ТРУДЫ МИНЕРАЛОГИЧЕСКОГО МУЗЕЯ имени А. Е. ФЕРСМАНА

Выпуск 13

Редактор д-р геол.-мин. наук Г. П. Барсанов

В. И. КУДРЯШОВА

железистый сапонит и селадонит из шаровых лав сибирских траппов

В бассейне среднего течения р. Нижней Тунгуски в покровах шаровых лав трапповой формации (Кудряшова, 1958; Киевленко, 1958) среди гидротермальных минералов встречаются глиноподобные минералы двух типов: бурые — типа монтмориллонита и зеленые — типа селадонита.

Наиболее полно были исследованы бурые глины: образец № 169, обнаруженный автором на шравом берету р. Нижней Тунгуски близ устья притока Кочечумо (пос. Тура), и образец № 551 из района среднего течения р. Нидым (левый щриток р. Нижней Тунгуски), любезно предоставленный геологом Г. Е. Белоусовым.

В обоих случаях глинистые агрегаты выполняли внутренние полости гнездовых скоплений цеолитов и кальцита. В месторождениях р. Нидым среди глинистой массы нередко обнаруживались кристаллы прозрачного кальцита (исландского шпата). Кроме свободного заполнения полостей и трещин, бурый глинистый минерал замещал десмин и апофиллит, образуя частичные или полные исевдоморфозы (рис. 1). В апофиллите замещение шло от периферии к центру и от основания к вершине кристаллов с некоторым увеличением объема последних (рис. 2).

Апрегаты глинистого минерала имеют землистый глиношодобный вид. В сыром состоянии они мягки, жирны наощупь и хорошо растираются между шальцами, щри высыхании распадаются на легко сылучую мелкочешуйчатую массу. Размеры чешуек не превышают 0,5 мм. Цвет минерала темно-бурый со слабо зеленоватым оттенком (обр. № 169) или рыже-бурый (обр. № 551). Твердость около 2. Под микроскопом чешуйки образуют радиально-лучистые сростки. Под электронным микроскопом частицы минерала имеют форму листочков с щрямолинейными очертаниями или хлопьев с расплывчатыми контурами (рис. 3).

Рентгеноструктурные исследования методом Дебая, проведенные в лаборатории ИГЕМ АН СССР, дали порошкограммы с наиболее интенсивными линиями: 14,59 и 14,21 (10); 4,61 и 4,53 (6 и 5); 3,00 и 2,96 (5); 2,58 и 2,629 (5 и 4); 1,538 и 1,519 (7). Порошкограммы нижнетунгусских образцов изображены штриховым способом на рис. 4. Они близки эталонному сапониту по РОМ В. И. Михеева (1957) и совпадают с порошкограммами железистого сапонита из Японии (Міуатоto, 1957; Sudo, 1954) и приффитита из Калифорнии (Faust, 1955). Для исследованного минерала вычислены параметры ячейки: a = 5,27 Å, b = 9,17 Å. Опыты на разбухание дали положительные результаты.

Микроскопическое изучение показало, что при одном николе чешуйки имеют желтовато-бурый цвет с заметным плеохроизмом биотитового типа.

e²

Рис. 1. Псевдоморфоза Fe-сапонита по десмину (0,5 нат. вел.)

Рис. 2. Псевдоморфоза Fe-сапонита по апофиллиту (0,5 нат. вел.)

1. 1

Рис. 3. Форма частиц Fe-сапонита под электронным микроскопом

При скрещенных николях чешуйки имеют прямое утасание, положительное удлинение, поляризационную окраску порядка 0,015—0,020. Определение показателей преломления иммерсионным методом в обоих образцах дало одинаковые значения, равные для Ng 1,559; для чешуек, заместивших апофиллит, получены более низкие значения: Ng = 1,544 ± 0,002 и

Рис. 4. Штриховое изображение порошкограмм Fe-сапонита 1 — обр. № 169, р. Нижняя Тунгуска близ пос. Тура; 2 — обр. № 551, р. Нидым; 3 — сапонит В. И. по Михееву (1957); 4 — Fe-сапонит из базальтов Японии (Miyamoto, 1957); 5 — Fe-сапонит из третичных песков Японии (Sudo, 1954); 6 — гриффитит из Калифорнии (Faust, 1955) Fe-сапонит и селадонит шаровых лав траппов Сибири

T	аблица	1
_		_

213

Компоненты -	Fe-сапонит из басс. р. Нижн. Тунгуска		Fe-са понит	из Японии	Гриффитит из	Сапонит из графства Кат-
	обр. № 169	обр. № 551	из базальтов Mazé (Miya- moto, 1957)	из Тг-пес- ков Moniwa (Sudo, 1954)	Калифорнии (Faust, 1955)	кин, Англия (Faust, 1955)
SiO_2	39,33	37,78	43,98	39,68	39,64	40,16
TiO_2	Следы	Следы	0,16	0,37	_	_
Al_2O_3	6,45	6,81	6,30	3,93	9,05	8,03
Fe_2O_3	11,73	17,01	7,85	19,82	7,32	8,50
FeO	2,40	1,13	5,32	1,12	7,83	3,83
MnO	0,10	0,09	0,32	0,19		
MgO	17,12	13,75	18,02	11,21	15,80	19,40
CaO	3,00	3,57	2,78	2,37	2,93	1,91
Na ₂ O	0,35	< 0,25	_	_	0,71	-
K ₂ O	Нет	Нет	_	_		_
H_2O^-	14,38	14,89	9,24	15,11	12,31	11,15
${\rm H}_{2}{\rm O}^{+}$	5,42	4,43	6,34	6,16	4,90	7,60
Сумма	100,28	99,71	100,31	99,96	100,49	100,58

Химический состав железистых сапонитов (в вес. %)

Np = 1,530 ± 0,002. При коноскопии устанавливается резкая дисперсия оптических осей $\rho < v$, отрицательный оптический знак и 2V около $20 - 30^{\circ}$.

Химические анализы обоих образцов тунгусских сапонитов, выполненные в ЦХЛ ИГЕМ АН СССР аналитиком Н. Вороновой, весьма близки между собой и сходны с анализами японских Fe-сапонитов и гриффитита из Калифорнии (табл. 1). Из сопоставления анализов видно, что колебания в содержании отдельных компонентов резко проявляются только для Fe₂O₃, FeO и MgO.

Пересчеты химических анализов нижнетущусских Fe-сапонитов из расчота на 12 атомов кислорода (табл. 2, 3) дают следующие структурные формулы (по Ross, 1960):

 $\stackrel{\operatorname{Ca}/2_{0,27}\operatorname{Na}_{0,05}}{\uparrow}$

 $(Mg_{2,123}Fe_{0,165}^{2+}Fe_{0,731}^{3+}Mn_{0,005})_{3,024}(Si_{3,273}Al_{0,635})_{3,908}O_{10}(OH)_{2}\cdot4,5H_{2}O$

$(Mg_{1, 705}Fe_{0, 078}^{2+}Fe_{1, 061}^{3+}Mn_{0, 005})_{2, 849} (Si_{3, 144}Al_{0, 671})_{3, 815}O_{10} (OH)_2 \cdot 4, 3H_2O$

При расчете второго анализа ощущается недостаток основных элементов (Si, Al и Mg). Возможно, это обусловлено недостаточной чистотой образца № 551 за счет примеси морденита или кальцита.

Спектральными анализами устанавливаются примеси Ga, Ti, Ni, V, Cu. Термические исследования (кривая натревания и дифференциальнотермическая кривая) дали для обоих образцов сходные результаты (рис. 5). Для них характерны два глубоких эндотермических низкотемпературных пика при 120—130 и 200°, разделенных небольшим экзотермическим пиком при 170—180°. Эти точки типичны для монтмориллонита и иллита. Слабый эндотермический пик при 690 и 750° отвечает вторсму эндотермическому пику монтмориллонита. Третий

В. И. Кудряшова

Компоненты	Bec. %	Молекуляр- ные количест- ва	Атомные ко- личества кис- лорода	Атомные коли- чества катионов	Атомные количества катионов на 12 ато- мов кислорода	
SiO_{2} TiO_{2} $AI_{2}O_{3}$ FeO MnO MgO CaO $Na_{2}O$ $K_{2}O$ $H_{2}O^{+}$ $H_{2}O^{-}$	39,33 Следы 6,45 11,73 2,40 0,10 17,12 3,00 0,35 — 5,42 14 38	$\begin{array}{c} 0,6546 \\ \\ 0,0635 \\ 0,0731 \\ 0,0330 \\ 0,0010 \\ 0,4246 \\ 0,0540 \\ 0,0055 \\ \\ 0,3010 \\ 0,7988 \end{array}$	$\begin{array}{c} 1,3092 \\ \\ 0,1905 \\ 0,2193 \\ 0,0330 \\ 0,0010 \\ 0,4246 \\ 0,0540 \\ 0,0055 \\ \\ 0,2000 \\ \\ 0,2000 \\ \end{array}$	$\begin{array}{c} 0,6546 \\ \\ 0,1270 \\ 0,1463 \\ 0,0330 \\ 0,0010 \\ 0,4246 \\ 0,0540 \\ 0,0110 \\ \\ \left\{\begin{array}{c} 0,4000 \\ 0,2020 \\ 0,2020 \\ 0,2020 \end{array}\right\}$	$\begin{array}{c} 3,2730 \\ - \\ 0,6350 \\ 0,7315 \\ 0,1650 \\ 0,0050 \\ 2 1230 \\ 0,2700 \\ 0,0550 \\ - \\ 2,000 \\ 8,9980 \end{array}$	
Сумма	100,28		2,4371	1,0070)		

Пересчет химического анализа образца № 169

Основа расчета: 12 : 2,4371 ~5

Пересчет химического анализа образца № 551

Таблица 3

Таблица 2

Компоненты	Bec. %	Молекуляр- ные количест- ва	Атомные ко- личества кис- лорода	Атомные коли- чества катионов	Атомные количества катионов на 12 ато- мов кислорода
$\begin{array}{c} \mathrm{SiO}_2\\ \mathrm{TiO}_2\\ \mathrm{Al}_2\mathrm{O}_3\\ \mathrm{Fe}_3\mathrm{O}_3\\ \mathrm{FeO}\\ \mathrm{MnO}\\ \mathrm{MgO}\\ \mathrm{CaO}\\ \mathrm{Na}_2\mathrm{O}\\ \mathrm{K}_2\mathrm{O}\\ \mathrm{H}_2\mathrm{O}^+\\ \mathrm{H}_2\mathrm{O}^- \end{array}$	37,78 Следы 6,81 17,01 1,13 0,09 13,75 3,57 <0,25 — 4,43 14,89	$\begin{array}{c c} 0,6288 \\ - \\ 0,0671 \\ 0,1061 \\ 0,0156 \\ 0,0010 \\ 0,3410 \\ 0,0634 \\ 0,0040 \\ - \\ 0,2458 \\ 0,8280 \end{array}$	$\begin{array}{c} 1,2576 \\ \\ 0,2013 \\ 0,3183 \\ 0,0156 \\ 0,0010 \\ 0,3410 \\ 0,0634 \\ 0,0040 \\ \\ 0,2000 \\ \\ \end{array}$	$\begin{array}{c} 0,6288 \\ - \\ 0,1342 \\ 0,2122 \\ 0,0156 \\ 0,0010 \\ 0,3410 \\ 0,0634 \\ 0,0080 \\ - \\ \left\{\begin{array}{c} 0,4000 \\ 0,0916 \\ 1,6560 \end{array}\right\}$	$\begin{array}{c}3,1440\\-\\0,6710\\1,0610\\0,0780\\0,0050\\1,7050\\0,3170\\0,0400\\2,0000\\8,7380\end{array}$
Сумма	99,71		2,4022		

Основа расчета: 12:2,4022 = 5

ясный эндотермический пик отмечается на обеих кривых при 910°. Кривые анализированных образцов почти идеально совпадают с кривыми японских Fe-canoнитов и гриффитита.

Таким образом, бурая тлинка из межшаровой породы и цеолито-кальцитовых гнезд в шаровых лавах сибирских траппов достоверно определяется как железистый сапонит. Образование железистого сапонита в эффузивных траппах Сибирской платформы тесно связано с комплексом низкотемпературных минералов. Им собственно завершается формирование этого комплекса: сапонит заполняет центральные полости пустот и гнезд с цеолитами и кальцитом,

Рис. 5. Кривая нагревания и дифференциально-термическая кривая Fe-сапонита (обр. № 169)

частично замещая на первых этапах своего образования апофиллит и десмин. Все это свидетельствует о том, что Fe-сапонит, так же как цеолиты, апофиллит, кальцит и другие минералы комплекса, кристаллизовался из низкотемпературных растворов, богатых щелочами и щелочноземельными элементами.

Железистый сапонит из других известных в литературе местонахождений также всегда связан с гидротермальными образованиями основных пород. Сапонит из Каткин (Шотландия) связан с третичными базальтами (Faust, 1955); в Олт Рибгейн (Фискавайт-Бей, о. Скай) сапонит вместе с цеолитами выполняет пустоты в лаве (Mackenzie, 1957); железосодержащий сапонит из третичных железисто-песчаных слоев Японии (Sudo, 1943, 1952, 1954) образовался за счет изменения темноцветных минералов основных вулканических пород, попавших в песчаные осадки; железистый сапонит из Мацэ, префектура Ниигата, Япония (Miyamoto, 1957), заполняет совместно с цеолитами миндалины в измененных базальтах; сапонит из трещин в амфиболитах окрестностей г. Часлав, Чехословакия (Konta, 1955), также ассоциирует с кальцитом, эпидотом, анальцимом, ломонтитом и натролитом. Наконец, так называемые триффититы, представляющие собой железистую разность сапонита, также встречаются как минералы заполнители миндалин в базальтах (Larsen, 1917, 1928; Faust, 1955).

Исследования В. Нолла (Noll, 1936) системы (Ca, Mg)O — Na₂O — SiO₂ — Al₂O₃ — H₂O, показавшие образование анальцима, сапонита и других минералов, подтверждают это положение.

Наконед, указание на гидротермальный генезис Fe-сапонитов в нижнетунгусских траппах дают находки включений сферолитовых апрегатов сапонита (?) в краевых частях кристаллов исландского шпата из тех же шаровых лав р. Нижней Тунгуски (рис. 6). Сферолиты диаметром не больше 3 мм имеют радиально-лучистое строение. Отсутствие достаточного материала на полный комплекс анализов не позволяет точно определить этот минерал, но то, что удалось получить, указывает на близость его к железистым санонитам. Поропцкограмма минерала содержит следующие линии:

Рис. 6. Включения сферолитов Fe-сапонита (?) в исландском шпате

14,60 (5, размытая), 4,51 (4, размытая), 2,7 (2, размытая), 1,52 (3), т. е. все основные линии Fe-сапонита. Очень близка и дифференциально-термическая кривая (рис. 7); в пределах интервала 70—200° имеется два резких эндотермических пика, разделенных промежуточным экзотермическим пиком при 140°; кроме того, отмечаются слабые реакции при 550 и

Рис. 7. Дифференциально-термическая кривая Fe-сапонита (?) из сферолитового включения в исландском шпате

890°. Кривая отличается лишь пологим экзотермическим подъемом на интервале 240—540°, вероятно, обусловленным окислением закисного железа. Повышенным содержанием закисного железа, вероятно, объясняется и более высокий показатель преломления, колеблющийся для Ng между 1,612—1,620.

Как показывают определения температуры формирования исландского шпата этих мест по температуре гомогенизации жидких включений, проведенные А. В. Скропышевым (1957) и Е. Я. Киевленко (1958), образование включений Fe-сапонита в исландском шпате происходило из растворов при температуре 40—50°. Возможно, те же условия сохранялись и при кристаллизации мелкочешуйчатого сапонита в центральных полостях гнездовых скоплений гидротермальных минералов.

Очень мало данных получено для идентификации зеленых глинок из того же комплекса минералов в шаровых лавах Нижней Тунгуски. Зеленый глиноподобный минерал «по-видимому, селадонит» был анализирован Б. Ткаченко (1941). В составе минерала были определены (в %): SiO₂ 60,35, $Fe_2O_3 - 17,66$, $Al_2O_3 - 3,90$, CaO - 2,19, MgO - 5,49, $K_2O + Na_2O - 3,40$ 3,42, п. п. п. 6,89, сумма 99,90. Порошкограмма зеленой глинки из обнажения на левом берегу р. Нижней Тунгуски в 12 км выше пос. Тура (материалы автора) содержит следующие линии: 9,81 (10), 4,40 (10), 3,65 (8), 3,34 (8), 3,10 (8), 2,58 (9), 2,40 (9), 2,12 (4), 1,967 (3), 1,653 (6), 1,512 (10), 1,312 (7), 1,254 (1). Из сопоставления химического состава и рентгенограммы с литературными данными (Чухров, 1955; Квальвасер, 1953; Лазаренко, 1956) зеленая тлинка из нижнетунгусских лавовых базальтов определяется как селадонит. Как и для других мест его нахождения в аналогичных условиях, т. е. в базальтах, совместно с цеолитами и кальцитом, например, Крымский Карадаг (Четвериков, 1935), образование селадонита происходило из низкотемпературных гидротермальных растворов. В нижнетунгусском комплексе гидротермальных минералов селадонит, так же как Fe-сапонит, выделялся в стадию, когда только начинал кристаллизоваться кальцит последней генерации — прозрачный исландский шпат. Нередко исландский пшат в основании кристаллов имеет зеленоватую окраску за счет включения тонкораспыленного зеленого селадонита.

Выявление низкотемпературных магнезиальных минералов в комплексе гидротермальных минералов, связанных с базальтами трашновой формации Сибири, проливает свет на проблему геохимии магния этой провинции. Базальтовая магма вообще и трапповая, в частности, характеризуется постоянным содержанием MgO (6,0% — для средних базальтов по Р. Дэли; 5,62% — для сибирских траннов по А. П. Лебедеву). В высокотемпературных магматических и гидротермальных образованиях магний проявляется в составе темноцветных минералов — оливины, пироксены, хдориты. В среднетемпературном и низкотемпературном диалазоне минералообразования магний не фиксируется ни в одном из минералов. И только на конечном этапе при температурах ниже 50° матний вновь проявляется в форме Fe-сапонита и селадонита, завершая этим геохимическую историю магния.

ЛИТЕРАТУРА

Гримм Р. Е. Минералогия глин. М., Изд-во иностр. лит-ры, 1959.

- Квальвасер И. А. О селадоните из Карадага в Крыму.— Минералог. сб. Львовск. геол. об-ва при ун-те, № 7, 1953. Киевленко Е. Я. О шаровых лавах Сибирской платформы и связанном с ними
- минералообразовании. Труды ВНИИП «Пьезооптическое кристаллосырье»,
- т. II, вып. 1, 1958. Киевленко Е. Я. Опыт изучения жидких включений в исландском шпате месторождений Сибирской платформы. — Труды ВНИИП «Пьезооптическое кристаллосырье», т. II, вып. 2, 1958.
- Кудряшова В. И. К вопросу об образовании шаровых нав среднето течения р. Нижней Тунгуски. — Изв. АН СССР, серия геол., № 2, 1958.
- Лазаренко Е. К. О селадоните из базальтов Волыни.— Минералог. сб. Львовск. геол. об-ва при ун-те, № 10, 1956.

Михеев В.И. Рентгенометрический определитель минералов. М., 1957.

- Скропы шев А. В. Газо-нидкие включения в кристаллах исландского шпата. Минералог. сб. Львовск. геол. об-ва при ун-те, № 11, 1957. Ткаченко Б. В., Михайлов А. Ф., Тест Б. И. Геология и полезные ископае-мые центральной части Тунгусского бассейна. Труды ГГУ Севморпути, т. 11, 1941.
- Четвериков С., Фиолетова А. Селадонит из Коктебеля (Крым). Докл. АН СССР, т. II, № 3—4, 1935.
- Чухров Ф. В. Коллоиды в земной коре. М., 1955.

Faust G. T. Thermal analisis and X-ray studies of griffithite. - J. Wash. Acad. Sci.,

45, N. 3, 66-70, 1955.
Konta J., Sin delar J. Saponit z puklinovych vyplni caslavskych amfibolitu. - Univ. Carolina Geol., 1, N. 2, 177-186, 1955.
Larsen E. S., Steiger G. Dehydration and optical studies of alunogen, nontronite and griffithite. - Amer. Jour. Sci., (5), 25, 1-19, 1928.
Larsen E. S., Steiger G. Griffithite a new member of chlorite group. J. Wach. Acad. Sci., 7, 11-12, 1917.
Wack en zie B. C. Saponite from Allt Bibbein Fiskavaig Bay. Skye. - Mineral Mag.

Mackenzie R. C. Saponite from Allt Ribhein, Fiskavaig Bay, Skye. - Mineral. Mag., 31, 239, 672-680, 1957. Miyamoto N. Iron-rich saponite from Mazé, Niigata Prefecture, Japan. - Miner. J.,

M 19 a m o to N. Fron-Fron Saponte from Maze, Mingata Prefecture, Japan. — Miner. J., 2, N 3, 193—195, 1957.
N o I I W. Ueber die Bildungsbedingungen von Kaolin, Montmorillonite, Sericit, Pyrophyllit und Analcim.— Min. petr. Mitt., 48, 210—247, 1936.
R o s s C. S. Review of the relationships in the montmorillonite group of clay minerals. Clay and clay minerals. London — Oxford.— New York. — Paris, 225—229, 1960.
S. u d s T. On some low temperature budgene climates found in Japan. — Brill Chem. See

Sudo T. On some low temperature hydrous silicates found in Japan.— Bull. Chem. Soc. Japan, 18, 281-329, 1943.

Sudo T., Ota S. An iron-rich variety of montmorillonite found in «Oya-ash».— J. Ceol. Soc. Japan, 58, 487—491, 1952.

Sudo T. Iron-rich saponite found from tertiary Iron Sand Beds of Japan, (Reexamination on «hembergite»). J. Geol. Soc. Japan, 60, N 700, 1954.