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Abstract—The paper discusses the morphology and compositional variations of ilmenite group minerals from
kimberlites of two phases at the Kimozero locality, the oldest in Russia. Phenocrysts of Mn-rich picroilmen-
ite and Fe-rich geikielite in kimberlites of both phases are similar in morphology and composition. Ilmenite
from cement in the second-phase kimberlites enriched in Mg and rimming small regularly shaped chrome
spinel phenocrysts is not present in the first-phase kimberlites. Ilmenite, manganilmenite, and Fe-bearing
pyrophanite (22–24 wt % MnO) abundant in the cement of the second-phase kimberlites are twice as rich in
Nb and substantially richer in Mn than ilmenite up to manganilmenite from the cement of the first-phase
kimberlites. Ilmenite and manganilmenite of the first-phase kimberlites is enriched in Zn (up to 1.5 wt %
ZnO). Ilmenite from the second-phase kimberlites contains up to 3 wt % Cr2O3. In Nb concentration, kim-
berlitic rocks of the Kimozero are similar to those found in other parts of the world (up to 3.5 wt % Nb2O5).
Significant Mn-enrichment of the ilmenite group minerals is a common feature of Kimozero kimberlitic
rocks. It is suggested that kimberlites in which all ilmenite group minerals—from megacrysts and phenocrysts
to small segregations in the cement—are enriched in Me, formed with the participation of carbonatite melts
with increased alkalinity.
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INTRODUCTION

Kimberlites are the most important source of dia-
monds and one of the most interesting petrological
objects. Kimberlites are produced from alkali ultra-
mafic carbonate–silicate melts with variable propor-
tions of silicate and carbonate constituents. The car-
bonate constituent is consistent with calcite carbon-
atite; much less frequently, with dolomite or calcite
carbonatites enriched in Mn; and very rarely, with
alkali-rich natrocarbonatite (Dowson, 1983;
Nikishov, 1984; Gaspar and Wylley, 1984; Jones and
Wylley, 1985; Mitchell, 1986; Jaques et al., 1986;
Milashev, 2015).

Titanium easily dissolves in alkali melts. Therefore,
ilmenite group minerals (ilmenite FeTiO3, hematite
FeFeO3, geikielite MgTiO3, pyrophanite MnTiO3,
escolaite CrCrO3, karelianite VVO3, ecandrewsite
ZnTiO3, and corundum AlAlO3) are characteristic
constituents of kimberlites. At a high temperature,
they form ilmenite–hematite, ilmenite–geikielite,
and ilmenite–pyrophanite solid solution series.
Ilmenite enriched in Mg or Mn is picroilmenite or
manganilmenite, respectively. Ilmenite enriched in

Fe3+ is ferri-ilmenite, hemo-ilmenite, or ilmenohe-
matite if the hematite endmember predominates.

Several types of the ilmenite group minerals are
present in kimberlites: (1) picroilmenite lamellae in
xenoliths of deep-seated ultramafic rocks and their
disintegration products; (2) subgraphic structures
with clinopyroxene or orthopyroxene in deep-seated
inclusions; (3) intergrowths with phlogopite, alkali
amphibole, rutile, and diopside; (4) large oval crystals
(megacrysts, autoliths, and phenocrysts of ilmenite,
ferri-geikielite, and rare manganilmenite) commonly
enriched in Cr and frequently with chrome spinel
exsolution lamellae; and (5) small crystals of ilmenite,
manganilmenite, and rare pyrophanite in kimberlite
cement (Frantsesson, 1968; Danchin and O’Rey,
1972; Ilupin et al., 1974; Blagulkina et al., 1975;
Sobolev et al., 1976; Garanin et al., 1978; Wyatt, 1979;
Boctor and Boyd, 1981; Agel et al., 1982; Timofeev
et al., 1984; Kostrovitsky, 1986; Genshaft, Ilupin,
1987; Bagdasarov and Ilupin, 1988; Voitkovsky et al.,
1991; Edwards et al., 1992; Hood and McCandell,
2004; Kostrovitsky et al., 2004a, 2004b; Wyatt et al.,
2004; Malkov and Filippov, 2005). Ilmenite crystals of
all types are frequently rimmed by reaction perovskite.
625
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Perovskite pseudomorphs after macro- and micro-
crystals of ilmenite are frequent. The most recent
manganilmenite and pyrophanite occasionally rim
perovskite crystals (Pasteris, 1980; Tompkins and
Haggerty, 1985; Chakhmouradian and Mitchell,
1999) or occur as pseudomorphs after perovskite
(Malkov and Filippov, 2005). The ilmenite group
minerals in kimberlites contain appreciable Nb, usu-
ally less than 5 wt % Nb2O5, but occasionally up to
12 wt % (Chakhmouradian and Mitchell, 1999).

The Kimozero diamondiferous kimberlites were
discovered in 1992 (Ushkov, 2001). Their composition
was studied to varying degrees. Ushkov (2001) and
Ustinov et al. (2009) reported the first data on the
compositions of chrome spinels and ilmenite group
minerals. Taking into account the enormous lateral
size of the Kimozero deposit (more than 2 km) and the
wide variety of kimberlites within it, data supplement-
ing the chemical composition and the evolution of its
kimberlite typomorphic minerals, including the
ilmenite group minerals, remain relevant.

MATERIALS AND METHODS
A collection of Kimozero kimberlitic rocks from

outcrops and drill cores has been studied. Most back-
scattered electron images and determinations of the
chemical compositions of minerals were obtained with
a Jeol JSM-6480 LV scanning electron microscope
equipped with an EDS under standard conditions at
the Laboratory of High Spatial Resolution Analytical
Techniques, Department of Petrology, Moscow State
University (analyst N.N. Korotaeva).

BRIEF GEOLOGICAL DESCRIPTION
The Kimozero occurrence of diamondiferous kim-

berlites is located in the southeastern part of the Baltic
Shield of the Russian Platform within the Onega
structural formation of the Karelia Craton, the base-
ment of which is the Vedlozero block of the Neoar-
chean stabilization (Ushkov, 2001; Putintseva et al.,
2009). Kimozero is one of the oldest kimberlite occur-
rences; its isotopic age ranges from 1.99 to 1.74 Ga
(Makhotkin, 2003; Samsonov et al., 2009). Kimber-
litic rocks of at least two intrusion phases make up a
large extensive (near 2 km) flattened deposit and some
steeply dipping pipelike bodies predominantly com-
posed of kimberlite breccias and tufflike and massive
kimberlites.

Kimberlitic rocks of the first phase with numerous
olivine and phlogopite phenocrysts are appreciably
more magnetic than those of the second phase. Phlo-
gopite (occasionally rimmed by tetraferriphlogopite)
is Ti-bearing and enriched in Cr as indicated by abun-
dant titanite and Cr-bearing clinochlore as its alter-
ation products. Magnesiochromite, alumochromite,
ilmenite, and picroilmenite are phenocrysts in the
first-phase kimberlites. The second-phase kimberlitic
G

rocks are enriched in bladelike magmatic calcite. Oliv-
ine, magnesiochromite, alumomagnesiochromite,
ilmenite, and picroilmenite phenocrysts are present in
the second-phase kimberlites. Morphology of tremo-
lite–actinolite pseudomorphs riming large grains of
serpentinized olivine suggests that olivine from the
second-phase kimberlites was initially rimmed by
monticellite. Olivine and phlogopite are abundant in
the cement of the Kimozero kimberlites; ilmenite,
titanomagnetite, chromite, and perovskite (as indi-
cated by the morphology of the replacement products)
are frequent; apatite, baddeleyite, and zircon are rare.

Kimberlitic rocks of Kimozero together with Lyu-
dikovian country gabbrodolerite and terrigenous and
volcanic rocks, are markedly tectonized and meta-
morphosed.

ILMENITE GROUP MIERALS
OF THE FIRST-PHASE KIMBERLITIC ROCKS

Oval, markedly corroded phenocrysts up to 1.5 mm
in size similar in morphology (Fig. 1) and composition
to picroilmenite of classic kimberlite megacrysts are
rare in the studied rocks. The composition of the
Kimozero minerals (analyses 1, 2) is, wt %: 11.95 and
11.19 MgO, 0.25 and 0.29 NiO, 23.27 and 17.53 FeO,
0.75 and 4.31 MnO, 0.12 and 0.30 ZnO, 9.14 and 0.12
СаО, 50.94 and 47.25 TiO2, 9.83 and 17.26 Fe2O3, 0.30
and 0.15 V2O3, 2.88 and 0.22 Cr2O3, 0.14 and 1.76
Nb2O5, total 100.57 and 100.30%; the FeO and Fe2O3
contents are calculated from stoichiometry. The end-
member contents are, mol %: 41.1 and 39.1 MgTiO3,
44.9 and 34.4 FeTiO3, 1.5 and 8.6 MnTiO3, 0.2 and 0.5
ZnTiO3, 0.3 CaTiO3, 0.5 NiTiO3, 8.6 and 15.3 Fe2O3,
2.7 and 0.2 Cr2O3, 0.3 and 0.1 V2O3, 0.1 and 1.0 Nb2O5.
Composition 1 is consistent with Cr-bearing picroil-
menite; composition 2 corresponds to Mn–Fe-bear-
ing geikielite enriched in Fe3+ and Nb.

Isolated unzoned ilmenite crystals up to 150 μm
across are common in the cement of the first-phase
kimberlites. They are divided into three groups by
composition. Group 1 ilmenite crystals depleted in
Mg and Mn (Table 1, analyses 3, 4) are the most abun-
dant. This ilmenite contains up to 1 wt % MnO,
approximately 6 wt % Fe2O3, up to 1 wt % Cr2O3,
minor Nb, and trace Ca and Zn. Grains of group 2
ilmenite depleted in Mg and enriched in Fe3+ and Mn
are common. This ilmenite contains, wt %: 2–6 MnO,
up to 13.5 Fe2O3, up to 1 Cr2O3, up to 0.8 ZnO, up to
0.4 V2O3, and up to 0.3 Nb2O5 (Table 1, analyses 5–9).
Group 3 ilmenite is rare. This is manganilmenite
depleted in Mg and enriched in Zn. It contains, wt %:
11 MnO, 2 Fe2O3, 1.5 ZnO, 0.3 V2O3, 0.2 Cr2O3 (Table 1,
analyses 10). Thus, ilmenite from the first-phase kim-
berlitic rocks is variable in composition, from Cr-
bearing picroilmenite and Mn–Fe-bearing geikielite
to common ilmenite and manganilmenite. Most of the
ilmenite group minerals, from earliest to latest, have
EOLOGY OF ORE DEPOSITS  Vol. 60  No. 7  2018
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Fig. 1. Backscattered electron image of fragments of Cr-
bearing picroilmenite (analysis 1) from first-phase kim-
berlites of Kimozero. Crystal is markedly corroded and
rimmed by replacing titanite (gray).

100 �m100 �m100 �m

Fig. 2. Backscattered electron image of Mg-bearing bear-
ing ilmenite (analysis 15) rimming small chrome spinel
phenocryst (gray) in matrix of second-phase kimberlite at
Kimozero. Zircon crystal (white) is on inner side of rim.
Ilmenite is markedly corroded.

100 �m100 �m100 �m
an elevated Mn concentration. The Fe3+ content is
highest in the earliest high-temperature Fe-bearing
geikielite. The Cr and Nb concentrations are not cor-
related and are relatively highly variable. Elevated Zn
is characteristic of manganilmenite. Taking into
account the compositions not given in Table 1, ilmen-
ite from the first-phase kimberlites contains on aver-
age, wt %: 2.4 MnO, 0.29 Nb2O5, 0.45 Cr2O3, 0.25
V2O3 (n = 17).

ILMENITE GROPUP MINERALS FROM THE 
SECOND-PHASE KIMBERLITIC ROCKS
Oval phenocrysts up to 2 mm in size, also close in

composition to picroilmenite from classic kimberlite
megacrysts, are present in these rocks. The composi-
tion of the Kimozero mineral (analysis 11) is, wt %:
11.75 MgO, 0.11 NiO, 12.83 FeO, 2.37 MnO, 0.51
ZnO, 0.13 CaO, 41.45 TiO2, 29.69 Fe2O3, 0.16 V2O3,
1.14 Cr2O3, 0.28 Nb2O5, total 100.62; the FeO and
Fe2O3 contents are calculated from stoichiometry. The
endmember contents are, mol %: 41.5 MgTiO3, 25.0
FeTiO3, 4.7 MnTiO3, 0.9 ZnTiO3, 0.3 CaTiO3, 0.2
NiTiO3, 26.1 Fe2O3, 1.1 Cr2O3, 0.1 V2O3, 0.1 Nb2O5.
This composition is consistent with Mn–Fe-bearing
geikielite in the proportions of the major elements.

Ilmenite enriched in Mg and rimming small regu-
larly shaped chrome spinel phenocrysts (Figs. 2, 3, 4)
is common. The thickness of the ilmenite rims ranges
GEOLOGY OF ORE DEPOSITS  Vol. 60  No. 7  2018
from 20 to 50 μm. Zircon occasionally overgrows their
inner side (Fig. 2). This ilmenite contains up to, wt %:
6.5 MgO, 14 Fe2O3, 4 MnO, 3.5 Nb2O5, 1 Cr2O3, and
0.7 V2O3; Zn was not detected (Table 2). Ilmenite
enriched in Fe3+ was exsolved and conversed to the
ilmenite matrix with numerous hematite lamellae
(Fig. 2).

Isolated grains of the ilmenite group minerals up to
250 μm across are common in the cement of the sec-
ond-phase kimberlites (Figs. 5, 6). They are divided
into four chemical groups. Unzoned ilmenite crystals
of group 1 depleted in Mg and relatively enriched Mn
(Fig. 5; Table 3) are the most abundant. This ilmenite
contains, wt %: 2–9 MnO, up to 5 Fe2O3, up to 2.5
Cr2O3, up to 1.5 Nb2O5, up to 1 CaO, up to 0.7 ZnO,
and up to 0.4 V2O3. Zoned crystals of group 2 ilmenite
depleted in Mg and relatively enriched in Mn are
observed less frequently. The composition of two such
crystals is given in Table 4. Substitution of Fe2+ for
Mn2+ is clearly demonstrated in this ilmenite type: the
cores and rims of crystals are enriched in Fe and Mn,
respectively. Group 2 ilmenite contains, wt %: 6–15
MnO, up to 5 Fe2O3, up to 2 Nb2O5, up to 1 CaO and
ZnO, and up to 0.4 V2O3; Cr was not detected (Table 4).
Unzoned crystals of group 3 ilmenite depleted in Mg
and Cr and significantly enriched in Mn are quite
common. This manganilmenite contains, wt %: 11.5–
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Table 1. Chemical composition (wt %) of isolated ilmenite crystals from cement of first-phase kimberlites

Here and in Tables 2–6, FeO and Fe2O3 contents are calculated from stoichiometry; dash denotes element content below detection limit.

Component
Analysis

3 4 5 6 7 8 9 10

MgO 0.19 0.26 1.36 0.23 0.24 0.22 3.05 0.59
NiO — — — — — — — —
FeO 42.97 42.30 35.63 40.34 37.55 36.49 29.33 31.92
MnO 0.44 0.82 1.91 2.53 3.36 3.65 5.93 10.79
ZnO — — 0.23 0.22 0.71 0.78 — 1.45
CaO 0.05 — 0.10 — — — 0.13 —
TiO2 48.74 48.49 44.84 48.33 46.68 47.76 45.45 51.08
Fe2O3 6.22 5.78 13.26 7.00 10.10 8.05 13.45 1.80
V2O3 — 0.33 0.23 0.39 0.33 0.40 0.16 0.34
Cr2O3 — 1.07 0.11 0.38 0.38 0.24 — 0.24
Nb2O5 0.34 0.24 0.14 0.20 0.17 0.17 0.28 —
Total 98.95 99.29 97.81 100.62 99.52 97.76 98.78 98.21

Atoms per formula unit calculated on basis of two metal atoms
Mg 0.007 0.010 0.051 0.009 0.009 0.008 0.115 0.022

Fe2+ 0.920 0.901 0.766 0.841 0.899 0.810 0.622 0.702
Mn 0.010 0.018 0.042 0.054 0.073 0.079 0.127 0.234
Zn — — 0.004 0.004 0.013 0.015 — 0.027
Ca 0.001 — 0.003 — — — 0.004 —
Ti 0.938 0.929 0.867 0.918 0.895 0.912 0.868 0.985

Fe3+ 0.120 0.113 0.257 0.152 0.104 0.162 0.257 0.018
V — 0.007 0.005 0.002 0.007 0.008 0.003 0.007
Cr — 0.022 0.002 0.008 0.008 0.006 — 0.005
Nb 0.004 0.003 0.002 0.002 0.002 0.002 0.003 —
21.5 MnO, up to 4 (usually below 1) Fe2O3, up to
3 Nb2O5, up to 1 CaO and ZnO, and up to 0.5 V2O3
(Table 5). Rare Fe-bearing pyrophanite microscopi-
cally indistinguishable from above described species
(Fig. 6) presents group 4. Pyrophanite contains, wt %:
22–24 MnO, up to 3 Fe2O3, up to 0.7 ZnO, and up to
0.5 Nb2O5 and V2O3 (Table 6).

Thus, ilmenite from the second-phase kimberlitic
rocks at Kimozero is variable in morphology and com-
position, from Mn–Fe-bearing geikielite through
ilmenite enriched in Mg and Mn to ilmenite, manga-
nilmenite, and pyrophanite depleted in Mg and
enriched Mn. The high Mn concentration is charac-
teristic of the ilmenite group minerals from the earliest
to the latest generation. The Fe3+ content is the highest
in the early highest-temperature Fe-bearing geikielite.
The Cr and Nb concentrations in ilmenite are not cor-
related and are relatively highly variable. Ilmenite with
elevated Mg concentration is more frequently
enriched in Cr, whereas ilmenite with elevated Mn is
G

enriched in Nb. Taking into account the compositions
not given in Tables 2–6, ilmenite from the second-
phase kimberlites contains on average, wt %: 10.2
MnO, 0.54 Nb2O5, 0.24 Cr2O3, 0.33 V2O3 (n = 39).
Minor Ni and Zn are characteristic of Mg- and Mn-
bearing ilmenite, respectively. Constant minor Ca in
ilmenites is noteworthy.

COMPARISON OF ILMENITE GROUP 
MINERALS FROM THE FIRST- AND SECOND-

PHASE KIMBERLITIC ROCKS

Early generation picroilmenite and Fe-bearing geik-
ielite in kimberlites of the both phases at Kimozero are
similar in morphology and composition (Figs. 7, 8).
Later ilmenite enriched in Mg and rimming regularly
shaped chrome spinel crystals from the second-phase
kimberlites was not found in the first-phase kimber-
lites. Later ilmenite, the most abundant in the cement
of the second-phase kimberlites, is two times richer in
Nb and substantially richer in Mn (Fig. 8b) than that
EOLOGY OF ORE DEPOSITS  Vol. 60  No. 7  2018
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Fig. 3. Backscattered electron image of Mg-bearing bear-
ing ilmenite (analysis 12) containing tiny chrome spinel
octahedron and rimming small chrome spinel phenocryst
(gray) in matrix of second-phase kimberlites. Zircon
occurs as fine white crystals in matrix. Ilmenite is strongly
corroded.

20 �m20 �m20 �m

Fig. 4. Backscattered electron image of Mg-bearing bear-
ing ilmenite enriched in Nb (analysis 13) rimming chrome
spinel phenocryst (white) in matrix of second-phase kim-
berlites at Kimozero. Ilmenite is markedly corroded.

20 �m20 �m20 �m

Fig. 5. Backscattered electron image of isolated Mn-bear-
ing ilmenite crystal (analysis 23) in matrix of second-phase
kimberlites at Kimozero. Ilmenite is strongly replaced by
titanite (gray).

50 �m50 �m50 �m

Fig. 6. Backscattered electron image of isolated Fe-bearing
pyrophanite crystal (analysis 42) in matrix of second-
phase kimberlite at Kimozero. Pyrophanite is massively
replaced by titanite (gray).
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Table 2. Chemical composition (wt %) of ilmenite enriched in Mg rimming chrome spinel crystals from second-phase kim-
berlites

Component
Analysis

12 13 14 15
MgO 6.30 4.16 4.15 3.67
NiO 0.13 — — 0.12
FeO 30.36 30.17 34.34 36.38
MnO 3.46 2.61 4.11 0.08
ZnO — — — —
CaO 0.19 0.32 0.05 0.37
TiO2 50.57 50.63 51.07 45.15
Fe2O3 7.90 2.55 6.15 13.75
V2O3 0.45 0.69 0.31 0.49
Cr2O3 0.42 — 0.03 1.13
Nb2O5 — 3.25 — 1.03
Total 99.78 99.31 100.21 99.17

Atoms per formula unit calculated on basis of two metal atoms
Mg 0.227 0.155 0.151 0.137
Ni 0.003 — — 0.002
Fe2+ 0.614 0.734 0.703 0.698
Mn 0.071 0.055 0.085 0.002
Ca 0.005 0.007 0.001 0.010
Ti 0.920 0.951 0.940 0.849
Fe3+ 0.144 0.048 0.113 0.259
V 0.009 0.014 0.006 0.010
Cr 0.008 — 0.001 0.022
Nb — 0.037 — 0.012

Table 3. Chemical composition (wt %) of isolated ilmenite crystals in cement of second-phase kimberlites

Component
Analysis

16 17 18 19 20 21 22 23
MgO 0.17 0.23 0.13 1.51 0.37 0.09 0.07 0.17
NiO — — — — 0.05 — — —
FeO 41.98 42.46 40.45 37.53 38.27 38.50 36.43 35.27
MnO 2.29 2.64 3.44 3.45 4.26 6.07 8.53 9.04
ZnO — — — 0.36 0.67 — 0.18 —
CaO 0.91 0.04 0.93 0.15 0.10 0.31 0.44 1.01
TiO2 50.96 51.27 50.36 49.22 48.97 50.18 51.02 51.15
Fe2O3 0.67 0.93 1.98 5.09 3.17 4.25 2.94 0.31
V2O3 0.34 0.19 0.31 0.20 0.40 0.33 0.23 0.31
Cr2O3 0.44 — 0.92 1.29 2.64 — — —
Nb2O5 0.41 0.17 0.26 0.12 0.16 0.14 — 1.47
Total 98.07 98.73 98.78 98.92 98.96 99.87 99.84 98.63

Atoms per formula unit calculated on basis of two metal atoms
Mg 0.006 0.009 0.005 0.057 0.014 0.003 0.003 0.006
Ni — — — — 0.001 — — —
Fe2+ 0.902 0.921 0.863 0.794 0.815 0.814 0.769 0.756
Mn 0.050 0.057 0.074 0.074 0.092 0.130 0.182 0.196
Zn — — — 0.007 0.013 — 0.003 —
Ca 0.025 0.001 0.025 0.004 0.003 0.008 0.012 0.028
Ti 0.983 0.988 0.967 0.936 0.938 0.955 0.969 0.986
Fe3+ 0.013 0.018 0.038 0.097 0.061 0.081 0.056 0.006
V 0.007 0.004 0.006 0.004 0.008 0.007 0.005 0.004
Cr 0.009 — 0.019 0.025 0.053 — — —
Nb 0.005 0.002 0.003 0.002 0.002 0.002 — 0.017
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Table 4. Chemical composition (wt %) of isolated zoned ilmenite crystals from cement of second-phase kimberlites

Component
Analysis

24
core

25
intermediate

26
intermediate

27 
rim

28
core

29
intermediate

30
intermediate

31
rim

MgO 0.09 0.07 0.13 0.29 0.12 0.17 0.08 0.17
NiO — — — — — — — —
FeO 38.15 36.82 31.33 26.20 36.75 384.02 28.41 29.10
MnO 6.07 8.53 8.89 15.33 6.62 9.04 15.01 15.28
ZnO 0.31 0.18 0.48 0.98 0.47 0.39 0.62 0.79
CaO 0.31 0.44 0.89 0.90 0.93 1.01 0.65 0.73
TiO2 50.18 51.02 49.80 49.20 50.40 50.15 50.18 51.69
Fe2O3 2.42 1.40 1.98 5.93 2.54 2.81 4.02 0.27
V2O3 0.33 0.23 0.36 0.31 0.29 0.21 — 0.27
Cr2O3 — — — — — — — —
Nb2O5 0.14 0.11 0.12 2.18 0.21 1.47 0.19 1.05
Total 98.08 98.80 98.70 100.43 99.92 99.27 99.16 99.32

Atoms per formula unit calculated on basis of two metal atoms
Mg 0.003 0.003 0.005 0.011 0.005 0.006 0.003 0.006
Fe2+ 0.822 0.786 0.728 0.554 0.787 0.726 0.604 0.619
Mn 0.132 0.184 0.192 0.329 0.143 0.195 0.323 0.329
Zn 0.006 0.003 0.009 0.018 0.009 0.007 0.012 0.015
Ca 0.009 0.003 0.024 0.024 0.026 0.028 0.018 0.020
Ti 0.972 0.979 0.958 0.936 0.970 0.962 0.960 0.989
Fe3+ 0.047 0.027 0.075 0.096 0.049 0.054 0.077 0.005
V 0.007 0.005 0.007 0.006 0.006 0.004 — 0.005
Nb 0.002 0.001 0.001 0.025 0.002 0.017 0.002 0.012

Table 5. Chemical composition (wt %) of isolated ilmenite crystals enriched in Mn from cement of second-phase kimberlites

Component
Analysis

32 33 34 35 36 37 38 39

MgO 0.18 0.09 0.16 0.17 0.29 — 0.60 0.22
NiO — — — — — — — —
FeO 34.38 32.01 30.83 29.77 27.23 29.59 24.37 22.66
MnO 11.41 13.63 14.52 15.28 15.33 16.10 18.62 21.48
ZnO — — — — — 0.29 0.32 0.51
CaO 0.19 0.36 0.25 0.73 0.89 0.28 0.56 0.07
TiO2 51.70 51.61 51.26 51.69 49.20 51.70 50.51 50.40
Fe2O3 0.58 0.73 1.20 1.74 3.90 0.94 0.21 3.03
V2O3 0.30 0.49 0.54 0.24 0.31 0.28 0.34 0.55
Cr2O3 — — — — — 0.35 0.13 —
Nb2O5 — — — 1.74 2.18 0.30 2.88 0.47
Total 98.84 98.92 98.76 100.67 99.33 99.83 98.54 99.09

Atoms per formula unit calculated on basis of two metal atoms
Mg 0.007 0.003 0.006 0.006 0.011 — 0.026 0.008
Fe2+ 0.733 0.681 0.657 0.624 0.581 0.625 0.524 0.481
Mn 0.246 0.294 0.313 0.325 0.332 0.345 0.405 0.462
Zn — — — — — 0.005 0.006 0.010
Ca 0.005 0.010 0.007 0.020 0.024 0.008 0.015 0.002
Ti 0.991 0.988 0.983 0.975 0.945 0.983 0.976 0.963
Fe3+ 0.011 0.014 0.023 0.033 0.075 0.018 0.004 0.058
V 0.006 0.010 0.011 0.005 0.006 0.006 0.007 0.011
Cr — — — — — 0.007 0.003 —
Nb — — — 0.012 0.025 0.003 0.033 0.005
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Table 6. Chemical composition (wt %) of isolated Fe-bearing pyrophanite from cement of second-phase kimberlites
Component, wt % Atoms per formula unit

Analysis 40 41 42 Analysis 40 41 42

MgO 0.14 0.26 0.18 Mg 0.005 0.010 0.007
NiO — — — Ni — — —
FeO 22.26 21.00 21.42 Fe2+ 0.480 0.447 0.452
MnO 21.99 22.57 23.93 Mn 0.461 0.487 0.511
ZnO 0.55 0.71 0.71 Zn 0.011 0.013 0.013
CaO 0.50 0.18 0.12 Ca 0.014 0.005 0.003
TiO2 51.04 50.25 51.97 Ti 0.991 0.962 0.986
Fe2O3 0.31 3.07 1.05 Fe3+ 0.006 0.059 0.020
V2O3 0.49 0.61 0.737 V 0.010 0.012 0.007
Cr2O3 — — — Cr — — —
Nb2O5 0.22 0.38 0.14 Nb 0.003 0.004 0.002
Total 97.50 99.03 99.85 2
from the cement of the first-phase kimberlites (Fig. 7b).
Ilmenite from the first-phase kimberlites is markedly
richer in Zn. The positive correlation between Mg and
Fe3+ concentrations and between contents of geikielite
and hematite endmembers is characteristic of ilmenite
group minerals from kimberlites of the both phases.
This correlation is more pronounced in the second-
phase kimberlites (Figs. 7a, 8a). Significant enrich-
ment in Mn is a common feature of ilmenite group
minerals from the Kimozero kimberlites (Figs. 7b, 8b).

COMPARISON OF ILMENITE GROUP 
MINERALS FROM KIMBERLITIC ROCKS

AT KIMOZERO AND OTHER 
DIAMONDIFEROUS KIMBERLITES

Diamondiferous kimberlites contain picroilmenite
and ferri-geikielite, which are enriched in Cr to vary-
G

Fig. 7. Triangular plots in terms of (a) FeFeO3–MgTiO3–(Fe,M
sition of ilmenite group minerals from first-phase kimberlites at
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ing degrees (Holmes, 1936; Nixon et al., 1963; Boctor
and Boyd, 1980; Frantsesson et al., 1982; Haggerty
and Tompkins, 1985; Mitchell, 1986; Genshaft and
Ilupin, 1987; Bagdasarov and Ilupin, 1988; Edwards
et al., 1992; Hood and McCandell, 2004; Kjarsgaard
et al., 2004; Kostrovitsky et al., 2004; Masum et al.,
2004; Wyatt et al., 2004; Kostrovitsky et al., 2006;
Milashev, 2015). The positive correlation between Mg
and Fe3+ concentrations and between contents of geik-
ielite and hematite endmembers is characteristic of
ilmenite group minerals from many diamondiferous
kimberlites. Megacrysts of ilmenite group minerals
frequently have appreciable Nb. The content of these
ilmenite group minerals is low in kimberlites of both
phases at Kimozero, which is consistent with the low
diamond grade in these kimberlites (Ushkov, 2001;
Lukyanova et al., 2006; Ustinov et al., 2009).
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Fig. 8. Triangular plots in terms of (a) FeFeO3–MgTiO3–(Fe,Mn)TiO3 and (b) MgTiO3–FeTiO3–MnTiO3 illustrating compo-
sition of ilmenite group minerals from second-phase kimberlites.
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The vast majority of picroilmenite and ferri-geik-
ielite megacrysts from diamondiferous kimberlites is
Mn-poor, 0.3–0.5 wt % MnO. The Kimozero picroil-
menite and Fe-bearing geikielite are enriched in this
element, 0.8–4.3 wt % MnO. Rare types of diamon-
diferous kimberlites containing megacrysts of ilmenite
enriched in Mn and manganilmenite are known in
Brazil (Kaminsky and Belousova, 2009). In this
respect, the Kimozero kimberlites are no exception.

Microcrystalline ilmenite from the cement of the
vast majority of kimberlites is Mn-poor: only rims of
crystals are enriched in this element (Blagulkina et al.,
1975; Garanin et al., 1978; Boctor and Boyd, 1981;
Agel et al., 1982; Dowson, 1983; Nikoshov, 1984;
Timofeev et al., 1984; Tompkins and Haggerty, 1985;
Mitchell, 1986; Genshaft and Ilupin, 1988; Voitkovsky
et al., 1991; Ilupin, 1997; Edwards et al., 1992; Hood
and McCandell, 2004; Wyatt et al., 2004; Malkov and
Filippov, 2005; Kostrovitsky et al., 2006; Kaminsky
and Belousova, 2009). Rare types of kimberlites con-
tain Mn-rich ilmenite, manganilmenite, and pyro-
phanite in the cement (Wyatt, 1979; Pasteris, 1980;
Tompkins, Haggerty, 1985; Chakhmouradian and
Mitchell, 1999; Malkov and Filippov, 2005; Kaminsky
and Belousova, 2009). Such are the Kimozero kim-
berlites. These kimberlites contain a significant pro-
portion of carbonatites. The same Mn-rich ilmenite
group minerals are present in high-alkali carbonatites
(Jakupiranga, Brazil; Western Australia) (Mitchell,
1978; Gaspar and Wylley, 1983; Jaques et al., 1986).

It can be suggested that kimberlites in which all
types of ilmenite group minerals from megacrysts and
phenocrysts to fine grains in the cement are enriched
in Mn originated with the participation of high-alkali
carbonatite melts, whereas standard kimberlites with
ilmenite group minerals depleted in Mn were formed
with the involvement of low-alkali carbonatite melts.
High-alkali carbonatites enriched in Mn are known in
GEOLOGY OF ORE DEPOSITS  Vol. 60  No. 7  2018
the eastern part of the Baltic Shield (Dudkin et al.,
1984).

The Kimozero kimberlitic rocks are similar in Nb
concentration to standard kimberlites.

ALTERATION
The Kimozero kimberlites, country Lyudikovian

gabbrodolerite, and sedimentary and volcanic rocks
are tectonized and predominantly metamorphosed
under prehnite–pumpellyite facies conditions. The
Kimozero metakimberlites are composed of antigorite
and less frequent lizardite, actinolite–tremolite, car-
bonates, chlorites, and titanite; their proportions are
highly variable (Lukyanova et al., 1986; Ustinov et al.,
2009; Putintseva, 2015). Many of the ilmenite group
minerals in metakimberlites are corroded (Figs. 1, 2, 3),
partly replaced by titanite (Figs. 4, 5, 7), and less fre-
quent ferro-pseudobrookite FeTi2O5 and fine-grained
aggregates of rutile and hematite. Complete pseudo-
morphs of titanite after ilmenite are rather common.

CONCLUSIONS
Oval Mn-bearing picroilmenite and Fe-bearing

geikielite phenocrysts in the Kimozero kimberlites of
both phases are close in morphology and composition
to megacrysts from standard diamondiferous kimber-
lites. The low content of these ilmenite group minerals
in the Kimozero kimberlites is consistent with the low
diamond grade in these rocks. Ilmenite enriched in
Mg and rimming small regularly shaped chrome spinel
phenocrysts in the cement of the second-phase kim-
berlites was not found in the first-phase kimberlites.
Ilmenite, manganilmenite, and Fe-bearing pyro-
phanite (22–24 wt % MnO) common in the cement of
the second-phase kimberlites are two times richer in
Nb and substantially richer in Mn than ilmenite and
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manganilmenite from the cement of the first-phase
kimberlites. Ilmenite and manganilmenite from the
first-phase kimberlites are richer in Zn (up to 1.5 wt %
ZnO). Ilmenite from the second-phase kimberlites
contains up to 3 wt % Cr2O3. The Nb content (up to
3.5 wt % Nb2O5) in the Kimozero kimberlitic rocks is
similar in to that in standard kimberlites. Significant
enrichment in Mn is a common feature of ilmenite
group minerals of the Kimozero kimberlitic rocks. It
can be suggested that kimberlites in which all types of
ilmenite group minerals—from megacrysts and phe-
nocrysts to fine grains in the cement—are enriched in
Mn formed with the participation high-alkali carbon-
atite melts.
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