов А.Г., Недосекова И.Л., Петерсен Э.У. // Зап. ВМО. 1993. Ч. 122, вып. 3. С. 98.

2. Минералогия Хибинского массива / Ред. Ф.В. Чухров. М.: Наука, 1978. Т. 2. 584 с.

3. Olsen E., Huebner J.S., Douglas J.A.V., Plant A.G. // Amer. Miner. 1973. Vol. 58, N 9/10. P. 869.

4. Баженов А.Г., Иванов Б.Н. // Тр. Ильмен. гос. заповедника. 1976. Вып. 14. С. 133.

- 5. Иванова Т.Н., Дудкин О.Б., Козырева Л.В., Поляков К.И. Ийолит-уртиты Хибинского массива. Л.: Наука, 1970. 178 с.
- 6. Недосекова И.Л. // Материалы к минералогии рудных районов Урала. Свердловск: Урал. отд АН СССР, 1988. С. 51.

7. Comerforo J.E., Hatch R.A., Eitel W. // Amer. Miner. 1951. Vol. 36, N 3/4. P. 312.

8. Kohn J E., Comerforo J.E. // Ibid. 1955. Vol. 40, N 5/6. P. 410.

СТРУКТУРА ТИПА ЕРШОВИТА

	Сингония	a_0	b_0	<i>c</i> 0	α	β	γ	Уд. в.
Ершовит	Трикл.	10,244	11,924	5,276	103,49°	96,96°	91,94°	2,75
$Na_4K_3(Fe^{2+}, Mn, Ti)_2 \times$								
× [SigO20(OH)2](OH2 · 4H2O								

Ершовит Ershovite

 $Na_4K_3(Fe^{2+}, Mn, Ti)_2[Si_8O_{20}(OH)_2](OH)_2 \cdot 4H_2O$

Назван в память русского геолога В.В. Ершова (1939–1989) [1]. Предварительное название "Na,K,Fe-силикат" [2].

Характ. выдел. Удлиненные зерна (до 5 × 10 мм); параллельно-волокнистные агрегаты (до 1–3 см) [1].

Структ. и морф. крист. Трикл. с. $C_i^1 - P \overline{1}$. $a_0 = 10,244$, $b_0 = 11,924$, $c_0 = 5,276$ Å: $\alpha = 103,491$, $\beta = 96,960$, $\gamma = 91,945^\circ$; $a_0: b_0: c_0 = 0,859: 1:0,443$; V = 620,8 Å³; Z = 1 [1].

В структуре (фиг. 100) выделяется кремнекислородный радикал, аналогичный амфиболовым лентам [2]. Si-ленты, вытянутые вдоль оси с и параллельные плоскости (100), попарно соединяются М-октаэдрами (М – Fe²⁺, Mn, Ti, Mg, Ca), образуя трехслойные "брусья". Из пяти позиций, занятых в амфиболах М-катионами сохраняются лишь две, и многорядная лента из М-октаэдров редуцируется в одинарную цепочку. В трех остальных октаэдрических позициях размещаются атомы Na. Трансляционно идентичные вдоль оси *a* "брусья" объединяются крупными Кполиэдрами, формирующими слои, параллельные (100). Вдоль оси *b* "брусья" соеди-

Фиг. 100. Структура ершовита в проекции на плоскость (001) (по Расцветаевой) Штриховкой выделены М-цепочки; пунктиром показаны водородные связи

Сплошными линиями показаио направление спайности между "брусьями"

няются водородными связями за счет молекул воды, сосредоточенных в слоях, параллельных (010). Отличается от амфиболов присутствием молекулярной воды, преобладанием Na и K над М-катионами и способом укладки M,Si-"брусьев" (фиг. 101), что обусловливает иные физические свойства [1].

Волокна-кристаллы прямоугольной формы, ограниченные плоскостями (100) и (010) и вытянутые по оси *с* [1].

Физ. св. Сп. совершенная по (100) и (010), пересекающимся под углом ~90°. Тв. 2–3. Уд. в. 2,75 (вычисл. 2,73). Цв. оливково-зеленый с коричневатым, буроватым или желтоватым оттенком. Бл. стеклянный. Просвечивает, в тонких сколах прозрачный [1].

В ультрафиолетовых лучах не люминесцирует.

ИК-спектр содержит максимумы поглощения: 455, 505, 630, 670, 885, 960, 1015, 1055, 1660 и 3380 см⁻¹ [1].

Микр. Плеохроизм сильный: по Ng – темный оливково-зеленый, по Nm и Np – светло-зеленый или желтый; Ng > Nm ≥ Np. Двуосный (+). Удлинение (+). Углы

наклона волокон к осям Np, Nm и Ng соответственно равны 86, 73 и 17°. $n_g = 1,590$, $n_m = 1,574$, $n_p = = 1,569$; $n_g - n_p = 0,021$; $2V = 58^{\circ}$ (вычисл. 59°). Дисперсия средняя, r > v.

Хим. Анализ (микрозонд., анал. Г.Н. Нечелюстов) [1]: Na₂O – 12,4; K₂O – 13,6; MgO – 0,5; CaO – 0,1; MnO – 4,7; FeO – 6,1; SiO₂ – 47,1; TiO₂ – 3,0; H₂O (по разности) – 12,5; сумма 100,0.

Эмпирическая формула (в расчете на Si = 8) [1]): Na_{4,08}K_{2,95}(Fe²⁺_{0,87}Mn_{0,68}Ti_{0,38} × $Mg_{0,13}Ca_{0,02})_{2,08}Si_8O_{19,98}(OH)_{4,04} \cdot 5,06H_2O.$

Закисная форма Fe принята условно; Fe²⁺ >Mn > Ti. Включение в формулу четырех OH-групп основано на результатах рентгеноструктурного анализа [2].

Диагн. исп. Легко разлагается при комнатной температуре слабыми растворами HCl, HNO₃ и H₂SO₄ с сохранением кремниевого остова.

Повед. при нагр. При нагревании до 300° не испытывает заметных изменений; до 500° – становится оптически изотропным и рентгеноаморфным.

Нахожд. Гидротермальный минерал поздних стадий формирования ультраагпаитовых пегматитов из пересыщенных щелочными и летучими компонентами остаточных силикатно-солевых жидкостей [1].

Обнаружен в Хибинском щелочном массиве (Кольский п-ов) в пегматитах гор Коашва и Расвумчорр [1]. Образует вкрапленность удлиненных зерен и волокнистые агрегаты в тесных срастаниях с очень сходными Mg-астрофиллитом и поздним волокнистым эгирином. Тесно ассоциирует также с термонатритом, накафитом, натритом, виллиомитом, стронциоапатитом, расвумитом, джерфишеритом, сфалеритом, молибденитом, пектолитом, щербаковитом, лампрофиллитом, содалитом.

Межплоскостные расстояния ершовита из Хибинского массива (Кольский п-ов) [1]

			u a	•				
hki	1	d (Å)	hki	1	d(Å)	hkl	1	d (Å)
010	10	11,58	211	2р	3,061	2 32	1	1,883
100	1	10,20	320;301;230	10	2,990	342	1	1,788
ī10	3	7,95	040;311;320	2	2,880	232;412	<1	1,721
110	3	7,37	031;321;131	3	2,760	070	8	1,652
020	4	5,78	141	8	2,709	271	2	1,619
ī20	4	5,17	131	7	2,608	023	3	1,531
<u>1</u> 01	< 1	4,84	002;400	1	2,531	271;700	6ш	1,452
111;02 1	3	4,39	330;241	6	2,459	233;720	<1	1,429
ī11;12ī	1	4,15	132;420	1	2,381	<u>6</u> 50;523	4	1,407
<u>2</u> 20;030;211;	4	3,94	051;231	2	2,322	280	1	1,369
111			041;331;420	2	2,279	413	1	1,356
220	3	3,706	142	1	2,167	173	1	1,335
130;211	3	3,536	202	6	2,160	034	2	1,304
221;121;300	5	3,410	500;331	3	2,043	004:800	3	1,272
310	1	3,304	4 40	5	1,970	Кроме тог	о, еще 23	слабые
310	4	3,186	060;160	2	1,917	линии до 0	,9844	

$$FeK_{\alpha}$$
-излучение, $D = 57.3$ мм

Литература

1. Хомяков А.П., Меньшиков Ю.П., Расцветаева Р.К., Нечелюстов Г.Н. // Зап. ВМО. 1993. Ч. 122, вып. 1. С. 116.

2. Расцветаева Р.К., Рехлова О.Ю., Хомяков А.П. // Кристаллография. 1991. Т. 36, № 4. С. 892.

СТРУКТУРА ТИПА НАФЕРТИСИТА

****_____

Ь.

	CHILOIDIA	0	~0	~0	Ч	эд.в.
Нафертисит Na ₃ (Fe ²⁺ , Fe ³⁺) ₆ Ti ₂ ×	Монокл.	5,353	16,176	21,95	94,6°	2,7
×[Si ₁₂ O ₃₀]O ₄ (O,OH) ₇ · 2H ₂ O						

Нафертисит Nafertisite Na₃(Fe²⁺, Fe³⁺)₆Ti₂[Si₁₂O₃₀]O₄(O,OH)₇ \cdot 2H₂O

Назван по составу [1].

Характ. выдел. Параллельно-волокнистые (асбестовидные) агрегаты с волокнами диаметром до 0,1 мм.

Структ. и морф. крист. [2, 3]. Монокл. с. C2/m. $a_0 = 5,353$, $b_0 = 16,176$, $c_0 = 21,95$ Å; $\beta = 94,6^\circ$; V = 1895 Å³; Z = 2.

Структура характеризуется новым типом ленточного кремнекислородного радикала, представленного разветвленной амфиболовой лентой шириной в шесть Si-тетраэдров ("нафертиситовая лента"). В основе структуры лежат трехслойные НОН слюдоподобные пакеты, в которых сердечник (О) из Fe-октаэдров обрамлен с обеих сторон гетерогенными слоями из лент Si-тетраэдров и Ti-октаэдров. Между пакетами локализуются щелочные катионы и молекулы воды. Структурная формула (Na,K)₃(Fe²⁺,Fe³⁺)₆{Ti₂O₄[Si₁₂O₃₀]}(OH,O)₇ · 2H₂O, где фигурными скобками выделен новый гетерослоистый титаносиликатный радикал, представляющий собой чередование вдоль оси b Si–O-лент с [100] шеренгами связывающих их Ti-октаэдров (фиг. 102).

Выделена полисоматическая серия минералов, объединяющая титаноснликаты со слюдами, которая строится по механизму, известному в биопириболах из следующих (010) модулей:

В (бафертиситоподобный модуль) = (A, \Box)₂(Me, \Box)₄[X₂T₄O₁₄] {O', \Box };

М (слюдоподобный модуль) = (A, □)(Me, □)₃[T_4O_{10}] {O"}₂,

где

А (катионы межпакетного слоя) - Na, K, Ba, Sr, ...;

Фиг. 102. Структура нафертисита (по Феррарису и др.)

Гетерогенный слой из Si-тетраэдров и Ti-октаэдров; вертикальными линиями показаны границы между бафертиситовыми (В) и слюдоподобными (М) модулями Ме (октаэдрические катионы сердечника) - Fe²⁺, Mn, Mg, Ca, Fe³⁺, ...;

X (октаэдрические катионы Н-слоя) – Ті (основной), Nb, Zr, Al, ...;

Т (тетраэдрические катионы H-слоя) – Si (основной), Fe³⁺, Al,...;

О' (= O,OH,H₂O) и O" (= O, OH) – кислородные группировки, ие связанные с тетраздрическими катионами (Si).

Общая формула минералов серии – $(A, \Box)_{2+2}(Me, \Box)_{4+3}[X_2T_{4+4n}O_{14+10n}]{O', O'', \Box}_{6+2n}$. Бафертисит, астрофиллит и нафертисит являются членами серии (полисомами) с n = 0, 1 и 2 соответствеино. Члены серии имеют параметры a и c, близкие или кратные соответствующим параметрам слюд, но различаются величиной параметра b, который от одиого члена серин к другому возрастает на 4,7 Å, т.е. на толщину элемеитарного (010) слюдяного модуля, равную ширине пироксеиовой цепочки. В направлении, перпендикулярном слоям НОН, структура нафертисита отличается от таковых астрофиллита и бафертисита внедрением соответственно одиого и двух (010) слюдоподобных модулей (М) между соседними бафертиситовыми (В). Наличие общего слюдяного модуля сближает даиную серию с бнопириболами. В то же время она связана с полисоматической серией сейдозерит-накафит, включающей большое число титаносиликатов с трехслойным HOH-пакетом бафертиситового типа [4].

Волокна ограничены плоскостями совершенной спайности (010) и (001), уплощены по (001) и вытянуты вдоль оси *a*.

Физ. св. Сп. по (010) и (001) совершенная. Тв. 3. Уд. в. 2,7 (вычисл. 2,74). Цв. темный травяно-зеленый. Бл. стеклянный, шелковистый. Изл. волокнистый. Просвечивает. В ультрафиолетовых лучах не люминесцирует.

ИК-спектр содержит линии (подчеркнуты наиболее сильные): 3640, 3585, 3370, 1660, 1629, 1057, <u>998, 924, 690, 659, 564,431</u> см⁻¹. По общему характеру близок ИКспектрам астрофиллита и бафертисита, в отличие от которых характеризуется повышенными значениями частот Si-O-валентных колебаний (924–998–1057 см⁻¹ против 937–988–1054 в астрофиллите и 875–930–1025 см⁻¹ в бафертисите). Смещение полос поглощения в высокочастотную область отражает усложнение кремнекислородного радикала.

Мессбауэровский спектр (асимметричный дублет с уширенными пиками) оказалось возможным разложить на два дублета от Fe²⁺ (изомерный сдвиг $\delta = 1,4$ мм/с относительно нержавеющей стали; квадрупольное расщепление $\Delta = 2,52$ и 1,63 мм/с) и два дублета от Fe³⁺ ($\delta = 0,75$ мм/с и $\Delta = 0,65$ и 1,20 мм/с). Площади дублетов указывают на существенное преобладание Fe³⁺ над Fe²⁺.

Микр. Плеохроизм сильный: по Ng – темно-зеленый, по Nm – зеленый, по Np – красновато-коричневый. Погасание волокон прямое. Удлинение (+). Двуосный (-). $Ng \approx a$, Nm = b, $cNp = 5^{\circ}$ (в тупом углу β). Пл. опт. осей (010). $n_g = 1,693$, $n_m = 1,667$, $n_p = 1,627$; $n_g - n_p = 0,066$. Дисперсия средняя, r < v.

Хим. Анализ (микрозонд., среднее из 5 определений)*:

Na ₂ O	4,78 (4,10-5,45)	Al ₂ O ₃	1,32 (1,15–1,50)
K ₂ O	1,64 (1,57–1,68)	SiO ₂	38,92 (38,32-39,52)
MgO	1,28 (0,93-1,42)	TiO ₂	8,32 (8,13-8,50)
MnO	0,79 (0,64–0,90)	Nb ₂ O ₅	0,33 (0,240,40)
FeO ^{2*}	34,80 (33,80–35,75)	H ₂ O ^{3*}	7,85 –
FeO	21,04 –	Сумма	100,80
Fe ₂ O ₃	14.53 -		

* В скобках указаны пределы колебаний.

^{2*} Общее Fe; разделение на Fe²⁺ и Fe³⁺ произведено по данным структурного исследования и мессбауэровской спектроскопии [1].

^{3*} Определена из отдельной навески (анал. Мартынова).

Эмпирическая формула (на 43 атома O) с учетом структурных данных): $(Na_{2,47}K_{0,56})_{3,03} \times (Fe_{4,68}^{2+}Fe_{1,27}^{3+}Mg_{0,51}Mn_{0,18})_{6,64}(Ti_{1,67}Al_{0,41}Nb_{0,04})_{2,12}(Si_{10,36}Fe_{1,64}^{3+})_{12}O_{35,02}(OH)_2 \cdot 5,97H_2O$; упрощениая формула: $(Na, K)_3(Fe^{2+}, Fe^{3+})_6 Ti_2(Si, Fe^{3+})_{12}O_{30}(O,OH)_4(O,OH)_7 \cdot 2H_2O$.

Нахожд. Найден в ультраагпаитовом пегматите, сложенном в основном калиевым полевым шпатом, на горе Кукисвумчорр (буровой керн с глубины 224 м от поверхности) в Хибинском щелочном массиве (Кольский п-ов). Наблюдался в виде нескольких небольших по размеру (0,5–1,5 см) асбестовидных выделений в интерстициях кристаллов полевого шпата. В пегматите содержатся также щелочной амфибол, эгирин, нефелин, содалит, канкринит, пектолит, эвдиалит, мозандрит, кальцит, бурбанкит, эвальдит, виллиомит и молибденит.

Является продуктом гидротермальной стадии кристаллизации пегматитового расплава-раствора.

MERTIOCKOCT	ые расстояа	ия вафергисята	ИЗ АНОИНСКОГО МАССИВА (КОЛЬ	ский п-ов) [IJ
		СиКа-излучение	. Камера Гинье		
hkl	1	d(Å)	hkl	1	d (Å)
011	30	13,00	202	20	2,641
002	100	10,94	153	15	2,547
020	< 5	8,06	Ī37;204;146	15	2,480
022	5	6,54	ī55	5	2,385
004	5	5,50	162;204	5	2,332
031	< 5	5,23	155	5	2,291
120	15	4,44	206	5	2,242
033;113	5	4,33	240;00.10	5	2,193
040;122;113; 104	5	4,03	Ī57; 2 17	5 ш	2,116
131	5	3,80	206;166;148, 157	10 ш	2,045
006	10 ш	3,638	159;168;1.4.10	5	1,7839
Ī24	10	3,571	2.0.10;271	5	1,7479
124	1	3,330	<322;271;1.3.11	< 5	1,7342
044;140	5	3,245	1.4.12;0.10.0	10 ш	1,6184
017	5	3,040	0.10.2;1.6.10	< 5 ш	1,6000
135	5	2,790	351	10 ш	1,5629
008;151;144	25	2,728	351;353	5	1,5462

Литература

- 1. Хомяков А.П., Феррарис Дж., Ивальди Г., Нечелюстов Г.Н., Соболева С.В. // Зап. ВМО. 1995. Ч. 124, вып. 6. С. 101.
- Ferraris G., Khomyakov A.P., Soboleva S.V., Belluso E., Ivaldi G., Pavese A. // Abstr. 16th Gen. Meet. of Intern. Miner. Assoc. Pisa, 1994. P. 177.
- 3. Ferraris G., Ivaldi G., Khomyakov A.P., Soholeva SV., Belluso E., Pavese A. // Europ. J. Miner. 1995. Vol. 8, Nº 2. P. 241.
- 4. Егоров-Тисменко Ю.К., Соколова Е.В. // Минерал. журн 1990. Т. 12, № 4. С. 40.

СТРУКТУРА ТИПА ТИНАКСИТА

Ранее со структурой подобного типа был описан лишь тинаксит (т. III, вып. 3, с. 350).

ГРУППА ТИНАКСИТА

	Сингония	<i>a</i> 0	b_0	<i>c</i> 0	α	β	γ	Уд. в.
Тинаксит K ₂ NaTiCa ₂ × ×[Si ₇ O ₁₈ (OH)]O	Трикл.	10,361	12,153	7,044	90,79°	99,22°	92,83°	2,82
Токкоит К ₂ Са ₄ [Si ₇ O ₁₈ (OH)](F,OH)		10,438	12,511	7,112	89,92	99,25	92,82	2,76

Для тинаксита (tinaksite^{*}) приведена уточненная формула, полученная при структурных исследованиях, которые показали наличие в структуре радикала [Si₇O₁₈(OH)], а не [Si₇O₁₉], как это принималось раньше. В кристаллохимической классификации Ф. Либау (1988) отнесен к силикатам с гибридными кратными цепочками.

Токкоит образует изоморфный ряд с тинакситом с гетеровалентным замещением одновременно в катионной ($2 \text{ Ca}^{2+} \rightleftharpoons \text{Ti}^{4+}\text{Na}^+$) и анионной ((F, OH)⁻ $\rightleftharpoons \text{O}^{2-}$) частях [1].

1. Рождественская И.В., Никишова Л.В., Лазебник К.А. // Минерал. журн. 1991. Т. 13, № 4. С. 3.

Токкоит Tokkoite K₂Ca₄[Si₇O₁₈(OH)](F, OH)

Назван по месту находки на водоразделе рек Токко и Чары в Мурунском масснве (Якутия). По составу близок к теоретическому конечному члену изоморфного ряда тинаксит-токкоит [1].

Характ. выдел. Радиально-лучистые или шестоватые агрегаты из удлиненных и сильно уплощенных призматических индивидов [1].

Структ. и морф. крист. [2]. Трикл. с. $C_i^1 - P\overline{1}$. $a_0 = 10,438, b_0 = 12,511, c_0 =$ = 7,112Å; $\alpha = 89,92, \beta = 99,75, \gamma = 92,82^\circ; a_0:b_0:c_0 = 0,8343:1:0,5684; Z = 2.$

В отличие от тинаксита в структуре катионные стенки сложены Са-октаэдрами и скрепляются изогнутыми лентами из гибридных трехзвенных двойных цепочек [Si₇O₁₈(OH)]^{9–} (фиг. 103). Ті и Na находятся в тех же позициях, которые они полностью занимают в структуре тинаксита.

Атомы К и Н локализуются в полостях между кремнекислородными радикалами. Протон Н осуществляет водородную связь между кремнекислородными лентами, самые короткие из них (в Å): H–O(10) = 2,36; H–O(9) = 2,67; H–O(8) = 2,58.

Средние межатомные расстояния (в Å): Si-O = 1,616-1,626; Ca-O = 2,366-2,379; K-O = 2,974 и 3,233.

Физ. св. Сп. по (110) совершенная, по (010) весьма совершенная. Относительно легко расщепляется на сильно уплощенные и удлиненные призмы. Изл. занозистый. Тв. 4–5. Уд. в. 2,76. Цв. отдельных индивидов бледно-желтый, в больших массах светло-коричневый. Бл. стеклянный.

Распределение катионов в октаэдрических стенках в структуре токконта (1) н тинаксита (2) [3]

	I		Z
Октаэдры	Состав катионов	Октаэдры	Состав катионов
Ca(1)	Ca _{0,87} Ti _{0,13}	Ti	T1095Fe0,05
Ca(2)	Ca _{0.85} Na _{0.15}	Na	Na _{1.0}
Ca(3)	Ca _{0,79} Fe _{0,15} Mg _{0,06}	Ca(1)	Ca _{0,95} Fe _{0,06}
Ca(4)	Ca _{0,92} Mn _{0,08}	Ca(2)	Ca _{0,95} Mn _{0,11} Mg _{0,02}

ИК-спектр характеризуется широкой полосой поглощения в области валентных колебаний Si-O 1080-800 см⁻¹ с четкими максимумами 920-970-1020-1080 см⁻¹ и полосами 3450 и 1595 см⁻¹, соответствующими валентными и деформационными колебаниями групп (OH).

Микр. Бесцветный. Удлинение (+). Двуосный (+). cNg до 15°; $n_g = 1,577$, $n_p = 1,570$; $2V = 38^{\circ}$. Дисперсия, r > v.

Фиг. 103. Структура токкоита в проекции вдоль оси b (по Рождественской н др.)

Хим. Анализы (2 – микрозонд., среднее из 2) [1]:

	1	2		1	2
Na ₂ O	0,60	0,41	SiO ₂	55,65	54,17
K ₂ O	11,33	12,95	TiO ₂	1,42	1,18
MgO	0,30	0,98	H₂O	2,40	2,40*
CaO	25,10	24,15	F	1,50	1,50*
MnO	0,70	0,54	O=F ₂	0,63	0,63
Fe ₂ O ₃	1.58	1,57	Сумма	99,26	99,22

* Данные химического анализа.

Эмпирические формулы (на сумму катионов = 11):

 $1 - (K_{1,85}Na_{0,15})_{2,00}(Ca_{3,45}Mg_{0,06}Mn_{0,08}Fe_{0,15}Ti_{0,13})_{3,87}Si_{7,13}O_{17}(O_{1,63}OH_{2,02}F_{0,61})_{4,26};$

 $2 - (K_{2,09}Na_{0,13})_{2\,22}(Ca_{3,32}Mg_{0,19}Mn_{0,06}Fe_{0,15}Ti_{0,11})_{3,83}Si_{6,95}O_{17}(O_{1,39}OH_{2,05}F_{0,61})_{4,05}.$

Спектральным анализом установлены: Sr – 0,1%, Zr, Nb – сотые доли %, Be, Cu, V, Ag, Y и Yb – тысячные.

Повед. при нагр. [1]. Кривая ДТА фиксирует постепенную потерю веса до 860° (0,5%) и резкий эндотермический эффект в интервале 860–990°, с которым связана потеря веса еще на 1,5%. После прокаливания приобретает бледно-сиреневую окраску.

Нахожд. [1]. Найден в чароититах южной части Мурунского массива. Слагает почти мономинеральные выделения в виде зон (шириной до первых сантиметров) и шлироподобных обособлений. Характерны тесные срастания с чароитом, тинакситом и мизеритом, сопутствуют эгирин и калиевый полевой шпат.

Образовался в связи с метасоматическими преобразованиями волластонит- и пектолитсодержащих пород.

Отл. От тинаксита отличается по составу и более низким показателем преломления; от чароита – по цвету, текстурным особенностям и характеру микродифракции; от мизерита – положительным знаком удлинения [1]

> Межплоскостные расстоннии токкоита из Мурунского массива [1] Дифрактометр

					•			
hkl	1	d(Å)	hkl	1	d(Å)	hkl	1	d (Å)
020	10	12,5	270	15	2,888	471;382	14	2,059
100	45	10,3	18ĩ	13	2.847	153;223	11	2,008
120	12	7,8	181	10	2,790	233;2.10.2	7	1,984
ī11; ī 01	8 ш	6,2	252	36	2,711	1.12.1;163	8	1,935
111	42	5,2	202;212	37	2,694	501;49Ĩ	4	1,868
041;121	20	4,8	331;332	33	2,672	183;193	4	1,861
220;041	20	4,66	222;232	44	2,611	273;313	8ш	1,799
240	7	3,92	Ĩ91	13	2,572	224;293	33	1,779
002	26	3,57	072;281	20	2,500	581;463	7ш	1,757
Ĩ22, 231	42	3,43	ī72	10	2,455	193;503	23	1,712
310;300	23	3,39	182;133	20	2,401	620;4.11.0	18	1,673
310;041	55	3,34	380;123	26	2,369	622;483	11	1,648
260;132	85	3,32	023;262	16	2,325	ē 61;522	13	1,617
Ī32;161	49	3,26	223	12	2,292	293;164	15	1,604
142:112	100	3,15	411;282	14	2,248	154;184	12	1,597
261;122	85	3,125	461;262	14	2,222	174;443	9	1,568
171;261	62	3,075	182;432	14	2,196	393;660	13	1,550
3 40	91ш	3,044	461;442	27	2,157	094;651	8	1,534
340;171	30	2,944	253;441	29	2,103			•

 $a_0 = 10,37, b_0 = 25,39, c_0 = 7,27$ Å; $\alpha = 91,67, \beta = 100,66, \gamma = 92,09^{\circ}; Z = 4$ [1].

Литература

1. Лазебник К.А., Никишова Л.В., Лазебник Ю.Д. // Минерал. журн. 1986. Т. 8, № 3. С. 1986.

 Rozhdestvenskaya I.V., Nikishova L.V., Lazebnik Yu.D., Lazebnik K.A. // Ztschr. Kristallogr. 1989. Bd. 189, H. 3/4. S. 195.

3. Рождественская И.В., Никишова Л.В., Лазебник К.А. // Минерал. журн. 1991. Т. 13, № 4. С. 3.

СИЛИКАТЫ С ЛЕНТАМИ ШЕСТИЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА ЗОРИТА

	Сингония	<i>a</i> ₀	b_0	<i>c</i> ₀	Уд.в.
Зорит Na ₆ Ti(Ti ₀₉ Nb _{0.1})4[Si ₆ O ₁₇]2 × ×(O,OH)5·11H2O	Ромб.	23,241	7,238	6,955	2,4

Зорит Zorite Na₆Ti(Ti_{0.9}Nb_{0.1})₄[Si₆O₁₇]₂(O,OH)₅ · 11H₂O

Назван по окраске от слов "зори", "зорька" [1].

Характ. выдел. [1]. Кристаллы, спутанно-волокнистые агрегаты, лучистые и сфероидальные сростки игольчатых кристалликов (1–2 мм длиной).

Структ. и морф. крист. [2]. Ромб. с. D_{2h}^{19} -Сттт. $a_0 = 23,241, b_0 = 7,238, c_0 = 6,955$ Å; $V_0 = 1169,8$ Å³; Z = 1.

В структуре Si–O-анионы [Si₆O₁₇]_∞ представлены ксонотлитоподобными лентами из восьмичленных колец, вытянутыми вдоль оси с (фиг. 104), скрепленными

Фиг. 104. Структура зорита (по Сандомирскому и Белову) *а* – проекция вдоль оси *b*: *б* – проекция вдоль оси *c*

Ті-полуоктаэдрами и цепочками Ті,Nb-октаэдров. Катионы Na⁺ частично расположены в октаэдрах из 4 атомов О и двух молекул H_2O , частично – в семивершинниках из атомов О.

Структура рассматривается как цеолитный каркас с двумя типами каналов: вдоль оси *b* (минимальный диаметр d = 4,3 Å) и вдоль *c* (d = 4,6 Å). Каналы статистически заполнены ионами Na⁺ и молекулами воды. Структура имеет ОД-характер с упорядоченным стержневым фрагментом из атомов Ti, Si, Na, O, H₂O и трансляцией $b = 2b_0 = 14,476$ Å. Неупорядоченное расположение стержней приводит к нарушению периодичности вдоль осей *a* и *c*.

Межатомные расстояния (в Å): Si-O = 1,60-1,65; в основании полуоктаэдра Ti-O = 1,94-1,96; в вершине полиэдра Ti-O = 1,67.

Кристаллы призматические и игольчатые.

Физ. св. [1]. Сп. по (010) и (001) совершенная, по (110) несовершенная. Тв. 3–4. Хрупкий. Уд. в. 2,27 (в агрегате), 2,36–2,40 (в кристаллах, плохо смачивается). Цв. розовый. Бл. стеклянный. Прозрачен.

ИК-спектр подтверждает присутствие в минерале H₂O и указывает на примесь CO₂.

Микр. [1]. Плеохроизм ясный: по Ng – голубоватый, по Nm – почти бесцветный, по Np – розовый.

Хим. [1]. Анализ зорита из Ловозерского массива (анал. Кульчицкая): Na₂O – 15,09; K₂O – 0,69; CaO – 0,58; MgO – 0,10; MnO – 0,10; Fe₂O₃ – 0,53; Al₂O₃ – 4,92; SiO₂ – 41,70; TiO₂ – 15,21; ZrO₂ – 0,21; (Nb,Ta)₂O₅ – 5,95; P₂O₅ – 0,05; H₂O⁺ – 11,31; H₂O⁻ – 3,17; F – 0,29; CO₂ – 0,18; –O = F₂ – 0,11; сумма 99,97.

Спектроскопически определены следы Ве, Рb, Та и Ва.

Эмпирическая формула (расчет с учетом валентностей за вычетом примеси соды и фосфата Na): [(Na_{1,86}K_{0,06}Ca_{0,04})_{1,96}(Mg_{0,01}Mn_{0,01})_{0,02}(Ti_{0,74}Zr_{0,01}Nb_{0,17}Fe_{0,03} × × Al_{0,08})_{1,03}]_{3,01}(Si_{2,70}Al_{0,30})_{3,00}(O_{8,90}OH_{0,02}F_{0,06})_{9,00} · 1,5H₂O + 1,57 *aq*.

Диагн. исп. П. п. тр. спекается в белую пузыристую массу, затем плавится в бурое стекло. В воде и H_2SO_4 не растворяется. Разлагается медленно в 4%-ной HCl и 6%-ной HNO₃ при 20°, обесцвечиваясь и покрываясь гелем кремнекислоты.

Повед. при нагр. На кривой ДТА наблюдаются экзотермический прогиб около 170° и эндотермический эффект с максимумом при 360°. Общая потеря веса 13,2%: при 170° – 2,9%, при 290° – 6,8%, при 340° – 12,1%. Начало плавления при 800°.

Нахожд. Обнаружен [1] в пегматоидной залежи Юбилейная Ловозерского щелочного массива (Кольский п-ов) в ассоциации с волокнистым эгирином, раитом, маунтинитом и мелкокристаллическим натролитом. Образуется на стенках трещин и пустот, выполняет также элатолитовые пустоты в центральной натролитовой зоне залежи. Отмечался в фойяитах.

Изм. Продукты изменения – белые порошковатые массы.

Межплоскостные расстояния зорита из Ловозерских Тундр [2]

FeK_a-излучение. Дифрактометр

hkl	1	d (Å)	hkl	Ι	d(Å)
200	40	11,57	024	3	2,50
002;110	100	6,93	224	3	2,45
202	2	5,95	910	5	2,43
400	3	5,81	424	3	2,27
310	15	5,26	804	1	2,23
402	10	4,44	332	1	2,18
020	20	3,60	406	5	2,15
004;220	20	3,44	530	5	2,13
602	10	3,38	10.04	3	1,934
022	3	3,20	824	3	1,894
222	25	3,08	040	10	1,803
420	32	3,06	240	5	1,780
404	15	2,98	626;930	3	1,757
314	10	2,90	008	15	1,738
712	3 *	2,76	208	3	1,723
620	10	2,64	10.24	5	1,702
604	15	2,58	444	5	1,544

Литература

- 1. Мерьков А.Н., Буссен И.В., Гойко Е.А., Кульчицкая Е.А., Меньшиков Ю.П., Недорезова А.П. // Зап. ВМО. 1973. Ч. 102, вып. 1. С. 54.
- 2. Сандомирский П.А., Белов Н.В. // Кристаллография. 1979. Т. 24, № 6. С. 1198.

СИЛИКАТЫ С ЛЕНТАМИ ВОСЬМИЧЛЕННЫХ ГРУПП КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА ФЕНАКСИТА

ГРУППА ФЕНАКСИТА

Ранее со структурой этого типа был описан фенаксит (т. III, вып. 3, с. 361), имеющий трубчатую конфитурацию кремнекислородного радикала.

	Сингония	a_0	b_0	<i>c</i> 0	α	β	γ	Уд. в.
Манаксит Na ₂ K ₂ Mn ₂ [Si ₈ O ₂₀]	Трикл.	6,993	8,219	10,007	105,11°	100,76°	114,79°	2,73

Maнaксит Manaksite

 $Na_2K_2Mn_2[Si_8O_{20}]$

Назван по составу [1]. Первоначально описан как "минерал М-26" [2].

Характ. выдел. Зерна неправильной формы (1-3 мм) и их агрегаты (до 5 мм).

Структ. н морф. крист. [1, 2]. Трикл. с. $C_i^1 - P \bar{1}$. $a_0 = 6,993$, $b_0 = 8,219$, $c_0 = 10,007$ Å; $\alpha = 105,11$, $\beta = 100,76$, $\gamma = 114,79^\circ$; a_0 : b_0 : $c_0 = 0,851$: 1: 1,217; V = 474,5 Å³; Z = 1.

Физ. св. Сп. по (001) весьма совершенная, по (010) совершенная. Изл. ступенчатый, занозистый. Хрупок. При истирании образует спутанно-волокнистую массу. Тв. 5. Уд. в. 2,73 (вычисл. 2,71). Бесцветный, кремовый, слегка розоватый. Бл. стеклянный до перламутрового (на плоскостях спайности). В ультрафиолетовых лучах не люминесцирует.

В ИК-спектре наблюдаются широкая полоса поглощения 1142–982 см⁻¹ с основным максимумом 1060 см⁻¹ и серия узких полос: 692, 605, 470, 430 см⁻¹ (сильные), 533 (средняя), 795, 770, 750, 632 (слабые).

Микр. Двуосный (-). Угол полюса спайности (001) с $Np = 14^{\circ}$, $cNm = 76^{\circ}$, $cNg = 72^{\circ}$; $n_g = 1,557$, $n_m = 1,551$, $n_p = 1,540$; $n_g - n_p = 0,017$; $2V = 73^{\circ}$ (вычисл. 72°). Дисперсия отчетливая, r > v.

Хим. Марганцевый аналог фенаксита Na₂K₂Fe₂[Si₈O₂₀]. Анализ (микрозонд., среднее по 3 зернам, анал. Нечелюстов): Na₂O – 8,9; K₂O – 10,8; MgO – 0,3; CaO – 0,2; SrO – 0,2; MnO – 17,2; FeO* – 0,8; SiO₂ – 62,0; сумма 100,4.

* Общее.

Эмпирическая формула: (Na_{1,11}K_{0,89}Ca_{0,01})Sr_{0,01}(Mn_{0,94}Fe_{0.03})Mg_{0,03}Si_{3,99}O₁₀.

Повед. при нагр. При 600° разлагается на несколько фаз, среди которых преобладает серандит (по рентгенограмме) [1].

Нахожд. Редкий акцессорный минерал, один из конечных продуктов кристаллизации пересыщенных щелочными, летучими и редкими элементами силикатно-солевых расплавов-растворов – наиболее поздних дифференциатов агпаитовых нефелин-сиенитовых магм. Обнаружен в пегматитах ультраагпаитового типа в районе горы Аллуайв в Ловозерском щелочном массиве на Кольском п-ове. Находится в тесной ассоциации с содалитом, канкринитом, паракелдышитом, приурочен к интерстициям кристаллов полевого шпата, нефелина и содалита; наблюдались срастания с ломоносовитом, соболевитом, терскитом, аллуайвитом.

		α,ρ	10, 2 - 114,0 mm		
hkl	Ι	d(Å)	hkl	1	d(Å)
010	70	6,89	013	90	3,26
101	15	6,01	201;103;220	40	3,16
111	10	5,17	212;113	80	3,05
011	15	4,71	111;211;200	50	3,00
002	35	4,55	023	70	2,880
111	50	4,07	1 13;122	70	2,715
120	13	3,94	132;222;201	30	2,609
110	13	3,70	212	10	2,542
022;020	1 0 0	3,45	231;212	24	2,504
121	24	3,37	031	70	2,463

Межплоскостные расстоянии манаксита гора. Аллуайв (Кольский п-ов) [1] СгК_{ж п}-изучение. D = 114.6 мм

Литература

1. Хомяков А.П., Курова Т.А., Нечелюстов Г.Н. // Зап. ВМО. 1992. Ч. 121, вып. 1. С. 112. 2. Хомяков А.П. Минералогия ультраагпантовых щелочных пород. М.: Наука, 1990. 200 с.

	СТРУКТУРА		тип	ТИПА РЕВДИТА				
	Сингония	Пр. гр.	a ₀	b_0	<i>c</i> 0	β	V	Z
Ревдит* Revdite Na ₁₆ ×[Si ₈ O ₁₅ (OH) ₆]× ×[Si ₄ O ₆ (OH) ₅] ₂ × × (OH) ₁₀ · 28 H ₂ O	Монокл.	C ₂ ³ -C2	53,83	9,972	6,907	96,78°	3680	2

До расшифровки структуры условно относился к слоистым силикатам со сложными тетраэдрическими радикалами, где описан с формулой Na₂[Si₂O₅] · 5H₂O в группе макатита (т. IV, вып. 2, с. 429).

Фиг. 105. Структура ревдита в проекции вдоль оси у (по Расцветаевой и др.)

В структуре обнаружено [1] неизвестное ранее сочетании двух Si–O-анионов: цепей [Si₄O₆(OH)₅] и лент [Si₈O₁₅(OH)₆]. Цепи построены из четырехчленных колец; ленты составлены из двух таких цепей, смещенных одна относительно другой в направлении оси z и связанных общим фрагментом Si(8)–O–Si(8); атом O – на оси 2 (фиг. 105). Кольца в лентах содержат восемь тетраэдров [SiO₄]. Катионы Na⁺ находятся в центрах октаэдров, тригональных антипризм и тетрагональных пирамид из атомов O, молекул H₂O и OH-групп. Часть этих полиэдров образует ажурный каркас с каналами, вытянутыми вдоль оси z; в каналах расположены параллельные друг другу цепи и ленты SiO₄-тетраэдров.

Межатомные расстояния (среднее, в Å): Si-O = 1,42–1,81; Na-O(OH, OH₂) = =2,41-2,48 (в октаэдрах), 2,42 и 2,43 (в антипризмах), 2,33 и 2,34 (в тетрагональных пирамидах).

Литература

1. Расцветаева Р.К., Михеева М.Г., Ямнова Н.А., Пущаровский Д.Ю., Хомяков А.П. // Кристаллография. 1992. Т. 37, № 5. С. 1177.

СИЛИКАТЫ С ЛЕНТАМИ ИЗ УТРОЕННЫХ ЧЕТЫРЕХЧЛЕННЫХ ЦЕПОЧЕК КРЕМНЕКИСЛОРОДНЫХ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА КАРЛОСТУРАНИТА

	Сингония	a_0	<i>b</i> ₀	c_0	β	Уд.в.
Карлостуранит (Mg, Fe, Ti) ₂₁ ×	Монокл.	36,70	9,41	7,29	101,1°	2,63
\times [(Si, Al) ₁₂ O ₂₈ (OH) ₄](OH) ₃₀ · H ₂ O						

Карлостуранит Carlosturanite (Mg, Fe, Ti)₂₁[(Si, Al)₁₂O₂₈(OH)₄](OH)₃₀ \cdot H₂O

Назван в память о трагически погибшем итальянском геологе Карло Стурани [1]. Близкие по составу серпентины описывались ранее как гидрофит, инофит [1].

Характ. выдел. Асбестовидные массы, легко расщепляющиеся на пучки изогнутых, гибких волокон II[010], длиной до нескольких сантиметров (обычно не более 0,2 мм) [1] при поперечных сечениях от 200 до 2000 Å [2].

Структ. и морф. крист. Монокл. с. $C_{2h}^3 - C2/m$, $C_s^3 - Cm$ или $C_2^3 - C2$. Z = 2.

Хим. анализ	a ₀ (Å)	<i>b</i> ₀	<i>c</i> 0	β	$a_0: b_0: c_0$	Местонахождение	Ссылка
1	36,70	9,41	7,291	101,1°	3,900 : 1 : 0,775	Валь-Варанта (Италия)	[1]
2	36,55	9,31	7,27	101,05	3,926 : 1 : 0,781	Таберг (Швеция)	[2]

Структура расшифрована с помощью данных высокоразрешающей электронной микроскопии [3], по взаимному расположению и строению тетраэдрического (T) и октаэдрического (O) слоев близка к структуре серпентинов. В отличие от последней слой T имеет упорядоченный ряд вакансий, следствием чего является разделение его на Si-O-ленты из утроенных цепочек с четырехкратной периодичностью

Фиг. 106. Структура карлостуранита (по Меллини и др.) *I* – молекулы воды; 2 – гидроксил-ионы

(фиг. 106). В свободных вершинах ленты атомы О замещены на ОН-группы. В октаэдрическом слое катионы Mg, Fe и Ti изоморфно замещают друг друга.

Разделение тетраэдрического слоя на ленты способствует сохранению плоского характера слоев при волокнистой морфологии выделений в отличие от изогнутых слоев, наблюдаемых в структуре хризотилов.

По сравнению со структурой серпентина в карлостураните выше отношение октаэдрических катионов к тетраэдрическим и величина водной составляющей.

Предложено [3] выделять инофитовую полнсоматическую серию, составленную нз комбинации S модулей серпентина состава $M_3T_2O_5(OH)_4$ и X модулей состава $M_6T_2O_3(OH)_{14} \cdot H_2O$ (гипотетический гидросоросиликат), которая включает карлостуранит (S₅X) и другне полисомы, выявленные высокоразрешающей электронной микроскопией как дефекты его структуры.

Двойники обычны, плоскость двойникования (100), угол 22°.

Физ. св. Сп. совершенная по (001) [2]. Уд.в. 2,63 (вычисл. 2,606) [1] и 2,68 [2]. Цв. светло-коричневый [1], зеленый [2]. Черта беловатая. Бл. стеклянно-перламутровый.

ИК-спектр подобен спектру хризотила, особенно в области колебаний ОН-групп (3610–3700 см⁻¹). В области валентных колебаний SiO₄-тетраэдра обнаружены две не характерные для хризотила полосы (850 и 950 см⁻¹), обусловленные особенностями структуры карлостуранита.

Микр. Бесцветный (Таберг, Швеция) [2] или плеохроирует от оранжевокоричневого до бледно-оранжево-коричневого $\parallel u \perp$ [010] (Валь-Варанта, Италия) [1]. Удлинение (+). Двуосный (+). $n_g = 1,54$ [2]; для итальянского образца n = 1,605(вдоль волокон) и 1,600 (поперек волокон) [1]; двупреломление низкое, \parallel осям волокон аномальная серо-голубая интерференционная окраска. 2V от небольшого (иногда псевдоодноосный) до умеренного. Характерны закономерные срастания с диопсидом и хризотилом: направление волокон карлостуранита [010] \parallel [001] диопсида и хризотила; отмечены непрозрачные включения хроммагнетита и замещение закономерными срастаниями брукита и хризотила [1].

Хим. Анализы (микрозонд.):

	MgO	MnO	FeO	Al ₂ O ₃	Cr ₂ O ₃	SiO ₂	TiO ₂	H ₂ O⁺	Сумма
1	36,7-41,3	0,5-1,2	3,2-5,8	1,0-1,3	0,2-0,3	33,9–37,2	1,0-4,1		
	(39,28)	(0,72)	(4,03)	(1,07)	(0,24)	(35,53)	(2,24)	(16,85)	(99,96)
2	43,11	0,21	2,20	0,74	0,04	36,65	0,02	17,03	100,00
	1		Dam Dom	umo Mano a	ng [1] (n av		100 mm 15		2

 светло-коричневый, Валь-Варанта, Италия [1] (в скобках – среднее из 15 анализов); 2 – зеленый, Таберг, Швеция [2].

Пересчет анализов на 63 атома О:

	Si	Al	Ti	Fe ²⁺	Cr	Mg	Mn
1	11,46	0,41	0,54	1,08	0,06	18,89	0,20
2	11,68	0,28	0,01	0,59	0,01	20,47	0,06

Идеализированная формула: (Mg, Fe, Ti, Mn, Cr, \Box)₂₁[(Si, Al)₁₂ × × O₂₈(OH)₄](OH)₃₀ · H₂O.

Для образца из Валь-Варанта отмечены незначительные вариации химического состава от волокна к волокну (прежде всего по Ті). В пределах индивидуальных волокон состав минерала стабилен [3].

Повед. при нагр. [1]. Потеря веса при 40° – 1% и продолжается плавно, составляя при 380° – 5,6, при 750° – 13, при 1000° – 16,85%.

Структура минерала (данные порошкограммы) сохраняется до 400°, затем образуются две фазы – хризотил (исчезает при 500°) и гематит, который присутствует до 1100°.

Нахожд. Встречен в жилах, секущих антигоритовые серпентиниты в офиолитовой зоне Монвизо (Валь-Варанта, Италия). Распространен на площади в несколько квадратных километров в ассоциации с хризотилом, диопсидом и рудными минералами, локально – с клиногумитом, перовскитом и уваровитом [1]. Обнаружен также в серпентинитах Таберга (Швеция) и в Западных Альпах [2]. Предполагается более широкое распространение в метаморфизованных серпентинитах, а также в ретроградно метаморфизованных мафических и ультрамафических породах [2].

Стабильная ассоциация и совместный рост карлостуранита с хризотилом и диопсидом свидетельствуют о сходных условиях их формирования при $t = 250-300^{\circ}$ и $P_{H_2O} = 2$ кбар.

Отл. От хризотила и волокнистого антигорита отличается параметрами решетки, химическим составом [1, 2].

В шлифах сходен с баланджероитом, у которого выше показатель преломления и интенсивность плеохроизма [1].

Межплоскостные расстоянии карлостуранита	из Валь	-Варанта	(Италия)	[1]	
--	---------	----------	----------	-----	--

СиК_а-излучение

hkl	I	d (Å)	hki	I	d (Å)	hkl	Ι	d (Å)
20 0	25	18,02	12.00; 10.01	5	2,988	17.10;823	10	2,065
400	5	9,01	12.01			[4.03;932	10	1,9373
001;201	100	7,17	331, 602	5	2,849	14.02;333	15	1,9223
201,401	10	6,28	10.02	5	2,818	15.30	5	1,9030
111:510:111	5	5,67	730	5	2,674	204;604	5	1,8170
401:601	15	5,15	14.01	15	2,586	18.21;10.23	15	1,7098
601;801	5	4,22	802	40	2,562	14.03	15	1,6030
020	10	4,71	12.02	20	2,539	060	20	1,5679
2 02	20	3,637	931; 403; 203	10	2,425	F2.05;24.03	5	1,3995

hkl	I	<i>d</i> (Å)	hkl	1	<i>d</i> (Å)	hki	I	d (Å)
10.00;002	45	3,595	203	10	2,308	14.05;17.34	5	1,3671
801;10.01	10	3,513	803	15	2,293	16.04;463	5	1,2835
202	55	3,397	14.01; 16.01	35	2,280	24.04; 10.63	5	1,2790
802	15	3,096	12.02; 15.11	5	2,101			

Литература

1. Compagnoni R., Ferraris G., Mellini M. // Amer. Miner. 1985. Vol. 70, N 7/8. P. 767.

2. Mellini M., Zussman G. // Miner. Mag. 1986. Vol. 50, N 358. P. 675.

3. Mellini M., Ferraris G., Compagnoni R. // Amer. Miner. 1985. Vol. 70, N 7/8. P. 773.

СЛОИСТЫЕ СИЛИКАТЫ

СИЛИКАТЫ С СЕРПЕНТИНОВЫМИ И СЛЮДЯНЫМИ СЛОЯМИ

Структура типа серпентина Группа магнезиальных серпентинов Структура типа слюд Группа мусковита Боромусковит KAl₂[Si₃BO₁₀](OH, F)₂ Наньпинит CsAl₂[(Si, Al)₄O₁₀](OH, F)₂ Группа флогопита-биотита Норришит K(Mn₂³⁺Li)[Si₄O₁₀]O₂

СИЛИКАТЫ СО СМЕШАНОСЛОЙНОЙ СТРУКТУРОЙ

СМЕШАНОСЛОЙНЫЕ МИНЕРАЛЫ С УЧАСТИЕМ СЛЮДЯНЫХ СЛОЕВ

Салиотит Na_{0,5}Li_{0,5}Al₃[(Si₃Al)O₁₀](OH)₅

СМЕШАНОСЛОЙНЫЕ МИНЕРАЛЫ С УЧАСТИЕМ ПИРОФИЛЛИТОВЫХ СЛОЕВ

Луницзяньлаит Li_{0,73}Al_{6,19}[Si₇AlO₂₀](OH, O)₁₀ Феррисурит (Pb, Ca)₂₋₃(Fe, Al)₂[(Si, Al)₄O₁₀](CO₃)_{1,5-2}(OH, F)_{0,5-1}(OH)₂ × $\times n$ H₂O

СЛОИСТЫЕ СИЛИКАТЫ СО СЛОЖНЫМИ ТЕТРАЭДРИЧЕСКИМИ РАДИКАЛАМИ

СИЛИКАТЫ С ШЕСТИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

```
Структура типа эканита
                   Эканит ThCa<sub>2</sub>[Si<sub>8</sub>O<sub>20</sub>]
Структура типа орлиманита
                   Орлиманит Ca<sub>4</sub>Mn<sub>3</sub>[Si<sub>8</sub>O<sub>20</sub>](OH)<sub>6</sub> · 2H<sub>2</sub>O
Структура типа тунгусита
                   Тунгусит* Ca<sub>14</sub>Fe<sub>9</sub><sup>2+</sup>[Si<sub>8</sub>O<sub>20</sub>]<sub>3</sub>(OH)<sub>22</sub>
Структура типа штрётлингита
            Группа штрётлингита
                   Штрётлингит Ca<sub>2</sub>Al[(SiAl])O<sub>2</sub>(OH)<sub>4</sub>](OH)<sub>6</sub> · 2,25H<sub>2</sub>O
                   Вертумнит Ca<sub>2</sub>Al[(Si<sub>1.25</sub>Al]<sub>0.75</sub>)O<sub>3</sub>(OH)<sub>3</sub>](OH)<sub>6</sub> · 2,45H<sub>2</sub>O
Структура типа амсталита
                   Амсталит CaAl[Si<sub>3.2</sub>Al<sub>0.8</sub>O<sub>8</sub>(OH)<sub>2</sub>](OH)<sub>2</sub>Cl<sub>0.2</sub> · 0,8H<sub>2</sub>O
Структура типа макатита
            Группа макатита
                   Силинаит Na<sub>2</sub>Li<sub>2</sub>[Si<sub>4</sub>O<sub>10</sub>] · 4H<sub>2</sub>O
Структура типа пенквилксита
                   Пенквилксит Na<sub>4</sub>Ti<sub>2</sub>[Si<sub>4</sub>O<sub>11</sub>]<sub>2</sub> · 4H<sub>2</sub>O
```

СИЛИКАТЫ С ТРЕХ- И ШЕСТИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

Структура типа зусманита

Группа зусманита Кумбсит К(Mn, Fe, Mg)₁₃[(Si, Al)₁₈O₄₂](OH)₁₄

СИЛИКАТЫ С ЧЕТЫРЕХ- И ВОСЬМИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

Структура типа джиллеспита Эффенбергерит BaCu[Si₄O₁₀]

СИЛИКАТЫ С ШЕСТИ- И ДВЕНАДЦАТИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

Структура типа уикенбергита

Уикенбергит^{*} Pb₃CaAl[Si₁₀AlO₂₇] · 3H₂O

СИЛИКАТЫ С ВОСЪМИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

Структура типа кванфьелдита Кванфьелдит H₂Na₄(Ca, Mn)[Si₃O₈]

СИЛИКАТЫ С ШЕСТИ- И ДЕСЯТИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

Структура типа лемуанита Группа лемуанита Алтисит Na₃K₆Ti₂[Si₈Al₂O₂₆]Cl₃

> СИЛИКАТЫ С ПЯТИ-, ШЕСТИ-, ВОСЬМИ- И ДВЕНАДЦАТИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

Структура типа стильпномелана Группа стильпномелана Франклинфилит КМп₆[(Si, Al)₉(O, OH)₂₇] • n H₂O

СИЛИКАТЫ С СЕРПЕНТИНОВЫМИ И СЛЮДЯНЫМИ СЛОЯМИ

СТРУКТУРА ТИПА СЕРПЕНТИНА

ГРУППА МАГНЕЗИАЛЬНЫХ СЕРПЕНТИНОВ

Ранее (т. IV, вып. 1, с. 125) в группе описаны: лизардит, хризотил, антигорит, амезит.

А. Кларк (Clark, 1993), М. Флейшер и Д. Мандарино (Fleischer, Mandarino, 1995) вместо хризотила указывают три самостоятельных полиморфных минерала: ортохризотил, парахризотил, клинохризотил с химической формулой Mg₃Si₂O₅(OH)₄.

Баумит (Mg, Mn²⁺, Fe²⁺, Zn)₃(Si, Al)₂O₅(OH)₄ описанный как разновидность фрепонтита (т. IV, вып. 1, с. 202), рассматривается как самостоятельный минеральный вид (Clark, 1993; Fleischer, Mandarino, 1995); по преобладающему магнию в октаэдрической позиции должен быть отнесен к этой группе.

СТРУКТУРА ТИПА СЛЮД

ГРУППА МУСКОВИТА

В данной группе, относящейся к диоктаэдрическим слюдам, ранее описаны мусковит, гидромусковит^{*}, иллит, железистый иллит^{2*}, фенгит^{3*}; лейкофиллит^{2*}, фуксит^{4*}, эллахерит^{2*}, роскоэлит, черныхит, тобелит, гюмбелит^{2*} (т. IV, вып. 1,с. 271).

* = иллит (Флейшер, 1990), измеиенный мусковит или его разиовидность (Clark, 1993).

Common

^{2*} Минеральными видами не числятся.

^{3*} Разиовидность мусковита (Флейшер, 1980; Clark, 1993).

^{4*} = хромовый мусковит.

	Christ	-0	-0	-0	Р	э д. в.
Боромусковит KAl ₂ [Si ₃ BO ₁₀](OH, F) ₂	Монокл.	5,075	8,794	19,815	95,59°	2,81
Наныпинит $CsAl_2[(Si, Al)_4O_{10}](OH, F)_2$	**	5,362	8,86	21,42	95,77	3,11

Ь.

Боромусковит Boromuscovite

KAl₂[Si₃BO₁₀](OH, F)₂

Назван по аналогии с мусковитом и преобладанию В [1].

Характ. выдел. Фарфоровидные корочки и снегоподобные налеты толщиной до 1 см, сложенные зернами размером в среднем 3–4 мкм.

Структ. и морф. крист. Монокл. с. Смесь политипов 2M₁ и 1M с параметрами соответственно: $a_0 = 5,075$ и 5,077, $b_0 = 8,794$ и 8,775, $c_0 = 19,815$ и 10,061Å; $\beta = 95,59$ и 101,31°; $a_0 : b_0 : c_0 = 0,577 : 1 : 2,253$ и 0,578 : 1 : 1,146; V = 879,7 и 439,53Å³ [1].

Тетраэдрическая позиция занята Si и B.

Кристаллы – псевдогексагональные таблички до 5 мкм в поперечнике [1].

Физ. св. Сп. весьма совершенная по (001); отдельность плохая по (010). Изл. полураковистый (в агрегатах). Тв. 2,5–3. Уд.в. 2,81 (вычисл. 2,89 для политипа 2M₁ и 2,90 для политипа 1М). Цв. от белого до светло-кремового и темно-желтого. Черта белая. Бл. землистый до фарфоровидного. Непрозрачный.

Не стабилен в электронном пучке и в секунды становится аморфным.

ИК-спектр сходен с мусковитовым. Полосы поглощения при 800–1200 см⁻¹ отвечают колебаниям (Si, Al, B)O₄; полосы при 3440 и 1650 см⁻¹ – соответственно ОН и H₂O. Некоторые различия в ИК-спектрах боромусковита и мусковита проявляются при 500 и 750 см⁻¹, причем колебания при 750 см⁻¹, очевидно, являются результатом замещения тетраэдрического Al на B.

Микр. Бесцветный. Не плеохроирует. Двуосный (-). Для политипа 2M₁ пл. опт. осей \perp (010), $aNm = 2^{\circ}$ в тупом углу β , Ng = b, $cNp = 1^{\circ}$ в остром углу β ; $n_g = 1,593$, $n_m = 1,587$, $n_p = 1,557$ (при 589 нм и 22°); $2V = 44^{\circ}$ (вычисл. 47,5°). Дисперсия слабая, r > v.

Хим. Теор. состав. для KAl₂[Si₃BO₁₀](OH)₂: K₂O – 11,84; Al₂O₃-25,61; B₂O₃-8,75; SiO₂ – 45,24; H₂O – 8,55.

Отмечается широкий изоморфизм: К замещается на Rb, Ca; Al в октаэдрической позиции – на Li, Mg; B – на Al; OH – на F.

Анализ (микрозонд. и рентгенофлюоресцентный – на главные элементы) боромусковита из Калифорнии [1]: $K_2O - 11,0$; $Li_2O^* - 0,05$; $Rb_2O^{2*} - 0,52$; $Cs_2O^{2*} - 0,05$; MgO – 0,15; Mn – 0,08; CaO – 0,1; $B_2O_3^* - 7,0$; Al₂O₃ – 28,1; Fe₂O₃ – 0,1; SiO₂ – 48,1; H₂O⁺ – 4,55^{3*}; H₂O⁻ – 0,22; F^{4*} – 0,76; -O = F₂ – 0,32; сумма^{5*} 100,46.

ß

V- -

- * Индуктивио-иаведенная плазменная спектрометрия.
- ^{2*} Эмиссионная спектроскопия и атомная абсорбция.
- 3* Микрокулонометрия [1].
- ^{4*} Ион-селективный электрод.

^{5*} Na₂O, TiO₂, P₂O₅ не обн.

Эмпирическая формула на основе 12(O + OH + F): $(K_{0,89}Rb_{0,02}Ca_{0,01})_{0.92} \times (Al_{1,93}Li_{0,01}Mg_{0,01})_{1,95}(Si_{3,06}B_{0,77}Al_{0,17})_{4,00}O_{9,82}[(OH)_{2,02}F_{0,16}]_{2,18}$.

Нахожд. [1]. Поздний гидротермальный минерал миароловых пустот главнои пегматитовой дайки Литтл-Три в пегматитовом районе Рамона, округ Сан-Диего, шт. Калифорния (США). Обнаружен в крупном гнезде Нью-Сполдинг, разрабатываемом на драгоценные и высококачественные турмалин и топаз. Образует белые или кремовые фарфоро- и снегоподобные корочки и налеты на первичных минералах — кварце, лепидолите, микроклине, топазе, а также на обломках топаза, эльбаита и других минералов на дне гнезда. В корочках боромусковита встречаются включения обломков топаза, альбита, эльбаита и др. В краевых участках гнезда присутствуют только снегоподобные корочки боромусковита с мусковитом или кукеитом. Глинистое вещество, заполняющее миаролы, представлено главным образом монтмориллонитом.

Образовался из гидротермальных растворов при температуре 350–400° и давлении 1–2 кбар (предполагается на основе экстраполяции температур гомогенизации газово-жидких включений в миароловых минералах из других пегматитов района). Совместное отложение политипов 2M₁ и 1M боромусковита также, вероятно, отражает низкие температуры его кристаллизации.

Искусств. В-содержащий мусковит вместе с санидином был синтезирован [2] из смеси $K_2O + 6SiO_2 + Al_2O_3 + H_3BO_3$ в водном флюиде во время гидротерминального эксперимента при температуре 300° за 660 ч и при 400° за 648 ч при $P_{H_2O} = 2$ кбар.

d(Å) d (Å) hkl I Поhkl I hkl I d(Å) По-Полилили-านแ тип тип 002 60 9,862 $2M_1$ 025 <10 2,930 $2M_1$ 202 10 2,066 iМ 001 113 60 9,862 1**M** 20 2,865 1M 221 10 2,043 1M 004 4,929 2M, 20 201 30 2,5332.5 1M 00.10 1,972 2M1 002 20 4,929 1M 200 40 24 2M, 30 110 4,391 2M 131 80 80 2.505 **1M** 005 1,972 **1M** īn <10 4,350 $2M_1$ 200 40 2,489 204 1M 1,954 10 1M īn 117 4,239 2M 40 1M <10 2,467 113 10 1,910 **1M** 111 <10 4,194 2M1 113 10 2,427 $\overline{2}08$ 1,857 $2M_1$ 1M <10 022 $2M_1$ 202 224 40 4.007 2.421 10 **1M** 10 1,756 iM ī13 10 3,799 2M, 131 20 2,388 1M 311:106 10 1.661 **1M** 023 $2M_1$ $\bar{2}04$ 10 3,652 30 2,341 $2M_1$ 20.10 10 1,633 $2M_1$ ī12 100 3,569 201 2,309 204:152 1M 20 1M 10 1,601 1M **1**54 10 1,590 2M1

Межилоскостные расстояния боромусковита из Нью-Сполдинга, шт. Калифорния (США) [1]

СиКа-нзлучение. Камера Гинье

hk!	I	d (Å)	По- ли- тип	hkl	I	d (Å)	По- ли- тип	hk!	I	d (Å)	По- ли- тип
ī14	10	3,418	2M ₁	221;040	40	2,195	1M	313	<10	1,588	1M
006	40	3,287	2M ₁	204	20	2,165	2M ₁	243	<10	1,555	IM
003		3,287	1M	041	10	2,141	IM	02.12	<10	1.539	2M ₁
024	20	3,280	2M ₁	2 22	10	2,119	IM	206;323	<10	1,515	1M
114	10	3,142	2M ₁	20 6	30	2,104	2M ₁	135	<10	1,485	1M
112	80	3,008	1M	135	10	2,087	2M ₁	060	40	1,465	2M ₁

Литература

1. Food E.E., Martin R.F., Fitzpatrick J.J., Taggart J.E., Crock J.G. // Amer. Miner. 1991. Vol. 76, N 11/12. P. 1998.

2. Eugster H.P., Wright T.L. // US Geol. Surv. Profess. Pap. 1960. N 400-B. P. 441.

Наиьпинит Nanpingite

CsAl₂[(Si, Al)₄O₁₀](OH, F)₂

Назваи по месту иаходки близ г. Наньпин (Китай) [1].

Характ. выдел. Пластинки и чешуйки диаметром до 10 мм (обычно 1–5 мм), редко псевдогексагональные кристаллы; радиальные и гребенчатые агрегаты.

Структ. и морф. крист. Монокл. с. C_{2h}^6 -C2/c; политип 2 M_1 . $a_0 = 5,362$, $b_0 = 8,86$, $c_0 = 21,42$ Å; $\beta = 95,77^\circ$; $a_0: b_0: c_0 = 0,605: 1: 2,418; Z = 4$.

Изоструктурен с мусковитом 2*M*₁. Межслоевая позиция занята Cs, частично K и Rb.

Физ. св. [1]. Сп. весьма совершенная по (001). Хрупкий (более, чем мусковит), гибкий (менее, чем мусковит). Тв. 2–3. Уд.в. 3,11 (вычисл. 3,19). Цв. белый, серебристо-белый. Черта белая. Бл. стеклянный; перламутровый на плоскостях спайности. В тонких чешуйках прозрачен.

Микр. [1]. Двуосный (-). Ng = b. $n_g = 1,588$, $n_m = 1,584$, $n_p = 1,551$; $n_g - n_p = = 0,037$; $2V = 46^\circ$. Дисперсия слабая, r > v.

Хим. Цезиевый аналог мусковита. Теор. состав для CsAl₂(Si₃Al)O₁₀(OH)₂: Cs₂O – 27,76; Al₂O₃ – 30,10; SiO₂ – 35,45; H₂O – 6,69.

Изоморфизм: Cs замещается на K и Rb; Al^{V1} – на Mg, Fe, Li; OH – на F [1]. Анализ (комбинированный – весовой и микрозонд.) [1]:

Li ₂ O	0,44	Al ₂ O ₃	25,61
Na ₂ O	0,00	SiO ₂	38,54
K ₂ O	0,54	TiO ₂	0,002
Cs ₂ O	25,29	H ₂ O	3,27
Rb ₂ O	0,25	F	1,00
MgO	1,78	Сумма	99,23
CaO	0,007	$-0 = F_2$	0,42
MnO	0,07	Сумма	98,81
FeO	2,44		

Эмпирическая формула (на Si + Al^{IV} = 4): $(Cs_{0.88}K_{0.06}Rb_{0.01})_{0.95}(A_{1,64}Mg_{0,22}F_{0,17} \times Li_{0.15})_{2.18}[(Si_{3.16}Al_{0.84})_4O_{9.95}][(OH)_{1.79}F_{0.26}]_{2.05}$.

Нахожд. [1]. В прожилках в богатой поллуцитом средней зоне мусковит-альбитсподуменового пегматита района Наньпин (пров. Фуцзян, Китай); ассоциирует с монтебразитом, кварцем и апатитом.

межил	оскостные	е расстояния иан	њлинита из Нань	ляня (К	нтай) [I]						
Си-излучение. Дифрактометр											
hkl	1	d (Å)	hkl	1	d (Å)						
114	5	3,622	202	14	2,654						
114	6	3,329	0.0.10	85	2,129						
115	5	2,993	223	16	2,122						
116	5	2,919	315	6	1,562						
008	100	2,664	067	14	1,328						

Литература

1. Yang Y., Ni Y., Wang L., Wang W., Zhang Y., Chen Ch. // Yanshi Kuangwuxue Zashi. 1988. Vol. 7. P. 49 (на кит. яз., рез. англ.); Amer. Miner. 1990. Vol. 75, N 5/6. P. 708.

ГРУППА ФЛОГОПИТА-БИОТИТА

Ранее в группе, относящейся к триоктаэдрическим слюдам, описаны: флогопит, биотит, аннит, сидерофиллит, манганофиллит^{*}, монтдорит, хендриксит, буркхардтит (т. IV, вып. 1, с. 391).

* = марганцовистый биотит (Флейшер, 1990).

- -

	Сингония	a_0	b_0	c_0	β	Уд.в.
Норришит K(Mn ₂ ³⁺ Li)×	Моиокл.	5,293	8,936	10,077	98,0°	3,264
×[Si ₄ O ₁₀]O ₂						

Норришит Norrishite

K(Mn₂³⁺Li)[Si₄O₁₀]O₂

Назваи в честь австралийского минералога К. Норриша [1]. Синон. Марганцевый биотит [2].

Характ. выдел. Чешуйки до 1,5 мм в поперечнике.

Структ. и морф. крист. Монокл. с. $C_{2h}^3 - C2/m$ или C2 и Cm; политип 1М. $a_0 = 5,293, b_0 = 8,936, c_0 = 10,077$ Å; $\beta = 98,0^\circ$; $a_0: b_0: c_0 = 0,591: 1: 1,127; Z = 2$ [1].

Триоктаэдрическая слюда с межслоевым ионом К ряда флогопит-биотит. По заполнению тетраэдрических позиций (см. хим.) слюда определяется как чисто кремниевая. Октаэдрические позиции M(1) заселены Li, M(2) – катионами Mn³⁺. Присутствие в минерале Mn в трехвалентном состоянии подтверждается характером спектра поглощения и кристаллохимическими данными, а также согласуется с общей окисной природой вмещающей породы и ассоциацией с другими Mn³⁺содержащими минералами.

Физ. св. Сп. весьма совершенная по (001), несовершенная по (010) и (100). Тв. 2,5. Уд.в. 3,264 (вычисл. 3,255). Цв. черный. Бл. сильный. Спектр оптического поглощения по Nm и Ng показывает интенсивные широкие области поглощения при 450 нм (22 000 см⁻¹). Поглощение по Ng имеет также плечо при ~515 нм (19 500 см⁻¹) и слабую полосу поглощения при 570 нм (17 500 см⁻¹). Эти полосы поглощения характерны для Mn³⁺ в синтетическом флогопите, пьемонтите и канонаите. Кроме того, в спектре по Ng наблюдаются две очень резкие линиипоглощения – при 551 нм (18 150 см⁻¹) и 470 нм (21 300 см⁻¹); линии при 551 нм наблюдается и в спектре по Nm.

ИК-спектр отличается от таковых большинства слюд почти полным отсутствием полос поглощения в области 3500 см⁻¹, что согласуется с меньшим содержанием воды по сравнению с другими слюдами.

Микр. Плеохроизм: по Ng – желто-бурый, по Nm – лимонно- до оливковозеленого (наблюдается цветовая зональность – зеленое ядро, желтая кайма), по Np – желтый. Двуосный (+). Пл. опт. осей под углом 70° к (001); $Ng \parallel b$; $aNm = 20^{\circ}$. $n_g = 1,785$, $n_m = 1,687$, $n_p = 1,636$; $n_g - n_p = 0,049$; $2V = 74^{\circ}$ (вычисл. 75°). Дисперсия сильная, r > v (в синем свете $2V = 71^{\circ}$, в красном – 75°).

Хим. Теор. состав KMn₂LiSi₄O₁₂: K₂O – 10,23; Li₂O – 3,24; Mn₂O₃ – 34,33; SiO₂ – 52,20.

Отмечается широкий изоморфизм: К замещается на Na, Ca, Ba; Mn^{3+} – на Fe³⁺, Mg, Ti; Si – на Al. Содержание H₂O крайне низкое – 0,65, что эквивалентно 0,07% H.

Анализы (1 – микрозонд., среднее из 8 определений по 4 кристаллам, оригинал структурных исследований; 2 – плазменно-наведенная атомно-эмиссионная спектроскопия):

	1	2		1	2		1	2
Na ₂ O	0,03	0,18	CaO	0,02	0,03	TiO ₂	0,05	0,11
K ₂ O	9,84	9,35	Al ₂ O ₃	0,72	0,93	H₂O⁺	0,65 ^{2*}	0,66
Li ₂ O	3,2*	3,2	Fe ₂ O ₃	0,05	0,05	F	0,07	0,0
MgO	0,21	0,23	Mn ₂ O ₃	33,34	31,22	Сумма	99,23 ^{3*}	97,86 ^{4*}
BaO	0,07	0,04	SiO ₂	50,98	51,6			

Атомно-абсорбционный анализ.

2* TTA.

3* В оригинале 98,94.

 $^{4^{\ast}}$ В том числе: Sr – 0,01, S – 0,11, Ni – 0,02 Cu – 0,05, Pb – 0,01, Zn – 0,01, Co – 0,05; в оригииале сумма 97,90.

Эмпирическая формула (ан. 1-расчет по п.э.я. и уд. в.): $(K_{1.94}Na_{0.01}Ca_{0.02} \times Ba_{0.07})_{2,04} (Mn_{3.92}^{3+}Mg_{0.05}Ti_{0.02})_{3,99}Li_{2,00} (Si_{7.88}Al_{0.13})_{8.01}O_{24.22}$ или $K_{1.02} (Mn_{1.86}^{3+} \times Mg_{0.03})_{1.89}Li_{1,00} (Si_{3.94}Al_{0.06})_{4,0}O_{11,9} (OH)_{0,3}$.

Повед. при иагр. При нагревании до 110° на воздухе и в атмосфере азота с использованием окислителя CuO выделяется соответственно 0,04 и 0,27% H_2O ; при нагревании в тех же условиях до 1100° – соответственно 0,65 и 0,67% H_2O .

Нахожд. Породообразующий минерал богатых Мп кристаллических сланцев месторождения Хоскинс близ Гренфелл (Новый Южный Уэльс, Австралия). Главный минерал (до 25%) ассоциации амфибол + клинопироксен + браунит + марганцевый пектолит + норришит ± карбонат ± полевой шпат. Наблюдаются отдельные прослойки (шириной до 6 мм), содержащие более 40% норришита. Более редкая ассоциация – кварц + амфибол + клинопироксен + норришит (до 5%) ± пектолит ± карбонат. Предполагается стабильное сосуществование с другими первичными минералами (никаких текстур замещения не наблюдается). В норришите спорадически встречаются включения пластинчатых зерен амфибола, клинопироксена и браунита, строго ориентированные копланарно складчатости породы.

Отл. От других слюд отличается схемой плеохроизма, косым угасанием и положительным оптическим знаком, а также проявлением заметной спайности по (100) и (010), кроме обычной весьма совершенной базальной спайности.

	CuK_{lpha} -излучение. Дифрактометр											
hkl	I	d (Å)	hki	I	d (Å)	hkl	1	d(Å)				
001	10	10,01	131	5	2,549	223	2	1,98				
002	0.5	4,99	004	2	2,495	134	1	1,735				
020	5	4,464	201	3	2,452	204	3ш	1,695				
111	4	4,322	132	6	2,365	006	2	1,663				
021	2	4,08	114	1	2,306	135	4	1,638				
112	6	3,571	200;221	2	2,26	243	2111	1,573				
003	8	3,329	132	1	2,24	153;135	2ш	1,535				
112	7	3,160	202	1	2,198	331	4	1,517				
113	1	2,86	041	3	2,177	060	3	1,490				
023	3	2,671	221	1	2,15	007	1	1,425				
200	5	2,620	133	4	2,116	136;245	4	1,357				
130	2	2,586	005	2	1,996	008	1	1,247				

Межилоскостные расстояния норришита из месторождения Хоскинс (Австралия) [1]

Литература

1. Eggleton R.A., Ashley P.M. // Amer. Miner. 1989. Vol. 74, N 11/12. P. 1360.

2. Ryall A R. Geology of the Grenfell area, New South Wales: B.A. Honours thesis / Macquarie University. Sydney, 1974.

СИЛИКАТЫ СО СМЕШАНОСЛОЙНОЙ СТРУКТУРОЙ

СМЕШАНОСЛОЙНЫЕ МИНЕРАЛЫ С участием слюдяных слоев

Ранее описанные среди этих минералов Na-ректорит, К-ректорит, иллит-смектиты, тарасовит, слюда-вермикулиты (т. IV, вып. 2, с. 250), согласно А. Кларку (Clark, 1993) и М. Флейшеру и Д. Мандарино (Fleischer, Mandarino, 1995), к минеральным видам не относятся.

	Сингония	a_0	<i>b</i> ₀	<i>c</i> ₀	β	Уд.в.
Салиотит Na _{0,5} Li _{0,5} Al ₃ [(Si ₃ Al)O ₁₀](OH) ₅	Монокл.	5,158	8,914	23,83	94°23′	2,75

Салиотит Saliotite Na_{0,5}Li_{0,5}Al₃[(Si₃Al)O₁₀](OH)₅

Назван по имени французского геолога Пьера Салиота [1].

Характ. выдел. Изогнутые чешуйки (0,25–1 мм длиной, 0,05–0,1 мм шириной), розетковидные агрегаты (до 0,5 мм в диаметре), симплектитовые сростки с кукеитом и парагонитом.

Структ. и морф. крист. Монокл. с. C2/m. $a_0 = 5,158$, $b_0 = 8,914$, $c_0 = 23,83$ Å; $\beta = 94^{\circ}23'$; $a_0: b_0: c_0 = 1,728:1:4,620$; V = 1093 Å³; Z = 4 [1, 2].

В структуре [1] идеально правильно 1 : 1 упорядоченно (R = 1) чередуются слои кукеита (ди-триоктаэдрического хлорита, 14 Å) и парагонита (диоктаэдрической слюды, 9,5 Å, политип 1М), что подтверждено наблюдениями под электронным микроскопом высокого разрешения. Периодичность, измеренная вдоль нормали к слою, колеблется в пределах 22,5–23,5 Å, что меньше рассчитанного значения и отражает колебания периода вдоль слоя из-за его уплотнения под воздействием электронного пучка.

Физ. св. [1]. Сп. совершенная по (001). Уд.в. 2,75 (вычисл.). Цв. жемчужнобелый. Бл. перламутровый.

Микр. [1]. Бесцветный, не плеохроирует. Удлинение (+). Двуосный (-). Ng = b,

 $Nm = a, cNp = 4^{\circ}. n_g = 1,592, n_m = 1,588, n_p = 1,584; n_g - n_p = 0,008; 2V$ (изм.) = 30-50°. По оптическим свойствам – промежуточный между кукентом и парагонитом.

Хим. [1]. Теор. состав: Na₂O – 3,43; Li₂O – 1,66; Al₂O₃ – 45,13; SiO₂ – 39,82; H₂O – 9,50. Содержит незначительные количества Ca, Mg и K, изоморфные с Na, и Fe, вероятно, замещающее Al.

Анализы (электронный и ионный микрозонд):

	1	2	3		1	2	3
Na ₂ O	2,59	2,79	2,54-3,14	FeO	0,39	0,47	0,31-0,59
K ₂ O	0,35	0,41	0,25-0,54	Al ₂ O ₃	45,40	43,65	42,14-45,46
Li ₂ O	1,64	1,67	1,64–1,71	SiO ₂	40,40	41,22	40,40-42,11
MgO	0,06	0,05	0,020,06	Сумма	91,18	90,51	88,60-91,63
CaO	0,29	0,25	0,15-0,38	H₂O [◆]	8,82	9,49	11,40-8,37
MnO	0,00	0,00		Сумма	100,00	100,00	

* По разности.

1 – "типичный" салнотит с высоким содержанием Al₂O₃ и Na₂O; 2 – среднее из 14 анализов; 3 – пределы колебаний.

Эмпирическая формула для анализа 2 (рассчитаниая по средним значениям): Si_{3,1}Al_{3,8}Mg_{0,01}Fe_{0,03} × × Ca_{0.02}K_{0,04}Na_{0,41}Li_{0.5}O_{9,86}(OH)₅.

Нахожд. [1, 2]. Породообразующий минерал метаосадочных пород. Обнаружен среди пермо-триасовых сланцев в горах Сьерра Аламилья в Андалузии (Испания), а также в виде реликтов среди метапелитов Западного Крита (Греция). Ассоциирует с Fe-Mg-карфолитом, пирофиллитом и арагонитом, что отвечает стадии мета-морфизма низких температур и высоких давлений (около 280–330° и 8 кбар). В этих условиях из Al-Si-растворов, содержащих Li и Na, вместо кукеита и парагонита образуется салиотит, имеющий вдвое меньший объем: $V_{can} = 1093 = 0,5$ (877_{кук}+ $+ 1303_{nap}$) Å³. Кукеит и парагонит широко распространены в более поздних сланцах, где салиотит не встречается. О ранней кристаллизации салиотита свидетельствуют деформированность его чешуек по отношению к первичной сланцеватости и наличие включений салиотита в жилах кальцита с реликтами арагонита.

Изм. [1]. Под электронным пучком в течение нескольких секунд уплотняется, затем аморфизуется и разрушается.

Межплоскостные расстояния	салнотита из	Андалузии,	Испания [1]
---------------------------	--------------	------------	-------------

СuК_α-излучение. Камера Гандольфи

hki	1	d (Å)	hkl	1	d(Å)	hkl	1	d(Å)
001		23,76*	113	<10	3,781	312	30	1,684
002	70	11,89	007	<10	3,395	1.1.14	50	1,623
003	30	7,93	008	20	2,966	0.0.16	90	1,486
004	10	5,93	131	100	2,547	332	20	1,462
005	50	4,75	133	70	2,476	064	30	1,442
110	90	4,456	134	30	2,398	065	10	1,418
111	90	4,325	135	20	2,229	335	10	1.393
112	20	4,267	205	10	2,195	2.0.15	40	1,307
112	<10	4,087	045	40	2,018	400	10	1,286
006	<10	3.961	0.0.12	30	1.982			

* Рефлекс наблюдается только на дифрактограмме.

Литература

1. Goffe B., Baronnet A., Morin G. // Europ. J. Miner. 1994. Vol. 6, N 6. P. 897.

2. Goffe B., Baronnet A., Jullien M., Morin G. // Abstr. 16th Gen. Meet. of Intern. Miner. Assoc. Pisa, 1994. P. 148.

СМЕШАНОСЛОЙНЫЕ МИНЕРАЛЫ С УЧАСТИЕМ ПИРОФИЛЛИТОВЫХ СЛОЕВ

Ранее смешанослойные силикаты, содержащие пирофиллитовые слои, среди минералов не описывались.

	Сингония	a_0	b_0	<i>c</i> 0	β	Уд.в.
Луницзяньлаит	Монокл.	5,09	8,97	c ₀ sinβ :	= 23,397	2,75
$L_{10,73}AI_{6,19}$ [Si ₇ AlO ₂₀](OH, O) ₁₀ Феррисурит (Pb, Ca) ₂₋₃ (Fe, Al) ₂ × ×[(Si, Al) ₄ O ₁₀](CO ₃) _{1.5-2} × × (OH, F) _{0.5-1} (OH) ₂ · <i>n</i> H ₂ O		5,241	9,076	16,23	90,03°	4,0

Луницзяиьлаит Lunijianlaite Li_{0.73}Al_{6.19}[Si₇AlO₂₀](OH, O)₁₀

Название от китайских слов, означающих "хлорит между пирофиллитом" [1], что. согласио номенклатуриым требованиям ММА, отражает групповые иззвания составляющих слоев.

Характ. выдел. Игольчатые кристаллы длиной до 0,4-1,2 мм; радиальнолучистые агрегаты диаметром 0,8-2,0 мм [1].

Структ. и морф. крист. Монокл. с. $a_0 = 5,09, b_0 = 8,97; c_0 \sin \beta = 23,397$ Å.

Упорядоченный смешанослойный 1 : 1 кукеит (хлорит) – пирофиллит. На дифрактограмме присутствуют все 00*l*-линии (*l* от 1 до 18), что указывает на упорядоченность переслаивающихся пирофиллитовых и кукеитовых слоев. Средняя толщина слоя *d*(001) равна 23,397 Å; при этом толщина слоя пирофиллита 9,233 Å и кукеита 14, 164 Å (фиг. 107).

Наблюдения в высокоразрешающем просвечивающем электронном микроскопе структуры вдоль [001], [110] и [100] показали [2] закономерное переслаивание пирофиллитовых и кукеитовых слоев вдоль оси с в стабильных доменах луницзяньлаита (толщиной 200 Å), а также микросегрегацию кукеитовых доменов, неупорядоченность по осям *a* и *b* и ошибки упаковки отдельных слоев.

Физ. св. Сп. весьма совершенная по (001). Тв. 2. Уд.в. 2,75. Бесцветный до белого цвета. Прозрачный.

Фиг. 107. Схема структуры луиицзяньлаита (по Кону и др.)

В ИК-спектре наблюдаются интенсивные полосы поглощения [1]: 355, 483, 520, 541, 577, 747, 880, 947, 986, 1010, 1050, 1069, 1123, 3360, 3380, 3530, 3604, 3667 см⁻¹.

Микр. [1]. Бесцветный, прозрачный. Двуосный (-). Погасание волнистое (до 2-6°). $n_g =$ = 1,587, $n_m =$ 1,582, $n_p =$ 1,576; $n_g - n_p = 0,011$; 2V = 60°.

Хим. Анализ (микрозонд., атомно-адсорбционная спектрография – Li, $T\Gamma$ – H₂O): Na₂O – 0,063; K₂O – 0,012; Li₂O – 1,57; Al₂O₃ – 44,80; Fe₂O₃ – 0,60; SiO₂ – 41,61; H₂O⁺ – 11,296; сумма 99,951. Рассчитанная идеальная формула, соответствующая 1:1 слоям кукеита и пирофиллита: Li_{0,732}Al_{4,189}[Si₃AlO₁₀](OH, O)₈ · Al₂[Si₄O₁₀](OH)₂.

Нахожд. Встречен в корундовых выделениях на пирофиллитовом месторождении Цинтянь (пров. Чжицзян, Китай), приуроченных к гидротермально измененным риолитам. Иногда на контактах между корундом и луницзяньлаитом присутствует диаспор. Отмечаются также пирофиллит, хлорит, иллит, галлуазит, сванбергит, цеолит и гематит.

	hkl		1	d(Å)		hkl		d(Å)
лун	кук	nup	7		лун	кук	1	
001		·	6	23,500	•••••••••••••••••••••••••••••••••••••••	205;007	7	2.019
	001		22	14,267	00.12	204	6	1.946
002			15	11,788		206	2	1,838
		002	5	9,252	00.13		5	1.795
003			22	7,802		008	3	1.767
	002		20	7,113	00.14		<0.5	1,677
004			5	5,852			1	1 645
005	003		100	4,704			1	1.628
006			8	3,899	00.15	206	2	1,556
	004		45	3,539		208	1	1,532
007			47	3,343		060	0.5	1.489
		006	12	3,069	00.16	062	1	1.459
008			40	2,919		00.10	3	1.412
	005		22	2,832			0.5	1.396
009			1	2,596	00.17	064:208	2	1,373
	202		1	2,509			ĩ	1 313
00.10	203		8	2,337	00.18		1	1 296
	202		1	2,300			1	1,177
	204		0,5	2,201	00.20		1	1.167
00.11			2	2.122			-	-,107

Межилоскостные расстояния луницзяньланта из Цинтяня (Китай) [1]

Литература

1. Kong Youhua, Peng Xiumen, Tian Dehui // Acta Miner. Sinica. 1990. Vol. 10, N 4. P. 289. На кит. яз., рез. англ.

2. Kong Youhua, Peng Xiumen, Tian Dehui // Ibid. 1992. Vol. 12, N 1. P. 7.

Феррисурит Ferrisurite

(Pb, Ca)₂₋₃(Fe, Al)₂[(Si, Al)₄O₁₀](CO₃)_{1,5-2}(OH, F)_{0,5-1}(OH)₂ · n H₂O

Железистый аналог сурита [1].

Сурит описан (т. IV, вып. 2, с. 234) среди триоктаэдрических хлоритов. Однако отсутствие бруситоподобных и наличие церусситоподобных слоев указывает на принадлежность его к силикатам со смешанослойной структурой с участием пирофиллитоподобных слоев.

Характ. выдел. Радиально-лучистые или перистые агрегаты игольчатых или уплощенных кристаллов, до 2 мм по удлинению при толщине 0,01–0,04 мм.

Структ. и морф. крист. [1]. Монокл. с. $C_2^2 - P2_1$ или $C_{2h}^2 - P2_1/m$. $a_0 = 5,241$, $b_0 = 9,076$, $c_0 = 16,23$ Å; $\beta = 90,03^\circ$; $a_0 : b_0 : c_0 = 0,577 : 1 : 1,788$; V = 772 Å³; Z = 2. Параметры ячейки и ее объем несколько выше, чем у сурита. Уточненные параметры ячейки сурита: $a_0 = 5,241$, $b_0 = 8,95$, $c_0 = 16,20$ Å; $\beta = 90,0^\circ$; $a_0 : b_0 : c_0 = 0,586 : 1 : 1,810$; V = 760 Å³ [1].

Кристаллы вытянуты по оси а. Преобладающая форма (010); другие формы не измерялись. Двойники не наблюдались.

Физ. св. [1]. Сп. по (010) совершенная. Иголочки и отдельные кристаллы весьма упругие. Тв. 2–2,5. Уд.в. 4,0 (вычисл. 3,89). Цв. светло-желто-зеленый. Черта зеленовато-желтая. В плотных агрегатах: цв. темно-зеленый, черта оливково-зеленая. Бл. шелковистый. Прозрачный до полупрозрачного.

ИК-спектр подобен таковому сурита и характеризуется полосами поглощения при 1019, 878, 819, 491 и 425 см⁻¹, сопоставимыми по положению и интенсивностям с полосами поглощения ИК-спектра смектита, которые могут быть приписаны структуре силиката. Полосы 3452 и 1622 см⁻¹ соответствуют H₂O, а 3543 см⁻¹ – ОН-группам. Полосы 1422, 853 и 691 см⁻¹ сравнимы с таковыми в ИК-спектре церуссита и могут быть приписаны карбонатным группам.

В ультрафиолетовом свете не флюоресцирует.

Микр. Плеохроизм: по Np – желтый, по Nm – коричневый, по Ng – светлозеленый. Двуосный (+). Np = c, Nm = b, Ng = a. Показатели преломления намного выше, чем у сурита: $n_g = 1,773$, $n_m = 1,763$, $n_p = 1,757$; $n_g - n_p = 0,016$; $2V = 76^{\circ}$ (вычисл.).

Хим. Анализ (микрозонд., среднее из 3) [1]: Na₂O – 0,3; MgO – 0,2; CaO – 3,4; BaO – 0,1; FeO – 0,8; PbO – 42,7; Al₂O₃ – 3,2; Fe₂O₃ – 10,5; SiO₂ – 26,6; F – 0,8; CO₂ – 8,2; H₂O – 3,5; –O = F – 0,3; сумма 100,0. H₂O определена методом Фишера (из 15 мг), CO₂ – колориметрическим методом (9 мг), Fe²⁺ – потенциометрическим методом (23 мг).

Исходя из предложенной [2] для сурита церуссит-смектитовой смешанослойной модели, формула феррисурита (на 4 Si):

 $1-(Pb_{1,73}Ca_{0,55}Na_{0,09}Ba_{0,01})_{2,38}(CO_3)_{1,68}(OH)_{0,51}F_{0,38}\cdot 0,5H_2O;$

$$2 - (Fe_{1,19}^{3+}Al_{0,57}Fe_{0,10}^{2+}Mg_{0,05} \Box_{0,09})_{2,00}[Si_4 O_{10}](OH)_2.$$

1 – межслоевой церусситовый промежуток; 2 – смектитовый слой.

Уточненная формула для сурита, рассчитанная из данных [2]: (Pb_{1,84}Ca_{0,77}×

 $\times \text{Na}_{0,23}\text{Cu}_{0,01})_{2,85}(\text{CO}_{3})_{1,95}(\text{OH})_{0,59} \quad 0,58 \text{ H}_{2}\text{O}(\text{Al}_{1,58}\text{Mg}_{0,29}\text{Fe}_{0,05}^{3+} \Box_{0,08})_{2,00}[\text{Si}_{3,57} \times \text{Al}_{0,43}\text{O}_{10}](\text{OH})_{2}.$

Диаги. исп. Растворяется с шипением и выделением пузырьков в HCl 1 : 1 при комнатной температуре с образованием студенистого осадка.

Нахожд. Найден вблизи Биг Дод Спринг в районе Иньо, восточнее Лон Пайн в Долине смерти (шт. Калифорния, США), в слабо окисленных свинцовых рудах в контактово-метаморфизованных сланцеватых илистых известняках. Образует лучистые агрегаты в прожилках или игольчатые кристаллы, пронизывающие зерна кварца и церуссита. Ассоциирует с галенитом, пиритом, халькопиритом, кварцем, кальцитом, рутилом, вульфенитом, церусситом, миметитом, ковеллином, халькозином, малахитом и гематитом. Образуется на ранних стадиях окисления, при изменении силикатов в непосредственной близости с галенитом.

Межилоскоствые расстояния феррисурита из Биг Дод Сприиг, шт. Калифорнии (США) СиК_{ас}-излучение, Ni-фильтр, D = 114.6 мм. Камера Гандольфи

hki	1	d (Å)	hki	1	d (Å)
001	40	16,1	204;204	10	2,199
002	5	8,15	043;223;223	15ш	2,090
003	25	5,40	231;231;018;044;224;224	20ш	1,973

			Эканит	Эканит			
hki	1	<i>d</i> (Å)	hki	I	d(Å)		
110;020	100	5,43	225;225;045;233;233	< 5	1,864		
021;111;111	10	4,36	009	5	1,811		
004	10	4,05	150;240;310	25	1,715		
014;103	35ш	3,727	303;303:029:119;119	< 5	1,668		
113;023;113	10	3,470	227;227;047;321;321;0.0.10	5ш	1,622		
121;121	< 5	3,354	305;305	5	1,541		
104;104;005	90ш	3,240	330;060	20	1,512		
024;114;114	10	3,025	401;401;260;400	10	1,309		
032	< 5	2.829	170;350;420	10	1,259		
006	5	2,704					
201;201;200;130	80ш	2,612					
026;116;116	5	2,322					
220;040	50	2,272					

Литература

1. Kampf A.R., Jackson L.L., Sidder G.B., Foord E.E., Adams P.M. // Amer. Miner. 1992. Vol. 77, N 9/10. P. 1107.

2. Hayase K., Dristas J.A., Tsutsumi S., Otsuka R., Tanabe S., Sudo T., Nishiyama T. // Ibid. 1978. Vol. 63, N 11/12. P.1175.

СЛОИСТЫЕ СИЛИКАТЫ СО СЛОЖНЫМИ ТЕТРАЭДРИЧЕСКИМИ РАДИКАЛАМИ

СИЛИКАТЫ С ШЕСТИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА ЭКАНИТА

	Сингония	<i>a</i> 0	<i>c</i> 0	Уд.в.
Эканит ThCa ₂ [Si ₈ O ₂₀]	Тетраг.	7,483	14,893	3,42

Эканит Ekanite

 $ThCa_2[Si_8O_{20}]$

Ранее (т. III, вып. 2, с. 47) под названием "эканит" [1] описаны два минерала: собственно эканит и стисиит, который долгое время считался эканитом и в качестве самостоятельного был утвержден только в 1982 г. [2](см. с. 230). В отличие от стисиита эканит не содержит К и Na и является не кольцевым, а слоистым силикатом [3].

Характ. выдел. Зерна, кристаллы (около 2-3 мм).

Структ. и морф. крист. Тетраг. с. D_4^9 -*I*422. $a_0 = 7,483$, $c_0 = 14,893$ Å; $a_0: c_0 = 1:1,990; Z = 2$ — кристаллический из Канады [3]. $a_0 = 7,46, c_0 = 14,96;$ $a_0: c_0 = 1:2,005$ — метамиктный после прокаливания, из Шри-Ланки [1].

Структура, описанная ранее (т. III, вып. 2, с. 47), относится к стисииту. В структуре собственно эканита [3] группы [Si₈O₂₀], соединяясь мостиковыми кислородами O(1), образуют гофрированный бесконечный в направлении *x* и *y* слой. Si–O-слой состоит из двух частей (на z = 1/8 и z = 3/8), соединенных атомами O(2). Он соединяется посредством Th- и Са-полиэдров с другим Si–O-слоем, симметрично расположенным на расстоянии *c*/2 (фиг. 108). Атомы Th и Са находятся в восьмерной

Фиг. 108. Структура эканита в проекции уг (по Шимаискому и др.). Цифры – высота атомов (×100)

координации. Тh координируется атомами кислорода в форме квадратной призмы (Th–O(3) = 2,405 Å), Ca – атомами кислорода, четыре из которых являются общими с кремнекислородными тетраэдрами (Ca–O(1) = 2,688 Å), а другие четыре – с полиэдрами Th (Ca–O(3) = 2,342 Å).

Характерны цеолитоподобные каналы (диаметром около 4 Å), которые проходят через силикатные слои в направлении x и y и содержат неструктурную воду. По Ф. Либау (1988), относится к силикатам с неразветвленными изолированными слоями.

На кристаллах отмечены грани (001), (100), (110) и (101) [3].

Физ. св. Сп. по (101) совершенная, по (001) несовершенная. Тв. 4,5. Уд.в. 3,42 (вычисл. 3,38). Цв. соломенно-желтый до темно-красного. Бл. стеклянный.

Микр. Метамиктный из Шри-Ланки, изотропный, n = 1,590-1,609 [4]. Кристаллический – одноосный (–). $n_e = 1,568$, $n_o = 1,580$; $2V = 10-15^{\circ}$ [3]. После нагревания метамиктного эканита при 510° в течение 24 ч показатель преломления и уд.в. уменьшились незначительно [1].

Хим. Теор. состав: CaO – 13,09; SiO₂ – 56,10; ThO₂ – 30,81. Анализы (1 – микрозонд., среднее из 4):

	1*	2	3		1	2	3
CaO	9,0	13,7	12,00	Fe ₂ O ₃	-	0,5	_
FeO	0,3	_	_	SiO ₂	45,1	55,6	55,0
MnO	0,2	Сл.	-	UO ₂	1,9	2,1	3,0
РЬО	-	0,8	0,65	ThO ₂	36,0	27,6	28,0
Al ₂ O ₃	0,5	Сл.	0,8	Сумма	93,0	100,3	99,45

* Отклонение от теор. состава связано с примесью торита или торогуммита [3].

1 – кристаллический, из галек сиенитов, Томбстоуи-Маунтин, территория Юкон (Каиада) [3]; 2,3 – метамиктный, из речных россыпей, Шри-Лаика (2 – аиал. Босуэлл, 3 – аиал. Вейбел) [5].

Повед. при нагр. При нагревании до 900° кристаллического эканита из Канады потеря веса составляет около 9%, что связано с содержанием в минерале неструктурной воды и частично воды, входящей в состав примеси торогуммита [3].

Нахожд. Впервые эканит (метамиктный) обнаружен в речных россыпях района Эхелиагода в Шри-Ланке в обломках весом до 44 г вместе с андалузитом, диопсидом, корнерупином, сингалитом, спессартином, сапфирином, шпинелью, турмалином, цирконом [1]. Кристаллический эканит найден в гальке сиенитов в Томбстоун-Маунтин, территория Юкон (Канада), в ассоциации с флюоритом, гранатом, кварцем, плагиоклазом, гематитом, торогуммитом, цирконом и титанитом [3].

Межилоскостные расстониия эканита из Томбстоун-Маунтин, территория Юкон (Канада) [3] СиК_о-излучение, D = 114,60 мм

hkl	1	<i>d</i> (Å)	hki	1	d(Å)	hk!	I	<i>d</i> (Å)
002	58	7,45	206;321	17	2,060	512;336;503	11	1,436
101	61	6,70	314	13	1,996	426;20.1.0;521	14	1,385
110	9	5,28	323;305	20	1,913	514	5	1,363
112	14	4,31	400;008	17	1,868	523;505;435;	9	1,335
103	100	4,14	402;226	19	1,810	10.11		
202	96	3,343	411:217	26	1,796	408	6	1,319
211	65	3,265	118	11	1,758	329	8	1,294
114	13	3,044	413;325	19	1,702	532;516	9	1,261
213;105	23	2,766	420;404;208	15	1,671	444;428;602	9	1,245
220;204	54	2,642	422	12	1,632	611;437;419	12	1,224
222;006	18	2,494	307;109	9	1,618			
301	22	2,460	415	8	1,547			
310	7	2,361	424;228	8	1,524			
312:116	14	2,254	406;431	9	1,489			
303:215	22	2,225	318	6	1.461			
224	22	2 1 5 7			•			

Литература

1. Anderson B.W., Claringbull G.F., Davis R J., Hill D.K. // Nature. 1961. Vol. 190, N 4780. P.997.

2. Perrault G., Szymanski J.T. // Canad. Miner. 1982. Vol. 20, pt 1. P. 59.

- 3. Szymanski J.T., Owens D.R., Roberts A.C., Ansell H.G., Chao G.Y. // Ibid. P. 65.
- 4. Richard P., Perrault G. // Acta crystallogr. 1972. Vol. 28, pt 7. P. 1194.
- 5. Gübelin H.J. // Gems and Gemology. 1961. Vol. 10, N 6. P. 163, 191.

СТРУКТУРА ТИПА ОРЛИМАНИТА

Орлиманит Ca₄Mn₃[Si₈O₂₀](OH)₆ -2 H₂O

Сингония a_0 b_0 c_0 Уд.в. Триг. 9,60 - 35,92 2,7

Орлиманит Orlimanite Ca₄Mn₃[Si₈O₂₀](OH)₆·2H₂O

Назваи в память коллекционера минералов Орландо Лимана, в коллекции которого был установлен минерал [1].

Характ. выдел. Радиально-лучистые сферолитовые розетки (2–3 мм в диаметре); неправильные агрегаты с колломорфной текстурой в разрезе [1].

Структ. и морф. крист. Триг. с. $C_{3i}^1 - P\overline{3}$ или $C_3^1 - P\overline{3}$. $a_0 = 9,60$, $c_0 = 35,92$ Å; $a_0: c_0 = 1:3,741; Z = 5$ [1].

Структура слоистая: выделяются двухэтажные тетраэдрические слои и октаэдрические слои, подобные октаэдрическим слоям в гиролите. Однако в отличие от гиролита наряду с крупным катионом Ca²⁺ присутствует и небольшой катион Mn²⁺. Группы ОН координируют катионы Ca или Mn, образуя бруситоподобные слои. Молекулы H₂O располагаются либо в пустотах в двухэтажных тетраэдрических слоях, либо в способном расширяться слое, сочлененном с двумя двухэтажными тетраэдрическими слоями, как в структуре типа гиролита.

Волокна удлинены по оси *а* (необычная ориентировка для гексагональных кристаллов).

Физ. св. Сп. совершенная по (001). Тв. 4–5. Уд.в. 2,7–2,8 (вычисл. 2,93). Цв. темно-бурый. Бл. стеклянный. Цвет черты светло-бурый. В ультрафиолетовых лучах не люминесцирует [1].

Микр. Плеохроизм: по No – светло-бурый, по Ne – темно-бурый. Одноосный (–). $n_o = 1,598, n_e$ – не опр. [1].

Хим. Анализ (микрозонд., H₂O – метод Пенфильда): Na₂O – 0,6; MgO – 1,6; CaO – 21,6; MnO – 19,7; Fe₂O₃ – 0,8; Al₂O₃ – 0,2; SiO₂ – 46,8; H₂O – 8,68; сумма 99,98 (в оригинале сумма 100,0) [1].

Эмпирическая формула: (Ca_{18,62}Mn_{13,43}Mg_{2,39}Na_{0,74}Fe³⁺_{0,48})_{35,66}(Si_{37,66}Al_{0,19})_{37,85}× × O_{111,24}·23,29H₂O.

Нахожд. [1]. Обнаружен лишь в одном образце из рудника Весселс в ЮАР (коллекция О. Лимана), где представлен темно-коричневыми радиально-лучистыми сферолитами в светло-коричневой тонкой смеси орлиманита и других неидентифицированных фаз (~1 мкм) с редкими выделениями инезита (кристаллы, сферолиты до 1 см в диаметре) и землистого гематита.

Межплоскостные	расстонния	орлиманита в	із Южной	і Афрякя [1]
FeK _α -излучение,	Мп-фильтр,	D = 114,6 мм	Камера	Гандольфи

hkl	1	d(Å)	hk!	1	<i>d</i> (Å)						
005	70	7,15	00.14;11.12	40 ш	2,545						
006	10 ш	5,98	219;10.14	40 ш	2,469						
200	70	4,18	226;315	10	2,210						
009	5	4,00	11.15;228;00.17	5ш	2,123						
109;025;00.10	100	3,60	10.19;409;235;11.18;21.16;31.12	90	1,840						
210;211	80 ш	3,13	12.19;505;30.18;41.10;40.14	20	1,619						
216;300;00.13;301	5 ш	2,77	22.17;14,11;333;02.21;507	10	1,585						
межплоскостные расстонияя текстурированного ооразца по (001) [1] СиК -излучение. Пифпактомето											
--	------------------------	---	--	---	---	---	--	--	--	--	--
Сика-излучение. дифрактометр											
1	d(Å)	hki	1	d(Å)	hkl	1	d (Å)				
4	12,01	006	19	6,0 0	009	24	4,00				
4	8,97	007	6	5,14	00.10	100	3,60				
56	7,19	008	4	4,45	00.11	9	3,28				
	M 1 4 4 56	Межнлоскостни I d(Å) 4 12,01 4 8,97 56 7,19	Межплоскостные расстоиния СuK _a -излу <i>I d</i> (Å) <i>hkl</i> 4 12,01 006 4 8,97 007 56 7,19 008	Межплоскостные расстониня тексту СиК _а -излучение. J I d(Å) hkl I 4 12,01 006 19 4 8,97 007 6 56 7,19 008 4	Межплоскостные расстониня текстурированного CuK _a -излучение. Дифрактомет I d(Å) hki I d(Å) 4 12,01 006 19 6,00 4 8,97 007 6 5,14 56 7,19 008 4 4,45	Иежплоскостные расстониня текстурированного образца по (00 CuK _α -излучение. Дифрактометр I d(Å) hkl I d(Å) hkl 4 12,01 006 19 6,00 009 4 8,97 007 6 5,14 00.10 56 7,19 008 4 4,45 00.11	Иежплоскостные расстоиния текстурированного образца по (001) [1] CuK _α -излучение. Дифрактометр I d(Å) hkl I d(Å) hkl I 4 12,01 006 19 6,00 009 24 4 8,97 007 6 5,14 00.10 100 56 7,19 008 4 4,45 00.11 9				

Литература

1. Peacor D.R., Dunn P.J., Nelen J.A. // Amer. Miner. 1990. Vol. 75, N 7/8. P. 923.

СТРУКТУРА ТИПА ТУНГУСИТА

	Сингония	<i>a</i> 0	<i>b</i> 0	<i>c</i> 0	α	β	γ	Уд.в.
Тунгусит [*] Tungusite	Трикл.	9,715	9,719	22,08	90,1°	98,4°	120,0°	2,59
Ca14Feo ²⁺ [Si8O20]3(OH)22								

Описан в т. IV, вып. 2, с. 604.

- -

Кристаллическая структура [1] представляет собой расщепленный двухэтажный Si–O тетраэдрический слой, внутри которого находится Ca–OH-слой, как у рейерита [2], и триоктаэдрический Fe–OH-слой, содержащий максимум 9 катионов.

Структурная формула: [Ca₁₄(OH)₈](Si₈O₂₀)(Si₈O₂₀)₂[Fe₉(OH)₁₄]. Возможно наличие политипов.

Между тунгуситом и гиролитом существует твердый раствор, отвечающий формуле $[Ca_{14}(OH)_8](Si_{24-y}Al_yO_{60})[Na_xM_{9-(x+z)}\Box_z(OH)_{14-(x+y+2z)}]\cdot(x + y + 2z)H_2O$. Для тунгусита $M - Fe^{2+}$, x = y = z = 0; для гиролита $M - Ca^{2+}$, x = 1, y = 1, z = 6.

Литература

1. Ferraris G., Pavese A., Soboleva S.V. // 16-th General meeting Intern. Mineral. Association, 4-9 sept. 1994. Pisa, Italy Abstracts. P. 117; Miner. Mag. 1995. Vol. 59, N 3. P. 535.

2. Merlino S. // Miner. Mag. 1988. Vol. 52, N 365, pt 2. P. 247.

СТРУКТУРА ТИПА ШТРЁТЛИНГИТА

ГРУППА ШТРЁТЛИНГИТА

	Сингония	a_0	b 0	<i>c</i> 0	β	Ζ	Уд.в.
Штрётлингит	Триг.	5,745	-	37,77	_	3	1,95
$Ca_2Al[(SiAl\Box)O_2(OH)_4](OH)_6 \times 2,25H_2O$							
Вертумнит Ca ₂ Al[(Si _{1,25} Al□ _{0,75})O ₃ (OH) ₃] × х(OH) ₆ · 2,45	Монокл.	5,744	5,766	25,121	119,72°	2	1,94

В общем виде для обоих минералов Ca₂Al[(Si,Al,□)₃(OH, O)₆](OH)₆ n H₂O.

Штрётлингит и вертумнит – политипы, отличающиеся последовательностью расположения в направлении оси *с* пачек из бруситоподобных – "октаэдрических" и тетраэдрических слоев (фиг. 109) [1, 2]. "Октаэдрические" слои состава $[Ca_2Al(OH)_6\cdot 2H_2O]^+$ соединены водородными связями с двойными тетраэдрическими слоями $[(T, \Box)_4(OH, O)_8\cdot 0, n H_2O]^-$, которые у штрётлингита и вертумнита отличаются по степени занятости вакансий в тетраэдрических позициях и по количеству

а – вертумнит; б – штрётлингит, две возможные ориентировки "октаэдрического" слоя, зависящие от распределения групп ОН(2) и ОН(3)

гидроксилов. "Октаэдрический" слой представлен правильными AlO6-октаэдрами, соединенными общими ребрами с шестью соседними Са-семивершинными полиэдрами, направленными вершинами попеременно вниз и вверх. Седьмая вершина каждого Са-полиэдра соединена посредством водорода молекул воды в позиции H₂O(2) с двойным тетраэдрическим слоем, который состоит из двух отдельных тетраэдрических слоев, связанных друг с другом апикальными атомами кислорода O(1). Молекулы H₂O(1) распределяются статистически внутри шестичленных кремнекислородных колец. Тетраэдры двойного тетраэдрического слоя заселены не полностью; вакансии составляют у штрётлингита 45% позиций Т, у вертумнита – 36%. С наличием вакансий, очевидно, связано необычно большое расстояние Т-(ОН), около 1,80 Å. У штрётлингита через апикальные атомы О и молекулы H₂O(1) проходит центр инверсии, у вертумнита через O(1) и O(2) плоскость отражения. В связи с этим элементарная ячейка штрётлингита включает три пачки из "октаэдрических" и тетраэдрических слоев, а элементарная ячейка вертумнита – две. Отсюда параметр с вертумнита равен 2/3с штрётлингита (параметр с каждой пачки, состоящей из "октаэдрического" и тетраэдрического слоев, равен 12,6 Å). Однако возможно нарушение последовательности расположения слоев в этих политипах, о чем свидетельствуют, например, отмеченные у штрётлингита две различные конфигурации "октаэдрического" слоя в соответствии с 50% занятости позиций гидроксилов ОН(2) или ОН(3).

Структурные различия штрётлингита и вертумнита определяют некоторые различия физических свойств этих минералов, в частности наличие спайности у штрётлингита и отсутствие ее у вертумнита [2].

Аналогичную структуру с бруситоподобными $[Ca_2Al(OH)_6]^+$ и тетраэдрическими [(SiAl)O₃(OH)₂·4H₂O]⁻ слоями имеет водный геленит состава 2CaO·Al₂O₃·SiO₂·8H₂O, известный под названием "соединение Штрётлинга" [3, 4].

1. Galli E., Passaglia E. // Tschermaks miner. und petrogr. Mitt. 1978. Bd. 25, H. 1. S. 33.

2. Rinaldi R., Sacerdoti M., Passaglia E. // Europ. J. Miner. 1990. Vol. 2, N 6. P. 841.

3. Strassen H., Stratling W. // Ztsch. anorg. allgem. Chem. 1940. Bd. 245. S. 257.

4. Kuzel H.J. // Neues Jb. Miner. Monatsh. 1976. H. 7. S. 319.

Штрётлингит Strätlingite Ca₂Al[(SiAl□)₃O₂(OH)₄](OH)₆·2,25H₂O

Назваи в честь В. Штретлинга, впервые синтезировавшего соединение такого состава [1].

Характ. выдел. Кристаллы в виде гексагональных табличек (0,1-0,5 мм).

Структ. и морф. крист. Триг. с. $D_{3d}^5 - R\bar{3}m$. $a_0 = 5,745$, $c_0 = 37,77$ Å; $a_0 : c_0 = 1 : 6,574$; Z = 3 [1].

Описание структуры см. Введение к группе. Межатомные расстояния (в Å) [2]: в октаэдрах Al–OH = 1,91, Ca–OH = 2,36–2,44; в тетраэдрическом слое T–O = 1,64– 1,81; возможные водородные связи между слоями OH–OH = 3,07; H_2O-H_2O = 3,23; OH– H_2O = 3,03.

Физ. св. Сп. по (0001) совершенная. Бесцветный до бледно-зеленого. Уд.в. 1,95 (вычисл.) [1].

Микр. Одноосный (–), иногда аномально двуосный с малым 2V. *n* = 1,534 [1]. Хим. Теор. состав: CaO – 27,71; Al₂O₃ – 25,18; SiO₂ – 14,84; H₂O – 32,27. Анализы (микрозонд.) [2]:

	1	2		1	2
Na ₂ O	0,04	0,13	Al ₂ O ₃	24,15	23,22
K ₂ Ō	0,01	0,18	SiO ₂	15,95	17,55
CaO	25,60	25,13	H_2O^+	28,00)	
SrO	0,74	1,09	H ₂ O ⁻	4,5	31,80
BaO	0,81	0,90	-	,	
			Сумма	99,82*	100,00**

^{*} H₂O – по кривой ТГА.

** H₂O – по разности.

1 – из фонолита, Монтальто-де-Кастро (Италия); 2 – из базальта Беллеберга (Германия).

Эмпирические формулы рассчитаны иа 2(Ca+Sr + Ba + Na + K) [2]:

 $1 - (Ca_{1.94}Sr_{0.03}Ba_{0.02}Na_{0.01})Al(Si_{1.13}Al_{1.02})O_{1.85}(OH)_{10,85} \cdot 2,25H_2O;$

 $2-(Ca_{1,90}Sr_{0,04}Ba_{0,01}Na_{0,02}K_{0,01})Al(Si_{1,24}Al_{0,93})O_{2,13}(OH)_{10,44}\cdot 2,25H_2O.$

Диагн. исп. Быстро разлагается разб. HCl [1].

Нахожд. Найден в базальте Беллеберга, рудник Майен (Германия), с нефелином, мелилитом, томсонитом, жисмондином, эттрингитом, гидрокалюмитом [1] В Кампоморто, вблизи Монтальто-де-Кастро, пров. Витербо (Италия), встречен в фонолите вместе с тоберморитом, кальцитом, эттрингитом, вертумнитом [2, 3]. Искусств. Состав $2CaO \cdot Al_2O_3 \cdot SiO_2 \cdot 8H_2O$ под названием "соединение Штрётлинга" или "водный геленит" синтезирован при реакции метакаолинита с насыщенным раствором Ca(OH)₂ при комнатной температуре [4], а также при медленной гидратации стекол состава $2CaO \cdot Al_2O_3 \cdot SiO_2$ или CaO · Al₂O₃ · SiO₂ в насыщенном известковом растворе при температуре 20° в течение 120 дней [5]. Межплоскостные расстояния искусственного соединения аналогичны природному штрётлингиту [1, 5].

Отл. От вертумнита отличается совершенной спайностью, оптическими свойст-вами, сингонией, порошковой рентгенограммой.

Межплоскостные расстояния штрётлиигита из Монтальто-де-Кастро (Италия) [2]

СиК _а -излученне,	Ni-фильтр, D	= 114,6 мм
------------------------------	--------------	------------

hkl	I	d (Å)	hkl	I	d(Å)	hkl	I	d (Å)
003	9	12,69	021	6	2,488	214	8	1,848
006	6	6,28	024	5	2,426	0.0.21	3	1,806
101	3	4,902	205	6	2,366	0.1.20	2	1,766
009	9	4,200	1.0.16	2	2,135	300	5	1,662
015	5	4.155	0.2.10	1	2,076	2.020	1	1,512
110	8	2,874	2.0.11	3	2,007	1.0.25	1	1,445
113	5	2,810	0.2.13	2	1,892		3	1,436
116	5	2,609						

Литература

1. Hentschel G., Kuzel H.J. // Neues Jb. Miner. Monatsh. 1976. H. 7. S. 326.

2. Rinaldi R., Sacerdoti M., Passaglia E. // Europ. J. Miner. 1990. Vol. 2, N 6. P. 841.

3. Passaglia E., Turconi B. // Riv. miner. ital. 1982. Vol. 4. P. 97.

4. Strassen H., Strätling W. // Ztsch anorg. allgem. Chem. 1940. Bd. 245. S. 257.

5. Kuzel H.J. // Neues Jb. Miner. Monatsh. 1976. H. 7. S. 319.

Вертумнит Vertumnite

Ca2Al[(Si1,25AlD0,75)O3(OH)3](OH)6.2,45H2O

Назван по имени бога Вертумнус, которому поклонялся древний этрусский народ, живший в районе находки минерала [1].

Характ. выдел. Кристаллы (0,05-4 мм).

Структ. и морф. крист. Монокл. с. $C_{2h}^2 - P2_1/m$. $a_0 = 5,744$, $b_0 = 5,766$, $c_0 = 25,121$ Å; $\beta = 119,72^\circ$; $a_0 : b_0 : c_0 = 0,996 : 1 : 4,356$; Z = 2 [1–3]. Псевдогексагональная ячейка: $P6_3/m$; $a_0 = 5,755$, $c_0 = 25,12$ Å.

Описание структуры см. Введение к группе.

Межатомные расстояния (в Å) [2]: "октаэдрический" слой Al–OH = 1,918, OH– OH = 2,611, 2,809, Ca–OH = 2,373, 2,440 и 2,502, OH–(OH, H₂O) – среднее 3,115; тетраэдрический слой T(1)–O = 1,615, T(1)–(O, OH) = 1,801, O(1)–(O, OH) = 2,805, 2,925, T(2)–O(2) = 1,621, T(2)–(O, OH) = 1,784, O(2)–(O,OH) = 2,796, 2,897; углы: O(1)–T(1)–(O, OH) = 108,6, 110,3, O(2)–T(2)–(O, OH) = 108,6, 110,3, T(1)–(O, OH)– T(2) = 135,9°.

Кристаллы — уплощенные гексагональные призмы, представляющие собой двойники из шести индивидов с плоскостями срастания, параллельными оси с. В плоскости базиса двойников наблюдается правильный гексагон из шести равносторонних треугольников [1].

Физ. св. Сп. отсутствует. Тв. 5. Уд.в. 2,15 (вычисл. 1,94). Бесцветный. Бл. стеклянный. Изл. раковистый. Хрупок. Прозрачен [1].

ИК-спектр поглощения [1] характеризуется интенсивными полосами при 1000 см⁻¹ с плечом 1160 см⁻¹ (валентные колебания Si–O), 3440 см⁻¹ с плечом 3610 см⁻¹ (колебания OH), 1650 и 1440 см⁻¹ (колебания связей H–O–H); кроме того, присутствуют полосы 865, 550, 435 и 320 см⁻¹.

Микр. Пл. опт. осей \perp (001). Np = c, $bNg = 16^{\circ}$ (в тупом углу). Двуосный (–). $n_g = 1,541$, $n_m = 1,535$, $n_p = 1,531$; $n_g - n_p = 0,010$; $2V = 52^{\circ}$. Дисперсия неразличима [1].

Хим. Первоначально (согласно анализу 1) принималась формула $Ca_4Al_4Si_4O_6(OH)_{24}$ $3H_2O$ (при Z = 1) с отношением Al : Si = 1 : 1 [1] (Флейшер, 1990). Уточнение химического состава (анализ 2) показало большую близость его к штрётлингиту (Al : Si = 2 : 1).

Анализы (микрозонд., H₂O – термогравиметрически) вертумнита из Монтальто-де-Кастро (Италия):

	1	2		1 [1]	2 [3]
Na ₂ O	0,06	0,07	SiO ₂	21,67	18,01
K ₂ O	0,10	0,02	P ₂ O ₅	0,20	-
CaO	22,56	25,88	H_2O^+	23,74	23,74
SrO	0,64	0,81	H ₂ O-	5,9 6	5,96
BaO	0,16	0,18	Сумма	99,92	99,93
Al ₂ O ₃	24.83	25.26	-		

Эмпирические формулы (при Z = 2) рассчитаны: 1 – на 9 атомов О, 2 – на 2(Ca+Sr + Ba + Na + K):

 $I - (Na_{0,01}K_{0,01}Ca_{1,92}Sr_{0,03}Ba_{0,005})Al(Al_{1,34}Si_{1,73})O_{2,66}(OH)_{12,68} \cdot 1,59H_2O[1];$

2 – (Na₀₀₁ Ca_{1,95} Sr_{0,03}Ba_{0,01})Al(Al_{1,09}Si_{1,27})O_{3,16}(OH)_{9,08}·2,45H₂O; идеальная: Ca₂Al₂Si_{1,25}O₃(OH)₉· \cdot 2,45H₂O[3].

Диагн. исп. Растворяется в холодной HCl [1].

Повед. при нагр. Кривая нагревания показывает постепенную потерю веса вплоть до 500°. На кривой ДТА фиксируются четыре эндотермических пика: при 120, 235, 280 и 360° и двойной экзотермический при 928 и 952°, связанный с кристаллизацией геленита. До 180° порошковая рентгенограмма не изменяется; нагревание до 250° приводит к разрушению минерала, при 1000° сохраняются только рефлексы геленита [1].

Нахожд. Найден в Кампоморто, вблизи Монтальто-де-Кастро, пров. Витербо (Италия), внутри жеоды в фонолите [1]. Нарастает на слое молочно-белого тоберморита. В трещинке около полости с вертумнитом наблюдались прозрачные белые кристаллы эттрингита в ассоциации с тоберморитом. Там же встречен штрётлингит [3].

Искусств. О получении синтетического соединения 2СаО·Al₂O₃·SiO₂·8H₂O см. статью "Штрётлингит".

Отл. От штрётлингита отличается отсутствием спайности, оптическими свойствами, сингонией и порошковой рентгенограммой.

Межплоскостные расстояния вертумнита из Монтальто-де-Кастро (Италия) [1]

СиК_α-нзлучение. Дифрактометр

hki	I	d (Å)	hkl	I	d (Å)	hkl	1	d (Å)
002	70	12,51	113;123;213	3	2,717	118;128;218	5	2,121
004	65	6,275	018;108;118	4	2,656	0.1.11;1.0.11;	10	2,077
010;109;110	3	4,966	014;124;214	8	2,613	1.1.11		
011:101:111	5	4.878				027:207:227	4	2.044

14. Минералы т. IV, вып. 3

Слоистые силикаты

hkl	1	d(Å)	hkl	I	d(Å)	hkl	I	d(Å)
012:102:112	3	4.624	0.0.10	6	2,511	1.1.10; 1.2.10;	6	1.891
013;103;113	16	4,275	115;020;125;	10ш	2,493	2.1.10		
006	100	4,187	200;215;220			029;209;229	8	1,857
015;105;115	8	3,534	019;109;119	11	2,436	0.0.14	5	1,795
110;120;210	17	2,873	023;203;223;116; 126:216	8	2,380			

Литература

1. Passaglia E., Galli E. // Tschermaks miner. und petrogr. Mitt. 1977. Bd. 24, H. 1/2. S. 57.

2. Galli E., Passaglia E. // Ibid. 1978. Bd. 25, H. 1. S. 33.

3. Rinaldi R., Sacerdoti M., Passaglia E. // Europ. J. Miner. 1990. Vol. 2. N 6. P. 841.

СТРУКТУРА ТИПА АМСТАЛЛИТА

	Сингония	a_0	<i>b</i> ₀	<i>c</i> 0	β	Уд.в.
Амсталлит CaAl[Si _{3,2} Al _{0,8} × $\times O_{4}(OH)_{2}(OH)_{2}Cl_{0} \approx 0.8H_{2}O$	Монокл.	18,830	11,517	5,190	100, 8 6°	2,40

Амсталлит Amstallite CaAl[Si_{3,2}Al_{0,8}O₈(OH)₂](OH)₂Cl_{0,2} \cdot 0,8H₂O

Назван по месту находки близ Амсталля, Австрия [1].

Характ. выдел. Кристаллы (10 мм в длину и 0,5 мм в диаметре).

Структ. и морф. крист. Монокл. с. $C_{2h}^6 - C_2/c.a_0 = 18,830$, $b_0 = 11,517$, $c_0 = 5,190$ Å; $\beta = 100,86^\circ$; $a_0: b_0: c_0 = 1,635: 1: 0,451$; Z = 4.

Структура (фиг. 110) [1] образована алюмосиликатными слоями состава $[Si_{3,2}Al_{0,8}O_8(OH)_2]$, параллельными (100) и соединенными лентами AlO₆(2O и 4OH)октаэдров и CaO₇(2O, 4OH, 0,8H₂O + 0,2Cl)-полиэдров, которые вытянуты вдоль [001]. В кремне-алюмокислородном слое находятся два независимых тетраэдра: T(1)O₄, делящий вершины с четырьмя соседними тетраэдрами, и T(2)O₄, соединенный только с двумя тетраэдрами (Al^[IV] находится преимущественно в T(1)O₄тетраэдрах). В результате формируются четырехчленные кольца тетраэдров, соединение которых осуществляется через T(1)O₄-тетраэдры. Ф. Либау (1988) характеризует такой алюмосиликатный слой как открыто разветвленный. Топологически близкий, но несколько иначе разветвленный тетраэдрический слой наблюдается у пренита. Ca, связанный с молекулами воды, занимает в структуре каналы [001].

Средние межатомные расстояния (в Å): T(1)-O = 1,660; T(2)-O = 1,616; Ca-O = 2,457; Al-O = 1,901; углы: O-T(1)-O = 105,6-110,9; O-T(2)-O = 106,1-111,5; O-Al-O = 77,8-174,7°; водородные связи: H-O = 0,62-2,40 Å; углы O-H-O = 142 и 176°.

Кристаллы призматические до игольчатых, вытянутые и исштрихованные параллельно [001]. Поперечные сечения ромбовидной и гексагональной формы.

Физ. св. Сп. хорошая по (100). Тв. около 4. Уд.в. 2,40 (вычисл. 2,38). Бесцветный. Полупрозрачный до прозрачного. Бл. стеклянный. Изл. раковистый.

Микр. Двуосный (+). $Ng \parallel b$, $cNm \approx 10^{\circ}$. $n_g = 1,5378$, $n_m = 1,5340$, $n_p = 1,5328$; $2V = 57^{\circ}$. Дисперсия сильная, r < v.

Фиг. 110. Структура амсталлита в проекции вдоль [001] (по Квинту)

Хнм. Анализ (микрозонд.) [1]: CaO – 13,80; Al₂O₃ – 22,84; SiO₂ – 49,41; H₂O – 12,40; Cl – 1,75; сумма 100,20; –O = Cl₂ – 0,39; сумма 99,81.

Эмпирическая формула (при O + Cl = 13): $Ca_{0.98}Si_{3,26}Al_{1.78}O_{12,80}Cl_{0,20}H_{5,46}$.

Нахожд. Встречен в графитовом карьере близ Амсталль (Австрия), в пегматоидном шлире с апатитом, рутилом, сидеритом, альбитом, ломонтитом, кальцитом и редким вивианитом [1].

Межплоскостные расстояния амсталлита из Амсталль (Австрия) [1]
СиК _и -излучение

hki	I	d (Å)	hkl	I	d (Å)	hkl	I	d (Å)
110	100	9,75	040;33ī	15	2,878	840;602	10	1,803
200	5	9,24	421	< 5	2,758	11.3,1;313	10	1,550
020	15	5,75	240	10	2,745	371	< 5	1,539
310	70	5,43	800	< 5	2,312	062;950	5	1,533
220	30	4,888	512	10	2,266	533;11.1.2	5	1,529
าน์	60	4,714	621	< 5	2,247	860	< 5	1,476
400	25	4,623	531;422	5	2,239	443	< 5	1,465
111	15	4,342	602;730	10	2,175	823;043	< 5	1,462
311	40	4,069	132;820	15	2,146	333;12.0.2	< 5	1,447
021	90	3,816	441	40	2,122	080;913	< 5	1,439
130	10	3,756	151	10	2,102	13.1.1;10.4.2	< 5	1,432
221	10	3,718	132;402	< 5	2,073	10.4.1	< 5	1,426
420	100	3,603	351	< 5	2,036	11.3.1;243	5	1,409
510	15	3,523	910	5	2,023	12.2.2	< 5	1,402
311	25	3,442	242	15	1,923	770	< 5	1,396
221	25	3,366	060;332	5	1,917	172	< 5	1,389
511;421	60	3,175	731;802	15	1,899	11.5.0;933	< 5	1,358
60 0	5	3,082	55ī	10	1,889			
131	< 5	2,97 0	242	< 5	1,819			

Слоистые силикаты

hkl	I	d (Å)	hkl	I	d (Å)	hkl	I	d (Å)
620	< 5	2,717	241	5	2,364	133;802	10	1,570
511	5	2,682	222	< 5	2,360	86 2	5	1,350
530	< 5	2,664	0,61;732	< 5	1,798	662	< 5	1,314
331	40	2,628	261;841	5	1,785	204;753	< 5	1,295
202	5	2,586	460	5	1,772	11.1.2;681	< 5	1,288
710	< 5	2,577	912	< 5	1,751	114	< 5	1,279
112	10	2,526	11.1.Ī	< 5	1,677	391;972	< 5	1,206
531;041	20	2,504	11.1.0	< 5	1,664	314;913	< 5	1,196
71ī	< 5	2,491	113	10	1,645	772	< 5	1,176
241	5	2,479	93 2	< 5	1,608	4.10.1;15.3.1	< 5	1,102
312	< 5	2,471	352	5	1,595			
402	15	2,434	10.2.2;370	< 5	1,589			
112	10	2.407	751	5	1.584			

• Литература

1. Quint R. // Neues Jb. Miner. Monatsh. 1987. H. 6. S. 253.

СТРУКТУРА ТИПА МАКАТИТА

ГРУППА МАКАТИТА

Ранее в группе описаны (т. IV, вып. 2, с. 425): макатит, ревдит и условно включенные канемит, магадиит и кенияит.

	Сингония	a_0	<i>b</i> ₀	<i>c</i> 0	β	Уд.в.
Силинаит Na ₂ Li ₂ [Si ₄ O ₁₀]-4H ₂ O	Монокл.	5,061	8,334	14,383	96,67°	2,24

Силинант Silinaite Na₂Li₂[Si₄O₁₀]·4H₂O

Назван по химнческому составу - Si, Li, Na [1]. Первоначальное название "минерал UK-81" [2].

Характ. выдел. Таблитчатые и призматические кристаллы (до 2 мм); волокнистые скопления; мелоподобные, землистые и порошковатые arperatы [1].

Структ. и морф. крист. Монокл. с. A2/n. $a_0 = 5,061$, $b_0 = 8,334$, $c_0 = 14,383$ Å: $\beta = 96,67^\circ$; $a_0: b_0: c_0 = 0,607: 1: 1,724$; Z = 4 [1, 3].

Структура [3] состоит из кремнекислородных слоев, параллельных (001). Si-O-тетраэдры в слое (фиг. 111, *a*) образуют шестерные кольца и имеют две противоположные ориентировки относительно плоскости (001). Они образуют двойные цепочки [SiO₄] пироксенового типа, параллельные оси *a*, но с противоположным направлением вершин тетраэдров в соседних цепочках. Si-O-слои связаны через слои, состоящие из Li-тетраэдров и октаэдров [Na(H₂O)₄O₂] (см. фиг. 111, *б*). Такая структура объясняет совершенную спайность по (001) и (010), а также двойникование при вращении на 180° вокруг оси [001] с плоскостью двойникования (001) через атомы Li.

Средние межатомные расстояния (в Å): Si-O = 1,619; Li-O = 1,994; Na-O = 2,451 [3].

На кристаллах таблитчатого габитуса определена простая форма (001) [1].

Фиг. 111. Структура силинаита (по Грайсу) *а* – слой Si-O-тетраэдров, параллельный (001), построенный из цепочек пироксенового типа, вытянутых вдоль оси a; 6 – проекция вдоль оси a; между SiO₄-и LiO₄-тетраэдрами находятся октаэдры $[Na(H_2O)_4O_2]$

Физ. св. [1]. Сп. весьма совершенная по (001), совершенная по (010) и несовершенная по (110). Изл. раковистый. Тв. ~4,5. Хрупкий. Уд.в. 2,24 (вычисл. 2,23). Цв. белый до бесцветного. Черта белая. Бл. стеклянный до тусклого. Непрозрачный до полупрозрачного или прозрачный.

Микр. [1]. Двуосный (+). Np = b, $cNg = 16^{\circ}$ в остром углу β . Волокнистые разности имеют удлинение (+) или (-); $n_g = 1,518$, $n_m = 1,516$, $n_p = 1,515$; $n_g - n_p = 0,003$; $2V = 64^{\circ}$ (вычисл. 71°). Дисперсия сильная, r > v.

Двойникование по (001).

Хим. Теор. состав для NaLi[Si₂O₅]·2H₂O: Li₂O – 7,40; Na₂O – 15,35; SiO₂ – 59,42; H₂O – 17,83.

Анализы (микрозонд.) силинаита из Сент-Илера [1]:

	I	2
Li ₂ O*	(7,28)	(7,25)
Na ₂ O	14,96	13,66
CaO	0,14	0,42
Al ₂ O ₃	0,01	0,00
SiO ₂	58,54	58,72
H ₂ O [*]	(17,56)	(17,47)
Сумма	98,49	97,52

* Вычислены по стехнометрическим коэффициентам в эмпирических формулах.

1 - среднее из 8 определений, анал Джонс; 2 - анал. Голт.

Эмпирические формулы (на 7 атомов О):

 $1 - (Na_{0,99}Ca_{0,01})LiSi_{2,00}O_5 \cdot 2H_2O;$

 $2 - (Na_{0,91}Ca_{0,02})LiSi_{2,02}O_5 \cdot 2H_2O.$

Диагн. исп. Медленно растворяется в конц. HCl и HNO₃ и еще медленнее – в H₂SO₄ с выделением желатинообразного осадка [1].

Нахожд. Встречен [1] в содалит-сиенитовых ксенолитах в нефелиновых сиенитах карьера Пудретте на горе Сент-Илер (Квебек, Канада) в пустотках в уссингите и виллиомите. Ассоциирует с большим числом редких минералов, таких, как эрдит, когаркоит, тугтупит, витусит-(Се), макатит, талкусит, чкаловит, сажинит-(Се), сидоренкит, ревдит, расвумит, натрофосфат, и рядом неопределенных минералов.

Относится либо к поздней стадии минералообразования при внедрении содалитового сиенита, либо к контактово-метамофическому или метасоматическому минералообразованию во время внедрения нефелиновых сиенитов.

Межплоскостные расстояния силинанта из Сент-Илер (Канада) [1]

 CuK_{α} -нзлучение, D = 114,6 мм. Камера Гандольфн

hkl	I	d (Å)	hkl	I	d (Å)	hkl	I	d (Å)
001	100	7,14	131	20	2,381	008	5	1,785
์เก	80	4,24	211	5	2,332	215	10	1,746
013	100	4,14	124	20	2,301	311	40	1,610
111	80	4,02	2 13	5	2,255	ī51	5	1,575
022	20	3,599	ī33	5	2,214	3 22	40	1,557
004	20	3,574	2 04	10	2,180	226	10	1,523
ī13	10	3,366	220	5	2,154	244	5	1,509
120	20	3,208	133	5	2,118	00.10	10	1,428
113	20	3,046	040	10	2,086	331	15	1,415
ī22	20	3,014	213	10	2,051	251	10	1,392

hkl	I	d(Å)	hkl	I	d (Å)	hki	I	d(Å)
122	100	2,847	042	5	2,004	208	10	1,380
015	50	2,698	ī 26	10	1,980	ī39	10	1,366
200	20	2,514	Ĩ17	5	1,918	12.10	10	1,342
ī24	20	2,484	ī42	10	1,873	253	20	1,311
2 02	20	2,464	126	20	1,846			
2 11	20	2,417	135	5	1,804			

Литература

1. Chao G.Y., Grice J.D., Gault R.A. // Canad. Miner. 1991. Vol. 29, pt 2. P. 359.

2. Chao G.Y., Conlon R.P., Van Velthuizen J. // Miner. Rec. 1990. Vol. 21, N 4. P. 363.

3. Grice J.D. // Canad. Miner. 1991. Vol. 29, pt 2. P. 363.

СТРУКТУРА ТИПА ПЕНКВИЛКСИТА

Пенквилксит Penkvilksite

$Na_4Ti_2[Si_4O_{11}]_2 \cdot 4H_2O$

Описанный ранее структурно неизученный пенквилксит из Ловозерского массива (Кольский п-ов) условно был отнесен к группе нарсарсукита (т. III, вып. 3, с. 360). Структурными исследованиями, включающими и новые находки минерала в Хибинах, установлены два политипа: пенквилксит-2 О (из Ловозера), пенквилксит-1 М (из Хибин) [1].

Ниже приводятся новые данные по структуре и описание пенквилксита-1М из Хибин.

Структ. и морф. крист. [1]. Ромб. с. $D_{2h}^{14} - Pnca.$ $a_0 = 16,372, b_0 = 8,749, c_0 = 7,402$ Å; V = 1060,3 Å³; Z = 2 (для политипа 2 О). Монокл. с. $C_{2h}^5 - P2_1/c.$ $a_0 = 8,956, b_0 = 8,727, c_0 = 7,387$ Å; $\beta = 112,74^\circ$; V = 532,5 Å³; Z = 1 (для политипа 1 М).

В структуре установлен [1] новый двухэтажный кремнекислородный мотив – слоистый анион состава Si_4O_{11} . Двухэтажный слой состоит из параллельных друг другу спиральных цепей из SiO_4 -тетраэдров, соединенных общими вершинами. Соседние спиральные цепи имеют противоположный ход (по и против часовой стрелки). Они вытянуты вдоль [010] и имеют период повторяемости 6 SiO₄. Атомы Si в цепях двух сортов: Si(1) использует в образовании цепи по 2 атома кислорода – O(1) и O(4), Si(2) - по 3 атома – O(1), O(4) и O(6). Атомы O(6) тетраэдров Si(2)располагаются в центрах инверсии (1/2, 0, 0), и тетраэдры Si(2) за счет обобществления фрагментов Si(2) - O(6) - Si(2) объединяют соседние спирали в слои, параллельные (100) (фиг. 112). Оставшиеся "свободными" атомы кислорода O(2), O(3) и O(5) образуют искаженные октаэдры, в центрах которых размещаются катионы Ti. Октаэдры TiO₆ разделяют анионные слои в направлении [100]. Катионы Na⁺ окружены 7 атомами кислорода: O(1), O(2), O(3), O(4), O(5) и 2 атомами O молекул воды. Молекулы H₂O, кроме того, образуют по две H-связи с атомами кислорода O(1) и O(5).

Межатомные расстояния (в Å): Si(1)–O = 1,599–1,651; Si(2)–O = 1,600–1,635 (среднее 1,629 и 1,619); Ti–O = 1,917–1,991; Na–O = 2,340–2,954; Na–O(H₂O) = 2,252 и 2,073; O(H₂O)–O = 2,699 и 2,686. Валентные углы O–Si–O в тетраэдрах Si(1) и Si(2) в среднем одинаковые и равны 109,4°.

Фиг. 112. Слон [SiO₄]-тетраэдров и TiO₆-октаздров в структуре пенквилсита-1М в проекции вдоль [010] (по Мерлино и др.)

Оба политипа принадлежат к одному семейству ОД-структур и представляют собой две (из четырех возможных) максимально упорядоченные структуры этого семейства.

Физ. св. Бесцветный, просвечивает. Черта белая. Бл. стеклянный. Уд. в. 2,63 (вычисл. 2,61). Свойства пенквилксита-20 см. т. III, вып. 3, с. 360.

Микр. Двуосный (+). $n_g = 1,675$, $n_m = 1,646$, $n_p = 1,640$; $n_g - n_p = 0,029$; $2V = 50^{\circ}$ (вычисл. 50°). Дисперсия сильная, r < v.

Хим. Анализ (микрозонд., среднее из 5) пенквилксита-1М из Хибинского массива: Na₂O – 14,39; K₂O < 0,05; CaO < 0,1; MnO < 0,1; Al₂O₃ < 0,1; Fe₂O₃ – 0,20; SiO₂ – 55,21; TiO₂ – 17,70; ZrO₂ < 0,15; Nb₂O₅ – 0,73; H₂O – 8,29*; сумма 96,52 [1].

* Вычислена из расчета 4H₂O в формуле.

Эмпирическая формула (на 26 атомов О): Na_{4,04}(Ti_{1,93}Nb_{0,05}Fe_{0,02})Si_{7,99}O₂₂ · 4H₂O. На основе пересчета опубликованного ранее анализа эмпирическая формула пенквилксита-2 О (при О + F = 22 и 4H₂O в формуле): Na_{3,66}Ca_{0,25}K_{0,02})(Ti_{1,72} × \times Zr_{0,15}Nb_{0,07}Fe_{0,02})(Si_{7,87}Al_{0,13})O_{21,98}F_{0,02} · 4H₂O [1].

Нахожд. Найден в керне скважины на горе Рестиньюн в северо-западной части Хибинского щелочного массива (Кольский п-ов). Встречается в виде мелких (0,1–1 мм) неправильных кристаллов в ассоциации с кальцитом, эльпидитом, лоренценитом, флогопитом, баритом и сфалеритом.

Межплоскостные расстояния пеиквилксита-2 О из Ловозерского массива [1] СиК_а-излучение. Дифрактометр

hkl	I	d (Å)	, hki	I	d(Å)	hkl	I	d(Å)
200	100	8,2118	230	24	2,7464	820	4	1,8515
210	35	5,9878	031	22	2,7134	233	8	1,8357
011	13	5,6551	131	56	2,6759	613	9	1,7917
111	62	5,3441	412	5	2,6166	333	15	1,7801
211	30	4,6526	231	28	2,5761	214	7	1,7681
020	16	4,3770	322	12	2,5094	812	3	1,7540
400	20	4,0949	521	14	2,4715	911	5	1,7297
311	14	3,9269	611	19	2,4553	640	24	1,7050

				Кум	4			
hkl	I	d (Å)	hkl	ı	d(Å)	hkl	1	d(Å)
220	5	3,8592	331	7	2,4295	404	4	1,6853
410	9	3,7034	512	12	2,3594	224	5	1,6675
102	8	3,6116	213	7	2,2811	822	5	1,6555
221	29	3,4224	132	6	2,2661	533	5	1,6325
202	69	3,3727	040	13	2,1874	504	4	1,6100
411	49	3,3123	240	3	2,1135	10.1.1	8	1,5713
212	12	3,1477	141	2	2,0805	813	12	1,5493
321	48	3,1003	413	7	2,0544	10.2.0	10	1,5306
302	56	3,0621	241	6	2,0327	10.0.2	9	1,4968
420	3	2,9901	721	10	1,9885	10.1.2	1	1,4745
312	5	2,8802	341	4	1,9590	115	3	1,4539
511	43	2,8326	811	7	1,9220			
122	7	2.7853	133	2	1.8711			

Межплоскостные расстояния пенквилксита-1 М из Хибинского массива [1]

FeK_{α}-излучение, D = 114,6 мм

hkl	1	d(Å)	hkl	1	d (Å)	hkl	I	d (Å)
100	Сильн.	8,287	211	Сильн.	2,884	302	Слаб.	1,827
ī 10	Средн. слаб.	6,020	302	Слаб.	2,723	312	Слаб.	1,790
โบ	Средн. слаб.	5,300	022	Слаб.	2,689	333	Сред. слаб.	1,772
20 0	Оч. слаб.	4,140	222	Слаб.	2,658	004	Сред. слаб.	1,704
111	Сред. снльн.	3,990	ī13	Слаб.	2.358	4 33	Сред. слаб.	1,621
ī21	Слаб.	3,674	013	Оч. слаб.	2,197	402	Сред. слаб.	1,528
002	Сред. слаб.	3,393	313	Оч. слаб.	2,160	350	Слаб.	1,480
202	Сильн.	3,339	321	Слаб.	2,015			
121	Сред.	3,130	420	Слаб.	1,872			

Литература

1. Merlino S., Pasero M., Artioli G., Khomyakov A.P. // Amer. Miner. 1994. Vol. 79, N 11/12. P. 1185.

СИЛИКАТЫ С ТРЕХ-И ШЕСТИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА ЗУСМАНИТА

Ранее со структурой данного типа был описан зусманит (т. IV, вып. 2, с. 445).

ГРУППА ЗУСМАНИТА

...

	Сингония	a_h	c _h	УД.В.
Кумбсит	Гексаг.	11,828	29,14 6	3,01
K(Mn, Fe, Mg)13[(Si, Al)18O42](OH)14				

Кумбсит Coombsite К(Mn, Fe, Mg)₁₃[(Si, Al)₁₈O₄₂](OH)₁₄

Назван по имени проф. университета Отаго Д.С. Кумбса [1].

Характ. выдел. Агрегаты, часто полусферические (до нескольких мм в диаметре), волокнисто-чешуйчатых кристаллов (длиной до 20 мкм).

Структ. и морф. крист. Гексаг. с. $a_h = 11,828$, $c_h = 29,146$ Å; V = 3531 Å³. $a_{rh} = 11,875$; $\alpha_{rh} = 59,74^\circ$; V = 1177 Å³. Изоструктурен зусманиту.

Физ. св. Уд. в. 3,01 (вычисл. 3,06). Цв. коричневый.

Микр. Светлый коричневато-желтый. Плеохроизм очень слабый, No > Ng. Угасание прямое. Одноосный (+). $n_o = 1,619$, $n_e = 1,600$; $n_o - n_e = 0,019$.

Хим. Марганцевый аналог зусманита.

Анализ (микрозонд., среднее из 5): Na₂O – 0,08; K₂O – 2,19; CaO – 0,03; MnO – 38,19; MgO – 1,08; FeO* – 1,00; Al₂O₃ – 1,41; SiO₂ – 45,18; TiO₂ – 0,01; сумма 93,63. * Общее.

Эмпирическая формула (на 49 атомов О): $K_{1,0}Na_{0,1}(Mn_{11,8}Fe_{1,0}Mg_{0,6}) \times (Si_{16,4}Al_{1,5})_{17,9}O_{42}(OH)_{14}$.

Нахожд. Найден в небольшой (0,5 × 1 м) родонит-кварцевой линзе, залегающей в метаграувакково-аргиллитовых породах, переходных от пумпеллиит-актинолитовой к пумпеллиит-пренитовой фации метаморфизма (Уотсон Бич, юго-восточная часть района Отаго, Новая Зеландия). В подчиненных количествах встречаются родохрозит, апатит, парсеттенсит, кариопилит. Образует включения в родоните и кварце; иногда ассоциирует с парсеттенситом и спессартином.

Межплоскостные расстояния кумбсита из Новой Зеландии [1]

СиКα-излучение. Дифрактометр

hkl	1	d (Å)	hkl	1	d (Å)
003	100	9,68	309; 317	10	2,349
006	30	4,835	410; 324	50	2,241
107; 205	5	3,844	3.1.10; 416	10	2.034
116; 212	15	3,737	3.1.11; 2.1.13	10	1.940
009; 207	25	3,241	3.1.14	12	1.6796
119; 217	*	2,845	435; 520	20	1.6385
306; 312	70	2,793	0.0.18; 345	15	1.6187
315; 401	90	2,556	1.3.16	10	1.5334
0.0.12	5	2,426			

Перекрывается пиком родохрозита.

Литература

1. Sameshima T., Kawachi Y. // N.Z.J. Geol. and Geophys. 1991. Vol. 34, N 3. P. 329.

СИЛИКАТЫ С ЧЕТЫРЕХ- И ВОСЬМИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА ДЖИЛЛЕСПИТА

ГРУППА ДЖИЛЛЕСПИТА

В группе были описаны джиллеспит и купрориваит (т. IV, вып. 2, с. 454).

	Сингония	<i>a</i> 0	<i>c</i> ₀	Уд. в.
Эффенбергерит ВаСи[Si ₄ O ₁₀]	Тетраг.	7,442	16,133	3,52

Эффеибергерит Effenbergerite BaCu[Si₄O₁₀]

Назван в честь минералога и кристаллографа Венского университета (Австрия) Г.С. Эффенбергер, многие работы которой посвящены расшифровке кристаллических структур новых минералов и изучению стереохимии Cu²⁺ [1].

Характ. выдел. Идиоморфные пластинки (до $8,0 \times 8,0 \times 0,1$ мм).

Фиг. 113. Фрагмент структуры эффенбергерита в проекцин одного слоя вдоль оси с (по Гистеру и Рику) Крапом обозначены Si-тетраэдры нижней частн слоя

Структ. и морф. крист. Тетраг. с. $D_{4h}^8 - P4/ncc.$ $a_0 = 7,442, c_0 = 16,133$ Å; V = 893,50 Å³; Z = 4.

Как в джиллеспите BaFe[Si₄O₁₀] и купрориваите CaCu[Si₄O₁₀], основу структуры составляют параллельные (001) слои $[Si_4O_{10}]_{\infty}$ из четырех- и восьмичленных колец Si–O-тетраэдров (фиг. 113).

Межатомные расстояния (в Å): Si-O = 1,581-1,627 (среднее 1,607); Cu-O = = 1,925; Ва-O = 2,748 и 2,893. Обычна грань (001), реже развиты грани (100), (110) и (102). Двойникование не наблюдалось.

Физ. св. Сп. по (001) совершенная, по (110) плохая. Изл. полураковистый. Тв. 4–5. Уд. в. 3,52. Цв. голубой. Черта бледно-голубая. Бл. стеклянный на плоскостях спайности, смолистый на гранях, стекловатый в изломе. Прозрачный. Не флюоресцирует ни в длинно-, ни в коротковолновой части спектра.

В ИК-спектре наблюдались полосы: 5200, 3500, 1600 см⁻¹, в одном образце – 3300 см⁻¹.

Микр. Плеохроизм сильный, от интенсивного голубого до бледно-голубого. Одноосный (-). $n_o = 1,633$, $n_e = 1,593$; $n_o - n_e = 0,040$. Дисперсия слабая, r > v.

Хим. Природный аналог синтетического BaCu[Si₄O₁₀]. Теор. состав: BaO – 32,40; CuO – 16,81; SiO₂ – 50,79.

Анализ (микрозонд., среднее из 14, в скобках – пределы колебаний): ВаО – 32,48 (30,41–33,77); CuO – 16,52 (15,24–17,73); SiO₂ – 50,76 (48,84– 53,33); сумма 99,76.

Эмпирическая формула (на 10 атомов О): Ва_{1,00}Cu_{0,98}[Si_{3,99}O₁₀].

Кроме того, определены: $Al_2O_3 - 0.38$, CaO, SrO и FeO – менее 0.02.

Нахожд. Встречен на месторождении Весселс в марганцевом рудном поле Калахари (Южная Африка) в пектолитовых прожилках (0,1–1 мм), секущих браунитсугилит-гаусманнитовую породу. Ассоциирует с самородной медью, кальцитом, кварцем и клиноцоизитом. Содержит микровключения самородной меди.

		Curamsnyaci	ше. днфрактометр		
h kl	Ι	d(Å)	hki	I	d (Å)
002	100	8,0665	2.0.10	21	1,4801
102	1	5,4690	328	2	1,4423
110	1	5,2609	2.2.10	3	1,3752
112	10	4,4065	418	11	1,3447
004	39	4,0332	0.0.12	11	1,3444
104	29	3,5458	338	3	1,3233
202	17	3,3781	1.0.12	3	1,3230
114	44	3,2008	1.1.12	2	1,3026
212	6	3,0759	516	2	1,2824
213	1	2,8295	2.0.12	1	1,2644
204	13	2,7345	4.0.10	1	1,2187
006	21	2,6888	508	7	1,1973
220	4	2,6304	3.1.12	2	1,1673
222	2	2,5008	4.2.10	4	1,1582
116	41	2,3942	00.14	4	1,1524
312	2	2,2586	1.1.14	5	1,1257
224	2	2,2033	2.0.14	1	1,1008
206	1	2,1792	2.1.14	2	1,0889
216	2	2,0913	2.2.14	1	1,0555
314	6	2,0322	3.0.14	1	1,0450
008	34	2,0166	3.1.14	3	1,0349
108	22	1,9464	1.1.16	4	0,9903
118	13	1,8830	2.0.16	2	0,9732
400	3	1,8600	733	1	0,9612
316	10	1,7706	3.1.16	2	0,9268
332	1	1,7136	5.4.11	1	0,91 0 8
420	1	1,6636	5.1.14	1	0,9039
422	2	1,6293	1.1.18	2	0,8835
228	2	1,6004	2.0.18	2	0,8713
1.0.10	2	1,5767	3.1.18	1	0,8376
1.1.10	3	1,5424	5.1.16	1	0,8295

Межилоскостные расстояния эффенбергернта из Южной Африки [1]
СиКизлучение. Лифрактометр	

Литература

1. Giester G., Rieck B. // Miner. Mag. 1994. Vol. 58, N 4. P. 663.

СИЛИКАТЫ С ШЕСТИ- И ДВЕНАДЦАТИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА УИКЕНБЕРГИТА

	Сингония	Пр.гр.	<i>a</i> 0	<i>c</i> ₀	V	Ζ
Уикенбергит [*] Wickenburgite Pb ₃ CaAl[Si ₁₀ AlO ₂₇]·3H ₂ O	Триг.	C ⁴ _{3v} -P31c	8 ,56 0	20,190	1281,9	2

Описан (т. IV, вып. 2, с. 495) с формулой Pb₃CaAl₂Si₁₀O₂₄(OH)₆, с указанием общего мотива структуры (по предварительным данным), гексагональной сингонии и пространственной группы D_{64}^4 -P6₃/mmc.

Фиг. 114. Структура ункенбергита (по Лэму и др.)

Проекция двух слоев двухэтажного слоя вдоль оси $c: a - слой [Si_5AlO_{15}]_{\infty}; \delta - слой [Si_5O_{14}]_{\infty}$ и Са-октаэдры

Основу структуры [1] составляют двухэтажные слоистые анионы $[Si_{10}AlO_{27}]_{\infty}$, построенные из одноэтажных слоев $[Si_{5}AlO_{15}]_{\infty}$ и $[Si_{5}O_{14}]$, перпендикулярных оси *c*, соединенных друг с другом общими фрагментами Si(1)–O(2)–Si(3) и Al(2)–O(1)–Si(4) (фиг. 114) и посредством Н-связей молекул воды, связанных с Ca2+. Слои имеют сходные мотивы.

Слой $[Si_5AIO_{15}]_{\infty}$ состоит из шестичленных колец, в состав которых входят пять тетраэдров SiO₄ и один AlO₄ (см. фиг. 114, *a*). Слой $[Si_5O_{14}]_{\infty}$ (см. фиг. 114, *б*) не содержит атомов Al; его петля соответствует трем кольцам первого слоя, но со-

стоит лишь из 12 тетраэдров SiO₄, так как ее центр занимает ион Ca²⁺. Последний расположен в октаэдре из 3 атомов О слоя $[Si_5O_{14}]_{\infty}$ и трех молекул H₂O, участвующих в H-связях. Катионы Al³⁺ двух сортов: Al(1) находятся в центре октаэдров, Al(2) – в тетраэдрах слоя $[Si_5AlO_{15}]_{\infty}$; Pb²⁺ – в сильно искаженных восьмивершинниках из атомов О. С обеих строн двухэтажных слоев $[AlSi_{10}O_{27}]_{\infty}$ расположены слои Al(1)- и Pb-полиэдров. Слоистый характер структуры обусловливает спайность минерала.

Межатомные расстояния (в Å): в тетраэдрах Si-O = 1,58–1,64; Al(2)-O = 1,71–1,77; в октаэдрах Ca-O = 2,32–2,37; Al(1)-O = 1,88. Расстояния Pb-O составляют две группы: от 2,30 до 2,53 и от 2,97 до 3,36.

Литература

1. Lam EA., Groat L.A., Cooper M.A., Hawthorne F.C. // Canad. Miner. 1994. Vol. 32, pt 3. P. 525.

СИЛИКАТЫ С ВОСЬМИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА КВАНФЬЕЛДИТА

	Сингония	<i>a</i> ₀	b_0	<i>c</i> 0	Уд.в.
Кванфьелдит H ₂ Na ₄ (Ca,Mn) [Si ₃ O ₈]	Ромб.	10,213	15,878	9,058	2,55

Кванфьелдит Kvanefjeldite H₂Na₄(Ca,Mn) [Si₃O₈]

Назван по месту находки [1].

Характ. выдел. Скопления неправильной формы до 1,5 см в поперечнике и прожилки длиной до 3 см.

Структ. и морф. крист. Ромб. с. D_{2h}^{15} -*Pcab.* $a_0 = 10,213$, $b_0 = 15,878$, $c_0 = 9,058$ Å; V = 1468,86 Å³; Z = 4 [2].

В структуре SiO₄-тетраэдры объединены в гофрированные слои толщиной ~ 6 Å, расположенные параллельно (010) (фиг. 115). В слое цепочки состава SiO₃ из чередующихся тетраэдров Si(1) и Si(3) вытянуты вдоль оси с. Цепочки обладают периодом повторяемости из четырех тетраэдров и располагаются в слое на двух уровнях. Они связаны друг с другом Si(2)-тетраэдрами с образованием неправильных восьмичленных колец из трех Si(1)-, трех Si(3)- и двух Si(2)- тетраэдров. В пределах цепочек каждый тетраэдр имеет три мостиковые связи (Si-O = 1,625 – 1,629 Å) и одну немостиковую (Si-O = 1,570 и 1,581 Å). У Si(2)-тетраэдров две вершины общие с Si(1)O₄ и Si(3)O₄ (Si-O = 1,638 и 1,644) и две вершины свободные. Одна из них представлена (OH)-группой (Si-OH = 1,649; O-H = 0,78 Å).

Са располагается между (Si₃O₇OH)-слоями в октаэдрах, образованных немостиковыми атомами кислорода (Ca–O = 22,29–2,38 Å). Na(1) приблизительно в одной плоскости с Ca в полиэдре из 5 атомов O, образующих тригональную пирамиду (Na(1)–O = 2,29–2,49 Å), и 2 атомов O на расстоянии 2,91 и 2,96 Å. Na(2) находится в углублениях кремнекислородных слоев в тригональных призмах из атомов кислорода.

Фиг. 115. Структура кванфьелдита (по Джонсону и др.) Жирные линии – SiO₄-тетраэдры, тонкие – водородные связи от атомов O(3) и O(7)

Кристаллические зерна, уплощенные по (010).

Физ.св. [1]. Сп. хорошая по (010), несовершенная по (101). Тв. 5,5–6. Уд.в. 2,55 (вычисл. 2,53). Цв. розовый с фиолетовым оттенком, в измененных участках желтоватый. Бл. стеклянный, на плоскостях спайности (010) перламутровый.

Микр. Бесцветный. Двуосный (+). Ng = b, Nm = c, Np = a. $n_g = 1,543$, $n_m = 1,522$, $n_p = 1,522$; $2V = 0-9^{\circ}$.

Хим. Теор. состав: Na₂O – 22,20; CaO – 10,04; SiO₂ – 64,54; H₂O – 3,22.

Анализ (микрозонд., среднее из 16) [1]: Na₂O – 22,06; K₂O < 0,02; MgO < 0,02; CaO – 8,49; MnO – 1,59; FeO – 0,05; Al₂O₃ < 0,02; Y₂O₃ – 0,40; TiO₂ < 0,02; SiO₂ – 65,0; сумма 97,59.

Эмпирическая формула (на 16 атомов О): Na_{3,96}(Ca_{0,84}Mn_{0,12}Y_{0,02})_{0,98}Si_{6,01}× ×O₁₄(OH)₂.

Спектрально определены следы Li, Be, B, F, S и Cl.

Повед. при иагр. Обезвоживается при 600°, потеря веса 4% [1].

Нахожд. Найден в арфведсонитовом луяврите северо-западной части щелочного интрузивного комплекса Илимаусак на плато Кванфьелд (Юго-Западная Гренландия). Слагает выделения неправильной формы и прожилки гидротермального происхождения в ассоциации с виллиомитом и анальцимом, являясь наиболее поздним минералом [1].

СиКα-излучение. Камера Гинье

hkl	I	d (Å)	hkl	I	d (Å)	hki	1	d (A)
020	1	7,928	151	3	2,8753	214; 432	3	2.0508
120; 111	3	6,251	142	4	2,8639	343	2	1,9640
200	2	5,109	232; 113	3	2,8529	403; 180	3	1,9494
002	2	4,529	123	2	2,7226	413; 521; 144	1	1,9328
201	6	4,447	312	1	2,6834	531	1	1,8644
012	7	4,355	242; 322	5	2,5757	244; 324	1	1.8346
220; 211	2	4,288	213; 160	4	2,5647	334	2	1,7758
131	2	4,175	341	1	2,4852	215;164;404	1	1,6960

hkl	1	d (Å)	hki	1	d (Å)	hkl	1	<i>d</i> (A)
040	2	3,965	401	2	2,4573*	381;414;513	1	1,6838
022	2	3,931	411	2	2,4257	453;424	1	1,6593*
221	7	3,880	351	2	2,2488	264	1	1.6314
140	2	3,701	313	1	2,2383*	533	1	1,6111
122	4	3,671	162;431	1	2,2285	561;315	2	1,5913
141	2	3,426	412	2	2,2028	463;1.10.0;	1	1,5687
202	6	3,388	114	3	2,1898	245;325;480		
212	5	3,313	422;153	3	2,1415	543;155	1	1,5551
222	10	3,1174	441;360;262	1	2,0876			
241:321	2	2,9579	204	1	2.0716			

* Перекрываются с линиями внутреннего стандарта (кварц).

Литература

1. Petersen O.V., Johnsen O., Leonardsen E.S., Rønsbo J.G.// Canad. Miner. 1984. Vol. 22, pt 3. P. 465. 2. Johnsen O., Leonardsen E S., Failth L., Annehed H. // Neues Jb. Miner. Montsh. 1983. H. 11. S. 505.

СИЛИКАТЫ С ШЕСТИ- И ДЕСЯТИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА ЛЕМУАНИТА

Ранее со структурой данного типа был описан лемуанит (т. IV. вып. 2, с. 501).

ГРУППА ЛЕМУАНИТА

	Сингония	<i>a</i> ₀	b 0	<i>c</i> 0	β	Уд.в.
Алтисит	Монокл.	10,363	16,310	9,132	105,34°	2,64
Na ₃ K ₆ Ti ₂ [Si ₈ Al ₂ O ₂₆]Cl ₃						

Алтисит Altisite

Na₃K₆Ti₂[Si₈Al₂O₂₆]Cl₃

Назван по составу [1].

Характ. выдел. Зерна неправильной формы (до 3 мм в поперечнике).

Структ. и морф. крист. [2]. Монокл. с. $C_{2h}^3 - C2/m$. $a_0 = 10,363$, $b_0 = 16,310$, $c_0 = 9,132$ Å; $\beta = 105,34^\circ$; V = 1488,5 Å³; Z = 2.

В основе структуры [2] лежат двухэтажные параллельные (001) слои из Si- и Al-тетраэдров, построенные из трех типов колец: десятичленных (R1) в плоскости (001) на двух этажах и двух типов шестичленных колец (R2, R3) (фиг. 116), соединяющих десятичленные кольца.

Поскольку шестичленные кольца объединяют десятичленные, находящиеся на разных уровнях, постольку они являются наклонными к плоскости (001).

Каждый Аl-октаэдр в слое с четырьмя Si-тетраэдрами. Соседние Si-Al-слои объединены Ti-октаэдрами с образованием SiAl-Ti конструкции, аналогичной Si-Zr в лемуаните.

Средние межатомные расстояния (в Å): Si-O = 1,617 и 1,626; Al-O = 1,738; Ti-O = 1,953; Na-O = 2,340-3,106; Na-Cl = 2,823-3,077; K-O = 2,862-3,526; K-Cl = = 3,082-3,243.

Фиг. 116. Структура алтисита (по Феррарнсу и др.) Слоистый Si-O-анион, вид вдоль [102]; R(1) – десятичленные кольца, R(2) и R(3) – шестичленные; стрелкой указаио направление вытянутости четырехзвенной цепочки, связывающей кольца в слой

Физ. св. [1]. Изл. раковистый. Тв. 6. Уд.в. 2,64 (вычисл. 2,67). Бесцветный, прозрачный. Бл. стеклянный. В ультрафиолетовых лучах не люминесцирует.

В ИК-спектре следующие максимумы поглощения: 1130, 1035, <u>995</u>, 960, <u>930</u>, 810, 765, 730, 675, 655, <u>590</u>, <u>577</u>, <u>520</u>, <u>488</u>, 440, 425, 415 см⁻¹ (подчеркнуты наиболее сильные линии).

Микр. [1]. Двуосный (+). $n_g = 1,654$, $n_m = 1,625$, $n_p = 1,601$; $n_g - n_p = 0,053$; $2V = 85^\circ$ (вычисл. 86°). Дисперсия слабая, r < v.

Хим. [1]. Анализ (микрозонд., среднее для 3 зерен): Na₂O – 9,3; K₂O – 20,7; BaO – 1,0; Al₂O₃ – 8,7; SiO₂ – 40,3; ZrO₂ – 0,1; TiO₂ – 13,1; Nb₂O₅ – 0,5; Cl – 8,6; сумма 102,3; –O=Cl₂ – 1,9; сумма 100,4.

Эмпирическая формула (на O + Cl = 29 с учетом данных структурной расшифровки): Na₃(K_{5,23}Na_{0,57}Ba_{0,08})(Ti_{1,95}Nb_{0,04}Zr_{0,01}) Al_{2,03}Si_{7,98}O_{26,10}Cl_{2,89}.

Повед. при иагр. [1]. На кривой ДТА фиксируется эндотермический эффект при 780°, связанный, вероятно, с диссоциацией, частичным плавлением и фазовым превращением минерала. На кривой ТГ имеются два небольших уступа – при 250– 300 и 800–900°, соответствующих минимумам на кривой ДТГ. Потеря массы 2,5% в интервале 20–1000°. После прогревания при 600° становится ярко-голубым (рентгенограмма и оптические свойства не изменяются); зерна, прогретые при 1000°, дают рентгенограмму КСІ. Нахожд. Обнаружен в пегматите ультраагпаитового типа (керн буровой скважины, глубина 470 м) в районе апатитового месторождения Олений ручей (Хибины). Пегматит сложен содалитом, нефелином, калиевым полевым шпатом и пектолитом; второстепенные минералы – эгирин, щербаковит, тинаксит, астрофиллит, нефедовит, виллиомит. Приурочен в основном к интерстициям призматических кристаллов пектолита.

Отл. От макроскопически сходного нефелина отличается более сильным блеском.

	Межплоскостные расстояния алтисита из Хибинского массива [1] FeK _Q -излучение, D = 114,6 мм									
hki	I	d (Å)	hkl	I	d (Å)	hkl	I	d (Å)		
001	6	8,97	240	35	3,157	223	13	2,201		
020	71	8,22	132	100	3,049	ī72	15	2,071		
T11	9	7,01	331	71	2,900	080	25	2,038		
021	4	6,03	151	84	2,835	243	29	1,996		
111	4	5,54	222	25	2,765	334	29	1,967		
200	4	4,94	· <u>3</u> 32	11	2,666	4 61	13	1,873		
201	13	3,88	4 01	13	2,596	511	15	1,831		
041	25	3,71	4 21	13	2,468	<u>6</u> 01	29	1,723		
221	42	3,50	043	20	2,375					
<u>3</u> 11	20	3,35	401	11	2,257					

Литература

1. Хомяков А.П., Нечелюстов Г.Н., Феррарис Дж., Ивальди Г. // Зап. ВМО. 1994. Т. 123, № 6. С. 81. 2. Ferraris G., Ivaldi G., Khomyakov A P. // Europ. J. Miner. 1995. Vol. 7. P. 537.

СИЛИКАТЫ С ПЯТИ-, ШЕСТИ-, ВОСЬМИ- И ДВЕНАДЦАТИЧЛЕННЫМИ КОЛЬЦАМИ ТЕТРАЭДРОВ

СТРУКТУРА ТИПА СТИЛЬПНОМЕЛАНА

С таким типом структуры был описан стильпномелан* (т. IV, вып. 2, с. 570).

* Ленниленапейит, указанный как разновидность магниевого стильпномелана, рассматривается как самостоятельный минеральный вид – ленниленапеит (Clark, 1993; Fleischer, Mandarino, 1955).

ГРУППА СТИЛЬПНОМЕЛАНА

		Сингония	a ₀	b 0	<i>c</i> 0	У <u>д</u> .в.
Франклинфилит ОНоодыиНоО	KMn ₆ [(Si, Al)9(O,	Трикл.	5,521	9,560	36,575	2,6–2,8

Франклинфилит Franklinphilite KMn₆[(Si, Al)₉(O, OH)₂₇]·*n*H₂O

Назван по месту иаходки на месторождении Франклин, шт. Нью-Джерси (США), и от греч. філос – филос – друг ("друзья Франклина" – геологи, минералоги и коллекторы, которые содействовали изучению этого месторождения) [1].

Характ. выдел. Лучистые агрегаты тонкопластинчатых кристаллов; тонкозернистый.

Структ. и морф. крист. Трикл. с. $C_1^1 - P1$ или $C_1^i - P\overline{1}$. $a_0 = 5,521$, $b_0 = 9,560$, $c_0 = 36,575$ Å (определены по порошковой ренгенограмме); Z = 8. Подъячейка псевдотригональная. $a_0 = 22,08$, $c_0 = 12,19$ Å; Z = 1 [1].

Физ. св. Сп. по (001) совершенная. Тв. 4. Уд. в. 2,6–2,8 (вычисл. 2,66). Цв. темно-коричневый. Черта светло-коричневая. Бл. стеклянный до смоляного. Хрупок [1].

Микр. [1] Прозрачный до непрозрачного. Плеохроизм сильный: по Ng = Nm – темно-коричневый, по Np – светло-желлый. Двуосный (–). $n_g = 1,583$, $n_m = 1,583$, $n_p = 1,545$; $n_p - n_p = 0,038$; $2V = 10^\circ$ (вычисл. 0°).

Хим. Анализ (микрозонд.) [1]: Na₂O – 0,4; K₂O – 1,5; MgO – 6,4; ZnO – 5,9; MnO – 22,3; Al₂O₃ – 3,6; Fe₂O₃ – 7,8; SiO₂ – 44,0; H₂O^{*} – 8,1; сумма 100,0.

* По разности.

Эмпирическая формула (на 120 тетраэдрических и октаэдрических катионов, по аналогиии со стильпномеланом): $(K_{2,64}Na_{1,07})_{3,71}(Mn_{26,08}Mg_{13,18}Zn_{6,02}Fe_{2,72}^{3+})_{48}(Si_{60,76} \times Al_{5,86}Fe_{5,38}^{3+})_{72}(O_{163,23}(OH)_{52,77})_{216}$ -*n*H₂O (содержание 54 мол.% крайнего Мп-члена стильпномелана).

До 11,9% MnO содержится в ленниленапеите ($a_0 = 22,05$, $c_0 = 12,19$ Å) из месторождения Франклин [2, 3].

Нахожд. Встречен в отвалах месторождения Франклин, шт. Нью-Джерси (США). Совместно с франклинитом образует прожилок (мощностью 2 см), секущий брекчию, богатую кальцитом, франклинитом, шамозитом, эгирином, баумитом и виллемитом [1].

Отл. От стильпномелана отличается повышенным содержанием MnO.

Межплоскостные расстояния франклинфилита из месторождении Франклин, шт. Нью-Джерси (США) [1]

FeK _α -излучение,	, D =	114	1,6	ΜМ
------------------------------	--------------	-----	-----	----

hkl	1	d (Å)	hki	I	d (Å)	hkl	I	d (Å)
003	10 0	12,3		20	2,881*		2	1,897
	30	7,27*	202	30	2,737		10	1,730
	5	5,54	205	40	2,583	2.0.17	5	1,694
110	20	4,79		5	2,553*		5	1,677
	10	4,40	207	2	2,449		2	1,623
009	20	4,08		10	2,405*	060	30	1,594
	2	3,83*	208	30	2,362	063	30	1,580
	30	3,6	2.0.10	10	2,201	066	5	1,541
	2	3,18		20	2,120*		2	1,520*
0.0.12	20	3,06		10	1,968*		2	1,376

*Линии фриделита.

Литература

1. Dunn P.J., Peacor D R., Shu-Chun Su. // Miner. Rec. 1992. Vol. 23, N 6. P. 465.

2. Dunn P.J., Peacor D.R., Simmons W.B. // Canad. Miner. 1984. Vol. 22, pt 2. P. 259.

3. Guggenheim S., Eggleton R.A. // Soc. Amer. Rev. Miner. 1988. Vol. 19. Ch. 17. P. 675.

Акаторент 187, 192, 194 Алланит 164 Аллувивит 209, 259, 261 Алтнент 382, 416 АІ-эльбаит 244 Алюмобюргерит 244 Амсталлят 381, 402 Андременерит 100, 112, 113 Арденнят^{**} 187 Баглалят 101. 143. 146 Баланджеронт 271, 304, 305 Баратовит 209, 254, 255 Барноортоджоакният 208, 222, 224 Белоруссит-(Се) 208, 222, 226 Бельковит 101, 141 Богатый Fe и Al клинопироксен 273 Борнеманит 100, 133, 138 Боромусковит 381, 383 Бурналят 101, 143, 147 Ванадомалаяят 10, 37 Велинит** 10, 67 Вердингит 100, 128 Вертумият 381, 397, 400 Вуоняемят 100, 133, 134 Вюаньнтит 11, 77 Вюницахкит 188, 203 Гагент-2М* 304 Гагент-1А* 304 Ганомалит^{*} 101. 161 Гафнон 9, 15 Гейтманит 130 Герстманнит 11, 87 Гиалотекит 208, 227 10Å-гидрат 336 Гидроастрофиллит 271, 299 Гидроксилэллестадит 10, 48, 50 Гидроумбит (?) 291 Гнортдалит 151 Гиттинсит 100, 118, 122

Деллант 101, 182 Джасмундит 10, 46 Джаффент 101, 143, 153 Пжервисит 270, 277 Джерряджяббсит 10, 70, 72 Джеффрейит 100, 111 Джоакинит-(Ce)** 222 Джоакинитоподобный минерал 224 Джоннинесит 272, 341 Джорджчаонт 271, 317 Джорджшауит 317 Джунитовт 100, 112, 115 Писсакисит-(Се) 101, 162, 164 Поласит 167 Полласент-(Се) 101, 162, 167 Донинкорит 270, 286 Доррят 271, 323, 330 Ершоант 349, 364 Fe-авгит 273 Зорят 349, 372 Зунинт** 187, 188 Ибернсилит 58 Илерит 293 Имандрит* 209, 247 Иттриевый хинганит 58 Иттроцеберисит 58 Ифтисит 44 Ифтисит-(Y) 10, 44 Йортдалят 101, 151 Йортдалит-І 143 Йортдалит-II* 143 К-гейпонент 317 Калневый гейдоннент 317 Калий-фтор-рихтерит 349, 359 Калий-фторрихтерит 359 К-F-рихтерит 359 Са-илерит 294 Кальциоилерит 207, 293, 294 Канонаят 10, 38 Карлостуранит 350, 377 Каскандит 270, 287

¹ Полужирным шрифтом выделены названня опнсанных минералов, разновидностей н групп; одной звездочкой отмечены минералы, для которых приводятся только структурные данные, двумя звездочками – минералы и разновидности, указанные без опнсания (в ряде случаев с учетом нной трактовки структуры формулы видоизменены по сравнению с опубликованными ранее). Светлым шрифтом обозначены синонимы.

Катанмалит 209, 254, 257

Катонт 9, 13 Кванфьелдит 382, 414 Квейтит 101, 179 Кейвиит 118 Кеявнит-(Y) 100, 118, 120 Кейанит-(Yb) 100, 118 Келдышит 100, 102, 104 Киллалант 101, 157 Килхоанит* 187, 188 Клинотоберморит 272, 335 Клинофосинант 208, 216, 220 Коликит 10, 34 Комковит 271, 293, 295 Корнерупнн** 187 Корнят 349, 354, 358 Костылевит 209, 252 Крайслит 10, 36 Криноант" 272, 323, 334 Ксинганит 58 Кукисвумит 270, 282, 284 Кулнокит-(Y) 11, 92 Кумбсит 382, 409 Кыявеняит 271, 315 Лайхунит 9, 18 Лейкофённцит** 187, 188, 200 Либаунт 272, 347 Лябенбергит 9, 18, 21 Ликент 349, 354, 357 Линтисит 270, 282 Лятномарстурит 271, 309, 311 Луницзяньлант 381, 390 Мд-алланит 164 Магнезнальный астрофиллит" 271, 299 Магнезиальный ортит 164, 167 Магнезноортит 164, 167 Магнезносаданагант 349, 350, 353 Магнезиохлоритоид 10, 62, 63 Макарочкинит 271, 323, 327 Макфаллят 101, 162, 170 Малаховит 330. 333 Манаксит 350. 375 Мангангумит 10, 70 Мп-анялог гумита 70 Марганцевый бнотит 386 Маттхеддлент 10, 48, 52 Мегациклит 209, 266 Медант 188, 198 Минасжерансит 54 Минасжерайсит-(Ү) 10, 54 'Минерал F" 23 Миясироит 354 Моноклинный 11А-тоберморит 335 Моноклинный фосинаит 220 Моцартит 11, 77, 79 Нагасималит 208, 209, 213 Назонит 101, 161

Назонит 101, 161 Накареннобсит-(Се) 101, 155 Наманси чит 270, 277, 278 Нанекевент 224

Наньпинит 381, 385 Наталнит 270, 277, 280 Натисит 10. 40 Na, Мп-клинопироксен 278 Натронамбулят 271, 309, 310 Нафертисит 349, 367 Нибёнт 349. 354 Ниобневый ломоносовит 134 Норришит 381, 386 ОН-баратовит 257 Оелят 272, 335, 336 Оленит 208, 239, 244 Омилит 271, 307 Ореброит 69 Орнентит 187, 192 Орлиманит 381, 396 Ортит 166 Ортоджоакинит-(Се)* 222, 223 Оттрелят 10, 62, 64 Охотскит 101, 173, 175 Паракелдышят 100, 102, 106 Паранатисит 10, 40, 42 Параспёррит 9, 30 Параумбит 270, 287, 291 Пеллянт 272, 338 Пенквилксит 381, 407 Пенквилксит-20 407 Пеяквялксит-1М* 407 Петарасит 209, 247, 248 Питдании 270, 272, 275 Повондрант 208, 239, 242 Полдерваартит 11,85 Пудреттит 208, 232, 236 Пумпеллинт-(Mn²⁺) 101, 173, 174 Райнхардбраунсит 10, 70, 74 Ревдит* 350, 376 Редкоземельный иллерит 296 TR-иллерит 296 Рёнит* 272, 323, 334 Риббент 188, 201 Рунцит 188, 196 Рустумит* 101, 183 Саданагант 349, 350, 351 Сазыкнявят-(Y) 271, 293, 296 Салнотит 381. 388 Сальмит 64 Самфоулерят 101, 184 Санероит 272, 344 Сантакларант 271, 309, 312 Свамбонт 9, 25 Сверигент 11, 89 Сялннаит 381, 404 Синсионт 9, 17 Сятинакят 11.96 Сонолит* 10, 70, 76 Стиснит 208, 230 Страховит 208, 214

Стрингамит 23 Стрингхамит 9, 23 Стронциоджоакинит 208, 222, 223 Стронционьемонтит 101, 162, 163 Стронциочевкинит 100, 140 Субалюмнияевый железистый диссакисит-(Се) 164, 166 Сузукнит 271, 301 Суринамит* 187, 188 Сявхуалинит* 11, 95 Тайканит 271, 302 Таленит-(Y)^{*} 187, 192 Танеималит 272, 343 Тарамеллит* 208, 209 Тняаксит* 349, 369 Тирагаллонт 187, 190 Титантарамелит 211 Титантарамеллит 208, 209, 211 10А-тоберморит 336 Токконт 349, 369, 370 Траскит 209, 264 Тунгусит* 381, 397 Тундрит-(Nd)* 9, 30 Тундрит-(Ce)^{*} 9, 30 Уикенбергит* 382, 412 Уилкинсонит 271, 323, 325 Умбит 270, 287, 289 Урсинит 9, 25, 26 Уэдслинт 9, 11 Ферридравит 242 Феррисурит 381, 390, 391 Феррифаялит 18 Ферронибёнт 354, 356 Ферросаданагант 351, 352 Ферсманит* 101, 156 Ферувит 209, 239, 245 Флюорэллестадит 10, 48 Фойтит 208, 239 Фосянаят 208, 216

Франклинфилит 382, 418

Францисканит 10, 67 Фторрихтерит 349, 359, 362 Харадант* 271, 301 Харрнсонит 10, 31 Хейтманнт 100, 130 Хенномартинит 101, 159 Хегтувант 327 Хнбнискит 100, 102, 109 Хинганит иттербневый 57 Хинганит церневый 56 Хинганнт-(Yb) 10, 54, 57 Хинганит-(Y) 10, 54, 58 Хинганит-(Се) 10, 54, 56 Хлоритоид^{*} 10, 62 Хлорэллестадит 10, 48, 51 Холтнт 9, 27 Хрнстовнт-(Се) 101, 162, 168 Хромдравит 208, 239, 241 Хромовый алланит 166 Хромовый диссакисит-(Се) 164, 166 Хромовый пумпеллиит 177

Цнркофиллит 271, 299, 300

Чейеснт 208, 232, 237 Чкаловнт 271, 319

Шанталит 11, 81 Шерл с дефицитом щелочей 239 Штрётлингит 381, 397, 399 Шуйскит 101, 173, 177

Эдгарбейлинт 100, 125 Эйфелнт 208, 232, 233 Эканит 381, 393 Элленбергерит 11, 82 Эребрунт 10, 67, 69 Эссенент 270, 272, 273 Эффенбергернт 382, 410

Яихаугит 101, 143, 149 Ясмунднт 46 INDEX

Akatoreite 194 Al-elbaite 244 Alkali-deficient schorl 239 Alluaivite 261 Altisite 416 Alumo-bürgerite 244 Arnstallite 402 Andremeverite 113 **Baghdadite 146 Balangeroite 305 Baratovite 255** Bario-orthojoaquinite 224 Belkovite 141 Belorussite-(Ce) 226 **Bornemanite 138** Boromuscovite 383 **Burpalite 147** Calciohilairite 294 Carlosturanite 377 Cascandite 287 Chantalite 81 Chayesite 237 Chiavennite 315 Chkalovite 319 Chlorellestadite 51 Chloritoid^{*} 62 Chromdravite 241 Chromian dissakisite-(Ce) 166 Chromian pumpellyite 177 **Clinotobermorite 335** Coombsite 409 Dellaite 182 Dissakisite-(Ce) 164 Dollaseite-(Ce) 167 Donpeacorite 286 Dorrite 330 **Edgarbaileyite 125** Effenbergerite 410 Eifelite 233 Ekanite 393 Ellenbergerite 82 Ershovite 364 Esseneite 273 Ferridravite 242 Ferrisurite 391 Ferro-nyböite 356 Ferrosadanagaite 352 Ferry-fayalite 18

Fersmanite^{*} 156 Feruvite 245 Fluorellestadite 48 Foitite 239 Franciscanite 67 Franklinphilite 418 Ftorrichterite 362 Ganomalite^{*} 161 Georgechaoite 317 Gerstmannite 87 Gittinsite 122 Hafnon 15 Haradaite[®] 301 Harrisonite 31 Hejtmanite 130 Hennomartinite 159 Hilairite^{*} 293 Hingganite-(Ce) 56 Hingganite-(Y) 58 Hingganite-(Yb) 57 **Hiortdalite 151** Høgtuvaite 327 Holtite 27 Hsianghualinite[®] 95 Hyalotekite 227 Hydroastrophyllite 299 Hydroxylellestadite 50 Imandrite^{*} 247 **Jaffeite 153** Janhaugite 149 **Jasmundite 46** Jeffrevite 111 Jerrygibbsite 72 Jervisite 277 Joaquinite-like mineral 224 Johninnesite 341 Junitoite 115 Kanonaite 38 Katayamalite 257 Katoite 13 Keiviite-(Y) 120 Keiviite-(Yb) 118 Keldyshite 104 Khibinskite 109 Khristovite-(Ce) 168 Kilchoanite^{*} 188

Killalaite 157 Klinophosinaite 220 Kolicite 34 Komkovite 295 Kornite 358 **Kostylevite 252 Kraisslite 36** Krinovite^{*} 334 Kukisvumite 284 Kuliokite-(Y) 92 **Kvanefieldite 414** Laihunite 18 Leakeite 357 Liebauite 347 Liebenbergite 21 Lintisite 282 Lithiomarsturite 311 Luniiianlaite 390 Macfallite 170 Magnesiochloritoid 63 Magnesiosadanagaite 353 Makarochkinite 327 Malakhovite 333 Manaksite 375 Manganhumite 70 Mattheddleite 52 Medaite 198 Megacyclite 266 Minasgeraisite 54 Minasgeraisite-(Y) 54 Miyashiroite 354 Mozartite 79 Nacareniobsite-(Ce) 155 Nafertisite 367 Nagashimalite 213 Namansilite 278 Nanekeveite 224 Nanpingite 385 Nasonite^{*} 161 Natalvite 280 Natisite 40 Natronambulite 310 Norrishite 386 Nyböite 354 Ohmilite 307 **Okhotskite 175 Olenite 244** Örebroite 69 Orientite^{*} 192 **Orlimanite 396** Orthojoaquinite-(Ce)²²³ Ottrelite 64 **Oursinite 26 Ovelite 336**

Parakeldyshite 106 Paranatisite 42

Paraspurrite 30 Paraumbite 291 Pellyite 338 Penkvilksite 407 Petarasite 248 Petedunnite 275 Phosinaite 216 Poldervaartite 85 Potassian gaidonnayite 317 Potassium-fluor-richterite 359 Poudretteite 236 **Povondraite 242** Pumpellyite-(Mn2+) 174 **Oueitite 179 Reinhardbraunsite 74** Revdite^{*} 376 Rhönite^{*} 334 **Ribbeite 201 Ruizite 196** Rustumite^{*} 183 Sadanagaite 351 Saliotite 388 Salmite 64 Samfowlerite 184 Saneroite 344 Santaclaraite 312 Sazykinaite-(Y) 296 Shuiskite 177 Silinaite 404 Sitinakite 96 Sonolite^{*} 76 Steacyite 230 Strakhovite 214 Strätlingite 399 Stringhamite 23 Strontiochevkinite 140 Strontiojoaquinite 223 Strontiopiemontite 163 Subaluminous ferroan dissakisite-(Ce) 166 Surinamite^{*} 188 Suzukiite 301 Sverigeite 89 Swamboite 25

Taikanite 302 Taneyamalite 343 Taramellite^{*} 209 Thalenite-(Y)^{*} 192 Tinaksite^{*} 369 Tiragalloite 190 Titantaramellite 211 Tokkoite 370 Traskite 264 Tundrite-(Ce)^{*} 30 Tundrite-(Nd)^{*} 30 Tungusite^{*} 397

Umbite 289

Vanadomalayaite 37 Vertumnite 400 Vuagnatite 77 Vyuntspakhkite-(Y) 203

Wadsleyite 11 Werdingite 128 Wickenburgite^{*} 412 Wilkinsonite 325

Wuonnemite 134

Xinganite 58 Xingsaoite 17

Yberysilite 58 Yftisite-(Y) 44 Yftisite 44 Yttroceberysite 58

Zircophyllite 300 Zorite 372

Предисловие	3
Условные обозначения и сокращения	7
Силикаты с одиночными кремнекислородными тетраэд- рами	9
Силикаты со сдвоенными кремнекислородными тетраз- драми	100
Силикаты с изолированными некольцевыми группами кремнекислородных тетраэдров (олигосиликаты)	187
Силикаты с кольцами кремнекислородных тетраэдров	208
Силикаты с цепочками кремнекислородных тетраэдров	270
Силикаты с лентами кремнекислородных тетраэдров	349
Слоистые силикаты	381
Указатель минералов	420
Index	423

Научное издание

минералы

СПРАВОЧНИК

Том IV

Выпуск 3

СИЛИКАТЫ

Дополнения к томам Ш и IV

Утверждено к печати Ученым советом Института геологии рудных месторождений, петрографии, минералогии и геохимии РАН

> Заведующая редакцией "Наука – бносфера, экология, геология" А.А. Фролова

Редактор Т.А. Николаева Художественный редактор Г.М. Коровина Технический редактор Т.В. Жмелькова Корректоры З.Д. Алексесва, Н.П. Круглова, Н.И. Харламова

Набор и верстка выполнены в издательстве на компьютерной технике

.

ИБ № 2170

ЛР № 020297 от 27.11.1991

Подписано к печати 20.05.96 Формат 70 × 100 1/₁₆. Гарнитура Таймс. Печать офсетная Усл. печ. л. 35,1. Ус. кр.-отт. 35,1. Уч. изд. л. 37,5 Тираж 500 экз. Тип. зак. **31**79

Издательство "Наука" 117864 ГСП-7, Москва В-485, Профсоюзная ул., 90

Санкт-Петербургская типография № 1 РАН 199034, Санкт-Петербург В-34, 9-я линия, 12

В ИЗДАТЕЛЬСТВЕ «НАУКА»

Готовятся к печати:

Панфилов М.Б., Панфилова И.В. Осредненные модели фильтрационных процессов с неоднородной внутренней структурой. 18 л.

В книге приведено построение нескольких новых эффективных моделей процессов, описываемых параболическими и эллиптическими уравнениями, в средах, представляющих собой композит с малым периодом неоднородности и большими различиями в проводимости составляющих. Предложена асимптотическая процедура осреднения, позволяющая получить новые соотношения для коэффициента дисперсии фронта, выявить его различные физические составляющие и обнаружить явление антидисперсии.

Для специалистов, занимающихся проблемами теории фильтраций, а также специалистов в области методов осреднения неоднородных сред.

Величко А.А., Морозова Т.Д., Нечаев В.П., Порожнякова О.М. Почвенный палеокриотенез и земледелие. 11 л.

Монография содержит результаты исследований влияния реликтовой криотенной морфоструктуры на строение почв и структуру современного почвенного покрова. Установлено, что реликтовый криогенный микрорельеф является основным фактором дифференциации почвенного покрова, определяет формирование почвенных катен из нескольких типов почв, контрастных по свойствам, режиму увлажнения, запасу питательных веществ. Реконструированы палеогеографические условия эволюции почв в голоцене. Выявлена коррелятивная связь между палеокриорельефом и пространственной вариабельностью агрохимических свойств почв, урожайностью сельскохозяйственных культур.

Для почвоведов, геоморфологов, специалистов в области изучения четвертичного периода, географов-криолитологов. Петрологические провинции Тихого океана. 43 л.

Монография содержит сводное описание магматических пород Тихого океана, основанное на обобщении литературных данных и новых материалов, собранных авторами в морских экспедициях. Систематизация данных строится на принципе петрологических провинций по признакам геологического возраста, формационной принадлежности, петрогеохимического состава, характера эволюции и геодинамического режима вулканизма. Полученные новые данные по комплексным месторождениям фосфоритов и платиноносных кобальт-марганцевых корок, а также по металлогенической специализации базальтов позволили выделить ряд новых руню-геохимических провинций.

Для геологов, петрографов, геохимиков.