УДК 549.74+553.2(470.21)

В.В.Субботин, А.В.Волошин, Я.А.Пахомовский, Ю.П.Меньшиков

ФАТЕРИТ ИЗ КАРБОНАТИТОВ ВУОРИЯРВИ (Кольский полуостров)

Гексагональная полиморфная модификация карбоната кальция - фатерит в естественных геологических условиях встречается крайне редко. До недавнего времени природный фатерит был известен лишь в Северной Ирландии в продуктах изменения гидрогелевых псевдоморфоз по ларниту [9]. Имеются упоминания о находках фатерита в залеченных тканях растрескавшихся раковин гастропод и в пещерных отложениях [4]. В 1986 г. В.В.Ершовым [2] впервые в СССР получена рентгенограмма порошка природного фатерита из солевых отложений нефтедобывающей скважины. Во всех упомянутых случаях образование фатерита связано с приповерхностными экзогенными процессами.

При изучении парагенетических ассоциаций карбонатных минералов в карбонатитах щелочно-ультраосновного массива Вуориярви, Кольский полуостров, фатерит был обнаружен в минерализованных пустотах жилы бербанкит-кальцитдоломитового карбонатита, секущего флогопитизированный пироксенит. Жила пересечена буровой скважиной на глубине около 200 м от дневной поверхности. Пустоты с фатеритом локализованы в приконтактовой части жилы, резко обогащенной бербанкитом. Вторичные изменения минералов, слагающих карбонатит и вмещающую породу, которые могли бы быть связаны с процессами выветривания в приповерхностных условиях или с тектоническими проявлениями, полностью отсутствуют. Не вызывает сомнения образование фатерита из остаточных гидротермальных растворов после кристаллизации основных породообразующих минералов карбонатита. Таким образом, фатерит впервые обнаружен в связи с глубинными эндогенными породами.

В минерализованных пустотах происходила кристаллизация целого ряда поздних карбонатов. Последовательность их образования установлена по взаимному нарастанию минералов друг на друга. Следы растворения каких-либо минеральных фаз полностью отсутствуют, что свидетельствует о последовательной кристаллизации минералов из единого гидротермального раствора. Первыми образовались уплощенно-призматические желтые кристаллы баритокальцита, на которые нарастали дисковидные кристаллы эвальдита дымчатого цвета. В дальнейшем кристаллизовался доннеит, образующий серебристо-белые корочки, состоящие из сферолитов скорлуповато-чешуйчатого строения, которые покрывались сферолитами фатерита (рис. I). Завершился гидротермальный процесс образованием скрытокристаллического молочно-белого кальцита. Размеры выделений всех перечисленных минералов незначительные и не превышают нескольких миллиметров. Лишь поздний кальцит нередко образует заметные скопления, целиком заполняя минерализованные полости.

Фатерит образует шарообразные сферолиты тонкопластинчатого строения (рис. 2), а также отдельные розетки (или "розы"; рис. 3). Во всех случаях для него характерно упорядоченное расположение отдельных пластин-индивидов в пределах каждого сферолита, как и в сферолитах синтетического фатерита $\int 7 J$. По этому признаку он легко отличается от сферолитов доннеита, отдельные индивиды которых, во-первых, сильно изогнуты, во-вторых, ориентированы незакономерно (см. рис. 2). Тонкая пластинчатость индивидов, составляющих сфалериты фатерита, присуща только их внешним зонам, внутренние участки сферолитов сложены плотным тонкокристаллическим агрегатом.

Г.А.Ильинский [3], описывая "параморфозы кальцита по фатериту" из доломитовых карбонатитов Вуориярви, скорее всего имел дело с псевдоморфозами кальцита по эвальдиту, поскольку широкое распространение эвальдита

Рис. 2. Сферолиты фатерита (Ф) и доннеита (Д) в плоскости растворения в бербанките. РЭМ, увел. 64

Рис. 3. "Роза" фатерита на баритокальците. РЭМ, увел. 280

Рис. 4. ИК-спектры минералов I – фатерит; 2 – кальцит; 3 – арагонит; 4 – баритокальцит

Рис. 5. Строение зональных карбонатных корочек из миндалин дайки пикритового порфирита

Растровые картины участка аншлифа в отраженных электронах и характеристическом излучении кальция: I - шортит; 2 - кальцит; 3-5 - "фатерит", зоны роста; 6 - "арагонит"

в кристаллах именно этой морфологии (уплощенные гексагональные дипирамиды и их параллельные сростки) установлено нами в этих карбонатитах в настоящее время. Напротив, фатерит обнаружен лишь в форме сферолитов. Эта форма наиболее характерная и для синтетического фатерита / 7,10/7.

Цвет фатерита матово-белый, реже наблюдались прозрачные бесцветные сферолиты, блеск стеклянный, твердость 2,5-3. Оптические свойства изучены в иммерсионных препаратах. Минерал одноосный, положительный, п = I,556, п = I,659. Повышенные значения показателей преломления фатерита в сравнений с синтетическим [I,IO] объясняются, по-видимому, особенностями химического состава минерала.

Таблица I

Химический состав (в мас.%) фатерита и ассоциирующих с ним минералов

Компо- ненты	Вуориярви			Хибины					
	I	2	3	4	5	6	7	8	9
Na ₂ 0	2,19	3,32	2,04	0,51	0,51	0,28	I,I7	21,93	0,48
MgŪ	0,81	-	0,77	-	-	-	0,05	-	-
Сао	52,00	5,75	14,55 [×]	44,58	44,60	43,46	55,16	36,52	45,35
SrO	0,44	4,09	I4,65	0,42	0,49	0,46	0,63	0,40	0,42
Ba0	0,24	36,14	23,03	-	-	-	-	-	
La ₂ 03	0,23	2,33	3,82	-	-	-	-	-	-
Ce ₂ 0 ₃	0,61	4,53	4,49	-	-	-	0,06	-	-
Pr ₂ 0 ₃	-	0,27		-	-	-	-	-	-
Nd ₂ 0 ₃	-	2,98	0,51	- -	-	-	-	-	-
Sm ₂ O ₃	-	0,35	-	-	-	-	-	-	- 1
Gd ₂ 0 ₃	-	0,25	-	-	-	-	-	-	-
Сумма	56,52	60,01	63,86	45,5I	45,60	44,20	57,07	58,85	46,25

^х Содержание CaO в доннеите завышено за счет захвата участков фатерита при зондировании расфокусированным электронным пучком (см. рис. I).

Примечание. I - фатерит; 2 - баритокальцит; 3 - доннеит; 4-6 - "фатерит", зоны роста (на рис. 5 зоны 3-5 соответственно); 7 - кальцит (зот на 2); 8 - шортит (зона I); 9 - "арагонит" (зона 6).

Исследование ИК-спектра фатерита (рис. 4) показало его идентичность ИКспектру синтетического аналога $\int I2 J$. Этим методом фатерит нередко диагностируется среди многочисленных простых и сложных карбонатных минералов. Диагностическими являются характеристические частоты v_3 , где для фатерита характерен дублет I480 и I420 см^{-I}, и_I v_4 - 750 см^{-I}. Характеристические частоты v_1 и v_2 (I090, 870, 850 см^{-I}) совпадают с частотами целого ряда карбонатов, а слабые полосы I070 и 830 см^{-I}, по которым можно диагностировать фатерит, при обычных условиях съемки почти не разрешаются.

Химический состав фатерита и некоторых сопутствующих минералов (табл.І) изучен на микроанализаторе MS-46 "Самеса". Растровые картины участка аншлифа, в котором определены составы минералов, показаны на рис. І.

К сожалению, в опубликованной литературе отсутствуют данные по химическому составу природного фатерита. В нашем случае минерал содержит ряд примесей, каждая из которых или их комбинации могут являться стабилизирующими для этой крайне неустойчивой структурной модификации CaCO₃. Особого упоминания заслуживает примесь редкоземельных элементов в фатерите в связи с продположением,что фатерит - конечный кальциевый член ряда редкоземельных фторкарбонатов: бастнезит-паризит-рентгенит-синхизит-...-фатерит \pounds 5, 6,II _7.

178

Таблица 2

Межплоскостные расстояния и параметры элементарной ячейки фатерита (в Å)

		1		2				3	
Ι	d изм	d выч	hkl	I	d		hk1	Ι	d
3	4,20	4,230	004	20	4,23	004		3	4,19
8	3,54	3,570	IIO	55	3,57	110		8	3,55
10	3,27	3,290	II2	100	3,30	II2		10	3,28
10	2,714	2,727	114	95	2,73	II4	203	I0	2,718
		2,709	203						
I	2,303	2,312	211	6	2,32	211		2	2,319
I	2,261	2,282	205	2	2,29	205		4	2,259
I	2,220	2,213	116	6	2,22	116		I	2,207
I	2,143	2,157	213	4	2,16	213		I	2,146
2	2,106	2,116	008	15	2,117	008		2	2,108
8	2,054	2,059	300	60	2,065	300		9	2,057
4	I,848	I,85I	304	25	I,858	304		4	I,850
9	I,8II	I,820	118	70	I,823	118		9	I,818
I	I,780	I,783	220	4	I,788	220		I	I,784
				I	I,749	222			
				I	1,707	311			
5	I,640	I,643	224	25	I,647	224	313	6	I,646
		I,639	I33						
I	1,538	I,538	40I	5	I,545	40 I		I	1,542
I	I,505	I,507	226	I	I,5II	226			
2	I,474	I,476	308	7	I,478	308		I	1,477
I	I,4I4	I,4II	0012	I	I,416	0012		I	I,4I2
2	I,362	I,364	228	8	I,366	228		I	I,366
				7	I,353	410			
I	1,331	I,33I	412	7	I,334	412		I	I,336
3	1,310	1,312	III2	13	I,3I3	III2		5	I,3I3
4	I,286	I,284	414	15	I,278	4I4		5	I,289
I	I,I9I	I,I89	330	2	I,192	330		I	1,194
				I	I,18I	332			
I	I,I63	I,164	3012	5	I,I67	3012			
I	I,I46	I,I44	334	10	I,I48	334		-	
3	I,I37	I,I37	418	12	I,I40	418			
3	I,I07	I,I06	2212	7	I,I08	2212			
3	1,058	I,058	0016	3	I,056	0016			
I	I,034	I,036	338	I	I,035	338			
		I,029	600	I	I,032	600			
2	I,015	I,015	430	10	I,018	III6			
		I,0I4	1116						
				6	0,942	3016			
	2 = 7	a = 7 I3I(h)			a = 7 T	5			
	$c = T_{h}$	$c = T6 \ 932 \ (7)$			a = 7, 13 c = 16.04				
	C = 10	,,,,,,, (1)			¢ - 10,:	~			

Примечание. І — фатерит, Вуориярви, камера РКУ-II4,6 мм, неотфильтрованное Fe-излучение; 2 — фатерит синтетический / II /; 3 — "фатерит", Хибины, камера РКУ-II4,6 мм, неотфильтрованное Сг-излучение. Рентгенограмма порошка и параметры элементарной ячейки фатерита из Вуориярви в сравнении с рентгенограммой синтетического фатерита / II / приведены в табл. 2. Они практически идентичны. Незначительное понижение значений межплоскостных расстояний, а соответственно и параметров ячейки в природном фатерите связаны, по-видимому, с изоморфной примесью натрия и магния. Рентгеновская плотность минерала, рассчитанная на эмпирическую формулу Ca_{0.92}Na_{0.07}Mg_{0.02}CO₃, равна 2,64 г/см³. Это значение хорошо согласуется с измеренной плотностью синтетического фатерита – 2,6 г/см³ [8] и с расчетными значениями плотности синтетического фатерита, приведенными различными авторами – 2,645-2,68 г/см³ / I,8 /.

Многочисленными экспериментами по синтезу фатерита (10 и др.)установлено, что основными условиями его кристаллизации являются пересыщенность растворов, высокая щелочность, низкие температуры (20-100°C). Вероятность возникновения фатерита повышается при наличии ингибиторов - компонентов. препятствующих кристаллизации кальцита и арагонита (K⁺,NH⁺,Ce³⁺,La³⁺). Минеральная ассоциация, в которой обнаружен фатерит в карбонатитах Вуориярви, позволяет предполагать существование близких условий в заключительную гидротермальную стадию формирования карбонатитов: наличие высококонцентрированных остаточных гидротермальных растворов, обогащенных углекислотой, кальцием, щелочами, в частности натрием, и редкоземельными элементами.

Представляется, что распространенность фатерита и условия его образования гораздо шире и разнообразнее, чем считалось до сих пор. Речь идет прежде всего о природных минеральных системах эндогенного происхождения. Подтверждается это не только находкой фатерита в карбонатитах. В Хибинском щелочном массиве в миндалинах дайки пикритового порфирита секущей фойяиты обнаружен минерал, ИК-спектр и рентгенограмма (см.табл.2) которого идентичны фатериту. Совместно с шортитом, кальцитом и минералом, близким по свойствам к арагониту, он образует на стенках миндалин слоистые корочки тонкопластинчатого строения (рис. 5). Оптические характеристики минерала также близки к фатериту: одноосный положительный, n = I,554, n = I,645. По данным микрозондового анализа химический состав минерала (см. табл. I) в сравнении с фатеритом и кальцитом отличается существенным дефицитом кальция (более IO мас.%). Эта особенность позволяет применять к нему название "фатерит" лишь условно. Аналогичный дефицит кальция наблюдается и у "арагонита" (см. табл. I), хотя ИК-спектр и рентгенограмма порошка минерала соответствуют арагониту. Под электронным пучком оба минерала ведут себя как водные, однако по данным ИК-спектроскопии ни Н₂0, ни ОН-групп в них не содержится. Из-за недостатка материала причина этого явления осталась невыясненной. Не вызывает сомнения, что образование этих минералов происходило в высокощелочной обстановке: помимо шортита, "фатерит" ассоциирует с микроклином, содалитом, пектолитом.

Таким образом, описанные находки существенно расширяют представления о распространенности и условиях образования фатерита в природных минеральных системах. Находки фатерита имеют вполне определенное индикаторное значение: появление фатерита фиксирует низкотемпературные гидротермальные минеральные фации, формирующиеся в условиях высокой щелочности.

Литература

- I. Дэна Дж. Ж., Дэна Э.С., Пэлач Ч. и др. Система минералогии. М.: Изд-во иностр.лит., 1953. Т. 2, полутом I. 773 с.
- Ершов В.В. О находке фатерита в солевых отложениях нефтедобывающих скважин // Ежегодник Института геологии и геохимии Уральского отделения АН СССР, 1986. Свердловск, 1987. С. 79-80.
- 180

- Ильинский Г.А. О парамоффозах-кальцита по фатериту // Докл. АН СССР. 1958. Т. 121, № 3. С. 541-543.
- 4. Карлсон У.Д. Полиморфизм CaCO₃ и превращение арагонит-кальцит // Карбонаты: Минералогия и химия. М.: Мир, 1987. С. 240-282.
- Семенов Е.И. 0 возможном новом фторкарбонате редких земель // Вопросы минералогии, геохимии и генезиса месторождений редких элементов. М., 1959. С. 181-186. (Тр.ИМГРЭ; Вып. 2).
- Donnay G., Donnay J.D.H. The crystallography of bastnaesite, parisite, roentgenite and synchisite // Amer. Miner. 1953. Vol. 38. P. 932-963.
- 7. Easton A.J., Claugher D. Variations in a growth from of synthetic vaterite // Miner. Mag., 1986. Vol. 50. P. 332-336.
- Kamhi S.R. On the structure of vaterite, CaCO₃ // Acta crystallogr. 1963. Vol. 16. P. 770-772.
- McConnell J.D.C. Vaterite from Ballycraigy, Larne, Northern Ireland // Miner. Mag. 1960. Vol. 32. P. 535-544.
- Meyer H.J. Bildung und Morphologie des Vaterits // Ztschr. Kristallogr. 1965. Bd. 121. S. 220-242.
- 11. Meyer H.J. Struktur und Fehlordnung des Vaterits // Ibid. 1969. Bd. 128. S. 183-212.
- 12. Sato M., Matsuda S. Structure of vaterite and infrared spectra // Ibid. Bd. 129. S. 405-410.

УДК 553.І

Н.В.Чуканов, В.И.Степанов

ИК-СПЕКТРАЛЬНЫЙ МЕТОД АНАЛИЗА НЕКОТОРЫХ КАРБОНАТОВ ГРУПП КАЛЬЦИТА И ДОЛОМИТА

Карбонаты групп кальцита и доломита включают ряд широко распространенных породообразующих минералов, входят в состав руд (сидерит, смитсонит, родохрозит, анкерит). Отсюда понятна необходимость разработки экспрессметодов анализа составов и структуры этих минералов.

ИК-спектры карбонатов $R_{2-}^{2+}C_{3}$ имеют простую структуру (рис. I), определяемую колебаниями иона C_{3} : плоскими деформационными (690-760 см⁻¹, φ_{1}), неплоскими (840-900 см⁻¹, ψ_{2}), симметричными валентными (1000-II00 см⁻¹, ψ_{3}), и асимметричными валентными (I400-I500 см⁻¹, ψ_{4}), причем полоса ψ_{3} в соответствии с правилами отбора отсутствует в спектрах карбонатов групп кальцита и доломита, что позволяет легко отличать их от карбонатов группы арагонита.

В настоящей работе предлагается простой ИК-спектральный метод идентификации тригональных карбонатов состава $Ca_X Mg_Y Fe_Z Mn_L CO_3$. Метод основан на измерении сдвигов $\Delta \vartheta_I$ и $\Delta \vartheta_2$ узких полос ϑ_I и ϑ_2 относительно соответствующих полос в ИК-спектре чистого кальция, используемого в качестве эталона. ИК-спектры образцов, запрессованных в таблетки с КВг, регистрировали на спектрофотометре "Specord 75 1R"при спектральной ширине щели 0,6 см Высокая точность измерения $\Delta \vartheta_I$ и $\Delta \vartheta_2$ достигалась путем последовательного прописывания максимумов аналогичных полос исследуемого образца и эталона без остановки каретки самописца. Составы использованных образцов приведены на рис. 2, 3 и в таблице.