- 1. Аполлонов В.Н. К вопросу изучения плео- 4. Сидоренко Г.А. Радиационная хроичных ореолов во флюорите. - Зап. Узбек. отд. ВМО, 1970, вып. 21.
- 2. Баранов Э.Н. О содержании урана во флюо- 5. Vocthen R. F. G., Geis J. F. Solid inklnsion ритах. - Геохимия, № 8, 1966.
- 3. Пшибрам К. Окраска и люминесценция минералов. М.: Изд-во иностр. лит., 1959.

УДК 549.086:553.48

минералогия. - Зап. ВМО, втор. сер., 1978, ч. 107, вып. 4.

in a fluorite variety from the Wolsendorfer Rauge (Bavaria, FRG). - Schweiz. miner. und petrogr. Mitt. 1977, vol. 57, N 1.

С.С. БОРИШАНСКАЯ, Р.А. ВИНОГРАДОВА

ДИАГНОСТИКА МИНЕРАЛОВ НИКЕЛЯ И КОБАЛЬТА **B OTPAЖEHHOM CBETE** (II)¹

При диагностике минералов в отраженном свете, наряду с определением таких оптических свойств, как цвет, относительное отражение, двуотражение, эффект поляризации и внутренние рефлексы, все большее значение приобретает количественное определение коэффициентов отражения (R, %) в видимой области спектра (в частности, при $\lambda = 580$ или 589 нм) и микротвердости (H, кгс/мм²). Величины R и H – ключевые при диагностике – получены для многих минералов [1-5] и используются при составлении таблиц для определения минералов в отраженном свете [6, 7].

В дополнение к предыдущей таблице для определения в отраженном свете минералов никеля и кобальта [8] составлена новая таблица, в которой использованы имеющиеся в литературе данные по отражению и микротвердости 66 минералов никеля и

Структурная и рентгенометрическая характеристика минералов никеля и кобальта, приведенных в определительной таблице

M	Координаты в определит. табл.			Пространственная	
минерал	R, %	<i>H</i> , кгс/мм ²	Сингония	группа	
1	2	3	4	5	
Аваруит	72	300	Куб.	$O_h^1 - Pm 3m$	
Аллоклазит	51,7	600	Ромб.; возможно, монокл.	$D_2^3 - P2_12_12$	
Аннабергит	7,5	80	Монокл.	$C_{2h}^3 - C_2/m$	
Аргентопентландит	35,9	167	Куб.	$O_h^s - Fm 3m$	
Биберит	4	40	Монокл.	$C_{2h}^s - P2_1/c$	
Блокит	35	480	Куб.	$T_h^6 - Pa3$	
Бонаккордит	17,6	1200	Ромб.	$D_{2h}^9 - Pbam$	
15		1			
Бравоит	49	750	Куб.	$T_h^6 - Pa 3$	
Брейтгауптит	51,8	563	Гексагон.	$D_{6h}^4 - P6_3/mmc$	
Брэгтит	44,8	1020	Тетрагон.	$C_{4h}^2 - P4_2/m$	

¹ Первая часть настоящей статьи будет опубликована в вып. 31. Ред.

кобальта. Предлагаемая определительная таблица (см. вкл.) составлена в системе координат "отражение (R, %) – микротвердость (H, кгс/мм²)" по принципу, предложенному С. Бауи и К. Тейлором [9]: по оси ординат в линейном масштабе отложены величины R, по оси абсиисс – в логарифмическом масштабе величины Н. При этом "точка" минерала отражает максимальную величину R при λ = 589 нм в воздухе и среднее значение Н. Минералы в таблице обозначены кружками. Для каждого минерала приведены название, формула, эффект поляризации, двуотражение, внутренние рефлексы, отношение к травлению стандартными реактивами и морфологические особенности. Эффект анизотропии отображен путем различного подчеркивания названия минерала в соответствии с силой этого эффекта. Минералы слабо анизотропные подчеркнуты точечным пунктиром, минералы отчетливо анизотропные – обычным пунктиром и резко анизотропные минералы подчеркнуты сплошной чертой. Минералы изотропные не подчеркнуты. Некоторые минералы обладают хорошо заметным двуотражением, которое в таблице показано в виде ΔR , а также и в числовом выражении. Наличие внутренних рефлексов у минералов показано пунктирной каймой вокруг кружка. Диагностическое травление минералов показано соответствующей штриховкой каждого из шести секторов, на которые разделен круг по числу реагентов, обычно применяемых в минераграфии. Если реагент не действует на минерал (травление ведется в течение 1 мин.), соответствующий сектор не заштриховывается, т.е. остается белым.

Если результаты травления неизвестны, кружок не разделяется на сектора. Морфологические особенности минералов изображены соответствующим знаком. Все это отражено в условных обозначениях к определительной таблице. Наиболее насыщенный минералами участок см. на фрагменте определительной таблицы (вкл.). При составлении таблицы использованы результаты личных наблюдений, а также сведения из монографических, справочных изданий [1-7, 10-13] и отдельных статей.

Параметры ячейки	Характерные линии порошкограммы	Ссылка на литературу	
6	7	8	
$a_0 = 3,59$	2,06(100); 1,783(30); 1,259(20); 1,073(40)	[3, 13, 14]	
$a_0 = 4,66$ $b_0 = 5,61$ $c_0 = 3,40$	2,750(10); 2,469(9); 2,401(5); 1,816(7) 2,750(10); 2,469(9); 2,401(5); 1,816(7)	[15-18]	
$a_{o} = 10,14$ $b_{o} = 13,31$ $c_{o} = 4,71$ $\beta = 104^{\circ}15'$	7,77(5); 6,62(7); 3,19(10); 2,998(9); 1,680(8); 1,649(8); 1,557(9); 1,077 (7)	[7]	
$a_0 = 10,56$	3,186(6); 2,032(10); 1,863(7); 1,069(2)	[19, 20]	
$a_0 = 14,13$ $b_0 = 6,55$ $c_0 = 11,00$ $\beta = 105^{\circ}05'$	4,87(100); 4,82(55); 3,76(75); 3,71(20); 2,725(25)	[7] -	
$a_0 = 5,991$	2,69(10); 2,45(9); 1,814(7)	[5, 13, 18]	
$a_0 = 9,213$ $b_0 = 12,229$ $c_0 = 3,001$	4,61(40); 2,548(100); 2,514(100); 1,898(50)	[21]	
$a_0 = 5,52 - 5,60$	2,79(10); 2,50(5); 1,687(8)	[5, 18, 22]	
$a_0 = 3,93$ $c_0 = 5,13$	2,84(10); 2,06(7); 1,965(6); 1,553(3); 1,074(3)	[1-3,18]	
$a_0 = 6,383$ $c_0 = 6,593$	2,92(10); 2,63(8); 1,75(8); 1,72(8); 1,43(8); 1,40(8)	[11, 23]	

Продолжение таблицы

_					
8	1	2	3	4	5
	Ваэсит	31	815	Куб.	$T_h^6 - Pa3$
	Вилламанинит	30	575	Куб.	$T_h^6 - Pa 3$
	Виллиамит	47,7	700	Куб.	$T^4 - P2_1 3$
	Виоларит	44	458	Куб.	$O_h^7 - Fd3m$
	Высоцкит	45	470	Тетрагон.	$C_{4h}^2 - P4_2/m$
				1.1	или $C_4^3 - P 4_2$
	Гаухекорнит	46	636	Гетрагон.	$D_{4h}^{1} - P 4mmm$
	Гексатестибиопа-	60	75	Гекс.	_
	никслит				
	Герсдорфит	46	554	Куб.	$T_{h}^{6} - Pa3$ или
					$T^4 - P2_1 3$; иногда псевдокубич. $P1$
	Гетерогенит	9	100	Рентгеноамор-	÷ •
				фен с кристал.	
				фазой стениерита	- (if)
	Гетерогент-2Н	23,5	640	Гекс.	$D_{6h}^* - P6_3/mmc$
	Глаукодот	51,8	911	Ромб.	$D_{2h}^{19} - Cmmm$
	Годлевскит	51	397	Ромб.	$D_{12}^{12} - Cmmm$
					211
	Поминити	42.9	210	Киб	05 5-2-2-
	даиингит	42,8	310	Kyū.	$O_h - Fm m$
	Джерфишерит	23,5	180	Куб.	
	Зигенит	46,7	464	Куб.	$O_h^7 - Fd3m$
	Имгрэит	52,4	215	Гексагон.	$D_{6h}^4 - P_{6s}^2 / mmc$
	Карролит	43	463	Куб .	$\Omega^{?} = Ed_{3m}$
	Каттьерит	34	1033	Куб.	$T_h^6 - Pa3$
	Киткант	65	110	Триг.	$D_{2} = P_{3}m_{1}$
				•	- sa
	Клиносаффлорит	55	720	Монокл.	$C_{2h}^{\mathfrak{s}} - P2_1/n$
	Кобальтин	53	1100	Куб.	Т ⁶ _h – РаЗ нли
					$T^4 - P_{2_1}3;$ иногда
	Коринит	47 3	425	Ky6	Τ ⁶ _ Pπ2
,		77,5	723	1.90.	h - 105
	Костибит	45,5	781	Ромб.	$C_{2y}^{1} = Pmn 2$
					20 1

6	7	8 -
$a_0 = 5,668$	2,83(10); 2,00(5); 1,707(8); 1,091(6)	[18, 22]
$a_0 = 5,59 - 5,66$		[24]
$a_0 = 5.878$	2.62(10); 2,40(8); 1,770(7); 1,630(5); 1,570(5)	[11, 25]
$a_0 = 9,46 - 9,53$	2,85(10); 2,36(5); 1,820(6); 1,674(8)	[5, 18, 26]
$a_0 = 6,371$ $c_0 = 6,540$	2,91(10); 2,86(10); 2,61(8); 1,717(8); 1,185(8)	[27]
$a_0 = 14,58(7,29)$ $c_0 = 10,80(5,40)$	4,34(6); 2,79(10); 2,39(7); 2,30(7); 1,861(6)	[28]
$a_0 = 3,98$ $c_0 = 5,35$	2,890(10); 2,109(8); 1,990(7); 1,108(6)	[21]
$a_0 = 5,66 - 5,72$	2,51(9); 2,30(8); 1,710(10); 1,508(7); 1,001(6)	[5, 18, 29, 30]
-	Рентгенограмма сходна с таковой стениерита	[31, 32]
$a_0 = 2,855$ $c_0 = 8,805$	4,39; 2,472; 2,158; 1,644; 1,236	[33]
$a_0 = 6,68$ $b_0 = 4,82$ $c_0 = 5,74$	2,72(10); 2,45(8); 2,43(7); 1,828(9); 1,126(6); 1,006(6)	[3, 5, 11]
$a_0 = 9,180$ $b_0 = 11,263$ $c_0 = 9,457$	3,28(5); 2,85(10); 1,803(9); 1,795(8); 1,654(8)	[34]
$a_0 = 9,697$	5,71(80); 3,06(80); 2,435(100); 1,869(90); 1,730(70);	[21]
$a_0 = 10,26 - 10,46$	10,34(5); 5,97(5); 3,118(5); 2,285(7); 2,372(6); 1,828(10)	[35, 36]
<i>a</i> ₀ = 9,43	2,86(10); 2,36(7); 1,815(6); 1,670 (8)	[18, 37]
$a_0 = 3,97$ $c_0 = 5,36$	3,10(3); 2,88(10); 2,09(3); 1,964(5); 1,588(5)	[14, 38]
$a_0 = 9,477$	2,86(10); 2,37(5); 1,825(6); 1,674(8); 0,994(5)	[4, 5, 12, 13, 18]
$a_0 = 5,523$	2,75(10); 2,46(4); 2,249(3); 1,664(9); 1,065(7)	[18, 22]
$a_0 = 3,716$ $c_0 = 5,126$	2,729(100); 2,007(45); 1,510(35)	[4, 39]
$a_0 = 5,07$ $b_0 = 5,86$ $c_0 = 3,16$ $\beta = 90^{\circ}56'$	2,681(53); 2,670(45); 2,534(100); 2,447(45); 2,438(62)	[40, 41]
$a_0 = 5,56 - 5,58$, 2,78(5); 2,48(10); 2,27(7); 1,676(9); 1,488(5); 0,985(7)	[3, 5, 18, 29]
<i>a</i> ₀ = 5,695	2,55(10); 2,33(9); 1,71(9); 1,57(7); 1,51(8); 1,09(7); 1,002(7)	[3, 5, 11]
$a_0 = 3,603$ $b_1 = 4,868$	4,85(5); 2,90(6); 2,596(10); 2,503(9); 1,908(8)	[42]
c = 5.838		

	1		
	3	4	5
65,7	630	Куб.	$T^4 - P2_1 3$
48,2	820	Гекс.	D ⁴ _{6h} – P6 ₃ /mmc
47,7	530	Куб.	$O_h^7 - Fd3m$
47	57	Тетрагон.	$D_{4h}^{\dagger} - P4/nmm$
51,7	400	Ромб.	$D_{2h}^{12} - Pmnn$
51,5	704	Тетрагон.	$D_{4}^{4} - P4_{1}2_{1}2$
65,7	161	Тригон.	$D_{3d}^3 - P\overline{3}m1$
59,7	235	Тригон.	$C_{3v}^s - R3m$
39,5	212	Ромб.	$D_{2h}^{16} - Pmcn$
4	45	Ромб. (псевдотетр.)	$D_2^4 - P2_12_12_1$
55	450	Гекс.	D ⁴ _{6h} – P6 ₃ /mmc
64	200	Куб.	$O_{h}^{s} - Fm 3m$
57,0	560	Куб.	$T_h^s - Im 3$
60	479	Ром б .	$D_{2h}^{11} - Pnnm$
48,4	1069	Ромб.	$D_{2h}^{1s} - Pbca$
61,3	780	Ромб.	$D_{2h}^{15} - Pbca$
40			
48	125	Ромб.	$C_{2v}^1 - Pmm 2$
54	230	Куб.	$O_h^s - Fm 3m$
55	350	Куб.	$O_h^s - Fm 3m$
35,8	142	Куб.	$O_h^s - Fm3m$
	2 65,7 48,2 47,7 47 51,7 51,5 65,7 59,7 39,5 4 55 64 57,0 60 48,4 61,3 48 54 55 5	2 3 65,7 630 48,2 820 47,7 530 47 57 51,7 400 51,5 704 65,7 161 59,7 235 39,5 212 4 45 55 450 64 200 57,0 560 60 479 48,4 1069 61,3 780 48 125 54 230 55 350 35,8 142	2 3 4 65,7 630 Куб. 48,2 820 Гекс. 47,7 530 Куб. 47 57 Тетрагон. 51,7 400 Ромб. 51,5 704 Тетрагон. 65,7 161 Тригон. 59,7 235 Тригон. 39,5 212 Ромб. 4 45 Ромб. 64 200 Куб. 57,0 560 Куб. 60 479 Ромб. 61,3 780 Ромб. 48 125 Ромб. 48 125 Ромб. 54 230 Куб. 55 350 Куб.

	 6	7	8
1	$a_0 = 5,794 - 5,786$	2,897(6); 2,593(10); 2,365(8); 1,746(8); 1,548(6); 1,024(8)	[43, 44]
-2	$a_0 = 3,538$ $c_0 = 5,127$	2,631(10); 1,966(9); 1,770(8); 1,493(4); 1,470(3)	[37]
	a ₀ = 9,43	2.83(10); 2,36(7); 1,815(6); 1,670(8); 0,988(5)	[3, 4, 18]
	$a_0 = 3.676$ $c_0 = 5.032$	5,03(10); 2,975(6); 2,301(6); 1,803(5); 1,134(2); 1,055(2)	[1, 2]
	$a_0 = 3,866$ $b_0 = 5,305$	2,805(10); 2,703(8); 2,066(6); 1,843(4)	[45]
	$c_0 = 6,289$ $a_0 = 6,858$ $c_2 = 21.75$	2,69(9); 2,01(10); 1,713(10); 1,212(6); 1,083(5)	[1-3, 9, 18]
	$a_{0} = 3,843$ $c_{0} = 5,265$	2,82(10); 2,06(5); 1,918(5); 1,549(6)	[1, 5, 18]
	$a_0 = 9.62$ $c_0 = 3.16$	2,75(10); 2,50(6); 2,22(6); 1,859(10)	[18, 34]
	$a_0 = 3.52$ $b_0 = 5.97$ $c_0 = 5.16$	2,59(90); 2,55(60); 1,97(100); 1,301(50); 1,047(60); 0,927(60)	[14, 46]
	$a_{o} = 11.8$ $b_{o} = 12.0$ $c_{o} = 6.81$	5,3(6); 4,20(10); 2,85(4); 2,65(3)	[7]
	$a_0 = 3,609$ $c_0 = 5,019$	2,66(10); 1,961(9); 1,811(8); 1,071(4)	[1, 5, 18]
	$a_0 = 3,524$	2,03(100); 1,76(42); 1,25(21)	[4, 13, 14, 47]
	<i>a</i> ₀ = 8,314	2,628(10); 2,220(7); 1,860(8); 1,691(7); 1,427 (8); 1,092 (8)	[43, 48]
	$a_0 = 5,162$ $b_0 = 6,303$ $c_0 = 3,839$	2,764(7); 2,699(6); 2,027(6); 1,844(7)	[49]
	$a_{0} = 5,764$ $b_{0} = 5,962$ $c_{0} = 11,635$	5,813(8); 2,826(7); 2,654(7); 2,555(10); 2,035(8); 1,852(8)	[49]
	$a_0 = 5,75$ $b_0 = 5.82$ $c_0 = 11.428$	2,54(8); 2,51(10); 2,36(6); 1,817(5); 1,731(6); 1,068(5)	[9, 18, 50]
	$a_0 = 4.03$ $b_0 = 5.53$ $c_0 = 5.73$	4,02(7); 2,86(10); 2,34(9); 1,807(6); 1,650(7)	[18, 37]
	$a_0 = 10,07$	3,04(6); 1,940(4); 1,781(10); 1,027(5)	[18, 51]
	a _o = 9,928	2,97 (100) ; 1,91 (60) ; 1,75 (100) ; 1,29 (80)	[37, 52]
	$a_0 = 10,38$	3,129(10); 1,833(10); 1,058(8) .	[53]
	a ₀ = 9,48	2,87(10); 2,37(6); 1,825(5); 1,678(8); 0,994(5)	[4, 5, 18]

Окончание таблицы

1	2	3	4	5
Раммельсбергит	59,6	655	Ромб.	$D_{2h}^{12} - Pnnm$
Саффлорит	54	590	Ромб.	$D_{2h}^{12} - Pnnm$
Скуттерудит	55	744	Куб.	$T_h^s - Im 3$
Смайтит	46	388	Тригон. (возможно, гекс. или	$D_{3d}^{s} - R\overline{3}m$
		coinil.	монокл.)	
Стениерит	9	300	Тригон.	$D_{3d}^{s} - R\overline{3}m$
Тиррелит	44	436	Куб.	$O_h^{\gamma} - Fd3m$
Треворит	24	917	Куб.	$O_h^7 - Fd3m$
Уайрауит	54	260	Куб.	$O_h^9 = Im 3m$
Ульманнит	45	525	Куб.	$T^4 - P2_1 3$
Хизлевудит	57	250	Тригон. (псевдо- кубич.)	$D_{3}^{7} - R 32$
Шмальтин-	55,5	525	Куб.	$T_h^s - Im 3$
Эритрин	10	110	Монокл.	$C_{2h}^3 - c2/m$
		0.0241		and the second second
Кр	оме того на ф	рагменте опред	целительной табл.	. (вкл.)
Вестервелдит	51,4	750	Ромб.	$D_{2h}^{16} - Pmcn$
Маякит	55,2	520	Гексагон.	$D_{3h}^3 - P\overline{6}2m$
Флатиорит	45.3	446	Ky6	07 Ed2m

В последнее время минераграфические исследования все чаще сочетаются с микрорентгеновским анализом — получением дебаеграммы минерала из микрообъема вещества (порошок минерала выцарапывается из аншлифа или металлической иглой, или алмазной пирамидкой на микротвердометре ПМТ-3 и закатывается в шарик из резинового клея, который снимается в камере РКД-57 или РКУ-114 в соответствующем рентгеновском излучении). Использование рентгенометрических характеристик минерала параллельно с изучением его оптических свойств оказалось весьма эффективным при диагностике минералов в отраженном свете. В связи с этим в качестве дополнения к определительной табл. предлагается таблица, в которой для тех же минералов приводятся структурные и рентгенометрические данные (см. с. 32).

12	6	7	8	
-	$a_0 = 4,79$ $b_0 = 5,79$ $c_0 = 3,54$	1 2,84(5); 2,56(10); 2,49(8); 1,877(7)	[3, 5, 18]	
	$a_0 = 5,175$ $b_0 = 5,950$ $c_0 = 3,015$	2,60(10); 2,57(10); 2,38(10); 1,862(7); 1,654(7)	[1, 5, 18]	
	$a_0 = 8,213$	2,600(10); 2,195(8); 1,837(8); 1.677(6); 1,611(8); 1,078(7)	[3, 48]	
	$a_0 = 3,47$ $c_0 = 34,4$	2,56(6); 2,26(6); 1,979(7); 1,897(8); 1,732(10); 1,427(6)	[54]	
	$a_0 = 2,86$ $c_0 = 13,20$	4,55(5); 2,36(5); 1,84(3); 1,45(4); 1,38(3)	[7, 31, 32]	
	$a_0 = 10,005$	3,03(6);2,89(7);2,50(9);1,929(1);1,768(10)	[18, 55]	
	$a_0 = 8,32$	2,50(10): 1,598(5); 1,473(7); 1,087(4)	[18, 56]	
	$a_0 = 2,86$		[57]	
	$a_0 = 5,92 - 5,98$	2,64(10); 2,40(6):1,774 (7);1,573(5)	[1, 3-5, 18]	
	$a_0 = 5,742$ $c_0 = 7,139$	4,11(5); 2,88(9); 2.04(5); 1.828(10); 1,817(10); 1,661(8)	[3, 18, 58]	
	$a_0 = 8,236 - 8,294$	2,585(10); 2,192(8); 1,841(10); 1,677(9); 1,608(10); 1,409 (9) ; 1,080 (8)	[3, 5, 59]	
	$a_0 = 10.20$ $b_0 = 13.37$ $c_0 = 4.74$ $\beta = 105^{\circ}01'$	8,52(4); 6,85(7); 3,23(0); 3,010(10); 2,729(8); 2,319 (7); 1,679(6); 1,042(6)	[7]	
		Кромс того в табл. 1,а:		
	$a_0 = 3.45$ $b_0 = 5.97$ $c_0 = 5.33$	2,991(5); 2,604(8); 2,083(2); 1,988(4); 1,725(3)	[60]	
	$a_0 = 6,066$ $c_0 = 7,20$	2,65(10); 2,30(5); 2,19(7); 1,988(10)	[61]	
	$a_0 = 9,520$	2,87(ср.); 2,39 (ср.); 1,83 (сильн.); 1,68 (он.сил.); 1,37 (ср.); 1,24 (ср.)	[62]	

ЛИТЕРАТУРА

- Безсмертная М.С., Чвилева Т.Н., Агроскин Л.С., Бочек Л.И. и др. Определение рудных минералов в полированных шлифах по спектрам отражения и твердости. М.: Недра, 1973.
- 2. Безсмертная М.С., Чвилева Т.Н. Определитель рудных минералов в отраженном свете. М.: Недра, 1976.
- Вяльсов Л.Н. Спектры отражения рудных минералов (научно-методическое пособие). М.: ИГЕМ АН СССР, 1973.
- 4. Uytenbogaardt W., Burke E.A. Tables for microscopic-identification of ore minerals. – Elsevier publisling Company, Amsterdam, London, New York, 1971.

- 5. Лебедева С.И. Микротвердость минералов. М.: Изд-во АН СССР, 1963; 1977.
- 6. Исаенко М.П., Боришанская С.С., Афанасьева Е.А. Определитель главнейших минералов руд в отраженном свете. М.: Недра, 1972; 1978.
- 7. Афанасьева Е.А., Исаенко М.П. Определитель гипергенных минералов окисленных сульфидных руд в отраженном свете. М.: Недра, 1974.
- Боришанская С.С., Виноградова Р.А. Диагностика минералов никеля и кобальта в отраженном свете (1). В кн.: Новые данные о минералах СССР. М., Наука, 1982, вып. 30.
- 9. Бауи С.Х.У., Тейлор К. Определитель рудных

минералов. – В кн.: Труды 2-ой международной конференции по мирному использованию атомной энергии. М.: Атомиздат, 1959, т. 8, вып. 2.

- Рамдор П. Рудные минералы и их срастания. М.: Изд-во иностр. лит., 1962.
- 11. Минералы. Справочник. М.: Изд-во АН СССР, 1960, т. 1.
- Юшко С.А. Методы лабораторного исследования руд. М.: Недра, 1966.
- Юшко С.А., Юшко-Захарова О.Е., Лебедева С.И., Максимюк И.Е. Диагностические свойства рудных минералов. М.: Недра, 1975.
- 14. Strunz H. Mineralogische Tabellen. Leipzig, 1970.
- 15. Кругов Г.А., Виноградова Р.А., Рудашевский Н.С. Аллоклазит в рудах никель-кобальтовых месторождений района Бу-Аззер (Марокко). – Изв. АН СССР. Сер. геол., 1976, № 12.
- Kingston P.W. On alloclasite, a Co-Fe-sulpharsenide. - Canad. Miner., 1971, vol. 10, pt. 5.
- Scott J.D., Nowacki W. The crystal structure of alloclasite, CoAsS, and the alloclasite - cobaltite transformation. - Canad. Miner., 1976, vol., 14, N 4.
- Berry L.G., Thompson R.M. X-ray powder data for ore minerals: the Peacock atlas. – Geol. Soc. Amer., N.Y., 1962, vol. 85.
- 19. Шишкин Н.Н., Митенков Г.А., Михайлова В.А., Рудашевский Н.С. и др. Богатая серебром разновидность пентландита. – Зап. Всесоюз. минер. об-ва, 1971, № 2.
- 20. Рудашевский Н.С., Митенков Г.А., Карпенков А.М., Шишкин Н.Н. Серебросодержащий пентландит Аg(Fe, Ni)₈S₈ самостоятельный минеральный вид аргентопентландит. Зап. Всесоюз. минер. об-ва, 1977, вып. 6.
- Яковлевская Т.А. Новые минералы. XXXI. Зап. Всесоюз. минер. об-ва, 1977, вып. 1.
- 22. Demirsoy S. Untersuchungen über den Einfluss der chemischen Zusammensetzung auf die spektralen Reflexionsfunktionen und Microeindruckhärten im System FeS₂-NiS₂-CoS₂, an Zonen eines natürlichen Bravoit-Kristalls. – Neues Jahrb. Mineral. Monatsh., 1969, N 7.
- Cabri I.J. The mineralogy of the platinum group elements. – Mineral. Sci. Engng., 1972, vol. 4, N 3.
- 24. Ypma P.J.M., Evers H.J., Woensdregt C.F. Mineralogy and geology of the Providencia mine (Leon, Spain), type-locality of villamaninite. – Neues Jahrb. Mineral. Monatsh., 1968, N 6.
- Cabri L.J., Harris D.C., Stewart J.M., Rowland J.E. Willyamite redefined. - Proc. Austral. Inst. Mining and Met., 1970, N 233.
- 26. Виноградова Р.А., Округин В.М., Свешникова О.Л., Сошкина Л.Т. Виоларит из медноникелевого месторождения Шануч на Камчатке. – В кн.: Новые данные о минералах СССР. М.: Наука, 1978, вып. 27.
- Генкин А.Д., Звягинцев О.Е. Высоцкит новый сульфид палладия и никеля. – Зап. Всесоюз. минер. об-ва, 1962, вып. 6.
- Gait R.J., Harris D.C. Hauchecornite antimonian, arsenian and tellurian varieties. – Canad. Miner., 1972, vol. 11, N 4.
- Bayliss P. X-ray data, optical anisotropism and thermal stability of cobaltite, gersdorffite and ullmannite. – Mineral. Mag., 1969, vol. 37, N 285.
- 30. Виноградова Р.А., Еремин Н.И., Крутов Г.А. Герсдорфит из месторождений района Бу-Аззер (Марокко). – Вестник МГУ. Сер. геол., 1974, № 5.

- 31. Яхонтова Л.К. Минералогия и генезис зоны окисления арсенидных никель-кобальтовых месторождений (на примере Ховуаксинского рудного поля). – Автореф. докт. дисс. М.: Изд-во МГУ, 1972.
- 32. Deliens M. Les oxydes hydrates de cobalt du Shaba meridional (Republique du Zaire). – Ann. Mus. roy Afr. cent., 1974, N 76.
- Deliens M., Coethals H. Polytypism of heterogenite. – Miner. Mag., 1972, v. 39, N 302.
- 34. Кулагов Э.А., Евстигнеева Т.Л., Юшко-Захарова О.Е. Новый сульфид никеля годлевскит. Геол. рудн. месторожд., 1969, т. 11, № 3.
- 35. Добровольская М.Г., Цепин А.И., Вяльсов Л.Н. и др. Об изоморфизме железа, никеля и меди в джерфишерите. В кн.: Изоморфизм в минералах. М., Наука, 1975.
- 36. Белов Н.В. Очерки по структурной минералогии. XXVII. 177. Джерфишерит К₆ Mg(Fe, Cu)_{2.4} S_{2.6} Cl Минерал. сб. Львов. ун-та, 1976, № 30, вып. 1.
- 37. Petruk W., Harris D.C., Stewart J.M. Langisite, a new mineral and the rare minerals cobaltpentlandite, siegenite, parkerite and bravoite from the Langis mine. - Canad. Miner., 1969, vol. 9, pt. 5.
- 38. Юшко-Захарова О.Е. Новый минерал теллурид никеля. Докл. АН СССР, 1964, т. 154, № 3.
- Hakli T.A., Vuorelainen Y., Sahama Th.G. Kitkaite (NiTeSe), a new mineral from Kuusamo, Northern Finland. – Amer. Miner., 1965, vol. 50, N 5-6.
- 40. Виноградова Р.А., Еремин Н.И., Брызгалов И.А. Природный диарсенид кобальта. – Геол. рудн. месторождн., 1971, № 2.
- Radcliffe D., Berry L.G. Clinosafflorite: a monoclinic polymorphe of safflorite. - Canad. Miner., 1971, vol. 10, N 5.
- 42. Cabri L.J., Harris D.C., Stewart J.M. Costibite (CoSbS), a new mineral from Broken Hill, N.S.W., Australia. – Amer. Miner., 1970, vol. 55, N 1–2.
- 43. Виноградова Р.А., Рудашевский Н.С., Будько И.А. и др. Крутовит – новый кубический диарсенид никеля. – Зап. Всесоюз. минер. об-ва, 1976, ч. 105, вып. 1.
- 44. Виноградова Р.А., Рудашевский Н.С., Бочек Л.И., Будько И.А. Первая находка крутовита в СССР. – Докл. АН СССР, 1976, т. 230, № 4.
- 45. Thorpe R.J., Harris D.C. Mattagamite and tellurantimony, two new telluride minerals from Mattagami Lake Mine, Mattagami area, Quebec. - Canad. Miner., 1973, vol. 12, N 1.
- 46. Махмудов А.И., Лапутина И.П. Первая находка моддерита в СССР. – Зап. Всесоюз. минерал. об-ва, 1977, ч. 106, № 3.
- 47. Рамдор П. О широко распространенном парагенезисе рудных минералов, возникающих при серпентинизации. – Геол. рудн. месторожд., 1967, т. 9, № 2.
- 48. Рудашевский Н.С., Шишкин Н.Н., Будько И.А. и др. Крайний никелевый член изоморфного ряда CoAs₃-NiAs₃. Зап. Всесоюз. минерал. об-ва, 1975, ч. 104, № 2.
- 49. Cabri L.J., Harris D.C., Stewart J.M. Paracostibite (CoSbS) and nisbite (NiSb₂), new minerals from the Red Lake area Ontario, Canada. – Can. Miner., 1970, vol. 10, N 2.
- 50. Виноградова Р.А., Боришанская С.С., Ерёмина Н.И., Вяльсов Л.Н. Парараммельсбергит из Баракульского месторождения (первая

40

находка в СССР). – Зап. Всесоюз. минерал. о-ва 1974, ч. 103, выш. 1.

- 51. Митенков Г.А., Шишкин Н.Н., Михайлова В.А. и др. Новые данные о пентландите. – В кн.: Минералы и парагенезисы минералов рудных месторождений. Л.: Наука, 1973.
- 52. Stumpfl E.F., Clark A.M. A natural occurence of Co₉S₈, indentified by X-ray microanalysis. – Neues Jahrb. Mineral., Monatsh., 1964, H. 8.
- 53. Митенков Г.А., Будько И.А., Михайлова В.А. и др. Медистый пентландит в рудах Талнахского месторождения. – Зап. Всесоюз. минер. об-ва, 1970, ч. 99, вып. 6.
- Nickel E.H., Harris D.C. Reflectance and microhardness of smythite. – Amer. Miner., 1971, vol. 56, N 7-8.
- 55. Harris D.C. New data of tyrrellite. Canad. Miner., 1970, vol. 10, N 4.
- 56. Waal de S.A. Nickel minerals from Barberton, South Africa. V. Trevorite, redescribed. – Amer. Miner., 1972, vol. 57, N 9-10.
- 57. Challis G.A., Long J.V.P. Wairauite-a new co-

balt-iron mineral. – Miner. Magaz., 1964, vol. 33, N 266.

- 58. Кулагов Э.А., Изоитко В.М., Митенков Г.А. Хизлевудит в сульфидных медно-никелевых рудах Талнахского месторождения. – Докл. АН СССР, 1967, т. 176, № 4.
- 59. Годовиков А.А. О зависимости параметра решетки минералов группы скуттерудита от химического состава. – Тр. Минерал. музея АН СССР, 1959, вып. 10.
- 60. Oen J.S., Burke E.A.J., Kieft C., Westerhof A.S. Westerveldite, (Fe, Ni, Co)As, a new mineral from La Gallega, Spain. – Amer. Miner., 1972, vol. 57, N 3-4.
- 61. Генкин А.Д., Евстигнеева Т.Л., Тронева Л.Н., Вяльсов Л.Н. Маякит PdNiAs – новый минерал из медно-никелевых сульфидных руд. – Зап. Всесоюз. минерал. об-ва, 1976, ч. 105, вып. 6.
- 62. Craig J.R., Carpenter A.B. Fletcherite, Cu(Ni, Co)₂S₄, a new thiospinel from the Viburnum Trend (new lead belt), Missouri. – Econ. Geol., 1977, vol. 72, N 3.

УДК 548.5

Н.А. БУЛЬЕНКОВ, Е.С. ЛЕВШИН, Х.И. МАКЕЕВ

ОСОБЕННОСТИ ДИСЛОКАЦИОННОЙ СТРУКТУРЫ КРИСТАЛЛОВ КОРУНДА, ВЫРАЩЕННЫХ МЕТОДОМ ЧОХРАЛЬСКОГО

Закономерное распределение дислокаций в кристаллах, часто называемое дислокационной структурой, определяется структурными особенностями и анизотропией упругих свойств их матриц, проявляющимися в виде определенных систем скольжения дислокаций, а также специфичными для каждого метода выращивания тепловыми условиями, от которых зависит распределение термических напряжений в объеме кристалла. Дислокационная структура весьма определенно связана с распределением в кристалла. Дислокационная структура весьма определенно связана с распределением в кристалле термических напряжений, которые способны вызвать пластическую деформацию по определенным системам скольжения, характерным для данного кристалла. Таким образом, в кристаллах с плотностью дислокаций, обеспечивающей рентгенотопографическую идентификацию их параметров и, следовательно, с достаточно малыми термическими напряжениями, для проявления которых ориентационный фактор Шмида [1] является решающим, вполне возможно определить характер распределения скалывающих термических напряжений, а также преимущественные направления отвода тепла в объеме кристалла на разных стадиях роста.

Такая постановка вопроса применительно к выращиванию относительно совершенных кристаллов тугоплавких веществ вполне уместна, так как изучать непосредственно (с измерениями температуры, градиентов [2]) тепловые особенности этих процессов практически не представляется возможным.

Для решения поставленной таким образом задачи необходимо последовательно выполнить следующие четыре этапа:

1) определить основные системы скольжения с учетом структурных особенностей и анизотропии упругих свойств матрицы;

2) теоретически определить зоны предпочтительных ориентаций приведенных термических напряжений, способных вызвать образование дислокаций в основных системах скольжения, при заданном направлении выращивания;

 рентгенотопографически выявить дислокационную структуру, определить параметры дислокаций в определенных сечениях и установить соответствие наблюдаемой дислокационной структуры с теоретически установленным распределением зон ориентации термических напряжений, в которых наиболее вероятно образование дислокаций с требуемыми параметрами;

4) по установленной степени соответствия теоретического и экспериментального распределения дислокаций в кристаллах определить преобладающие ориентации скалывающих термических напряжений и общую направленность тепловых потоков в кристалле.